Aiming at the hybrid flow-shop (HFS) scheduling that is a complex NP-hard combinatorial problem with wide engineering background, an effective algorithm based on differential evolution (DE) is proposed. By using a...Aiming at the hybrid flow-shop (HFS) scheduling that is a complex NP-hard combinatorial problem with wide engineering background, an effective algorithm based on differential evolution (DE) is proposed. By using a special encoding scheme and combining DE based evolutionary search and local search, the exploration and exploitation abilities are enhanced and well balanced for solving the HFS problems. Simulation results based on some typical problems and comparisons with some existing genetic algorithms demonstrate the proposed algorithm is effective, efficient and robust for solving the HFS problems.展开更多
This paper considers a hybrid two-stage flow-shop scheduling problem with m identical parallel machines on one stage and a batch processor on the other stage. The processing time of job Jj on any of m identical parall...This paper considers a hybrid two-stage flow-shop scheduling problem with m identical parallel machines on one stage and a batch processor on the other stage. The processing time of job Jj on any of m identical parallel machines is aj≡a (j∈N), and the processing time of job Jj is bj(j∈N) on a batch processorM. We take makespan (Cmax) as our minimization objective. In this paper, for the problem of FSMP-BI (m identical parallel machines on the first stage and a batch processor on the second stage), based on the algorithm given by Sung and Choung for the problem of 1 |ri, BI|Cmax under the constraint of the given processing sequence, we develop an optimal dynamic programming Algorithm H1 for it in max {O(nlogn), O(nB)} time. A max {O(nlogn) , O(nB)}time symmetric Algorithm H2 is given then for the problem of BI-FSMP (a batch processor on the first stage and m identical parallel machines on the second stage).展开更多
A new bottleneck-based heuristic for large-scale flow-shop scheduling problems with a bottleneck is proposed, which is simpler but more tailored than the shifting bottleneck (SB) procedure. In this algorithm, a sche...A new bottleneck-based heuristic for large-scale flow-shop scheduling problems with a bottleneck is proposed, which is simpler but more tailored than the shifting bottleneck (SB) procedure. In this algorithm, a schedule for the bottleneck machine is first constructed optimally and then the non-bottleneck machines are scheduled around the bottleneck schedule by some effective dispatching rules. Computational results show that the modified bottleneck-based procedure can achieve a tradeoff between solution quality and computational time comparing with SB procedure for medium-size problems. Furthermore it can obtain a good solution in quite short time for large-scale scheduling problems.展开更多
It is urgent to effectively improve the production efficiency in the running process of manufacturing systems through a new generation of information technology.According to the current growing trend of the internet o...It is urgent to effectively improve the production efficiency in the running process of manufacturing systems through a new generation of information technology.According to the current growing trend of the internet of things(IOT)in the manufacturing industry,aiming at the capacitor manufacturing plant,a multi-level architecture oriented to IOT-based manufacturing environment is established for a flexible flow-shop scheduling system.Next,according to multi-source manufacturing information driven in the manufacturing execution process,a scheduling optimization model based on the lot-streaming strategy is proposed under the framework.An improved distribution estimation algorithm is developed to obtain the optimal solution of the problem by balancing local search and global search.Finally,experiments are carried out and the results verify the feasibility and effectiveness of the proposed approach.展开更多
Production scheduling is one of the most important problems to be considered in the effective performance of the automatic manufacturing system.It is the typical kind of NP-complete problem. The methods commonly used ...Production scheduling is one of the most important problems to be considered in the effective performance of the automatic manufacturing system.It is the typical kind of NP-complete problem. The methods commonly used are not suitable to solve complicated problems because the calculating time rises exponentially with the increase of the problem size. In this paper, a new algorithm - immune based scheduling algorithm (IBSA) is proposed. After the description of the mathematics model and the calculating procedure of immune based scheduling,some examples are tested in the software system called HM IM& C that is developed usingVC+ +6.0. The testing results show that IBSA has high efficiency to solve scheduling problem.展开更多
An important production planning problem is how to best schedule jobs(or lots)when each job consists of a large number of identical parts.This problem is often approached by breaking each job/lot into sublots(termed l...An important production planning problem is how to best schedule jobs(or lots)when each job consists of a large number of identical parts.This problem is often approached by breaking each job/lot into sublots(termed lot streaming).When the total number of transfer sublots in lot streaming is large,the computational effort to calculate job completion time can be significant.However,researchers have largely neglected this computation time issue.To provide a practical method for production scheduling for this situation,we propose a method to address the n-job,m-machine,and lot streaming flow-shop scheduling problem.We consider the variable sublot sizes,setup time,and the possibility that transfer sublot sizes may be bounded because of capacity constrained transportation activities.The proposed method has three stages:initial lot splitting,job sequencing optimization with efficient calculation of the makespan/total flow time criterion,and transfer adjustment.Computational experiments are conducted to confirm the effectiveness of the three-stage method.The experiments reveal that relative to results reported on lot streaming problems for five standard datasets,the proposed method saves substantial computation time and provides better solutions,especially for large-size problems.展开更多
The Mixed No-Idle Flow-shop Scheduling Problem(MNIFSP)is an extension of flow-shop scheduling,which has practical significance and application prospects in production scheduling.To improve the efficacy of solving the ...The Mixed No-Idle Flow-shop Scheduling Problem(MNIFSP)is an extension of flow-shop scheduling,which has practical significance and application prospects in production scheduling.To improve the efficacy of solving the complicated multiobjective MNIFSP,a MultiDirection Update(MDU)based Multiobjective Particle Swarm Optimization(MDU-MoPSO)is proposed in this study.For the biobjective optimization problem of the MNIFSP with minimization of makespan and total processing time,the MDU strategy divides particles into three subgroups according to a hybrid selection mechanism.Each subgroup prefers one convergence direction.Two subgroups are individually close to the two edge areas of the Pareto Front(PF)and serve two objectives,whereas the other one approaches the central area of the PF,preferring the two objectives at the same time.The MDU-MoPSO adopts a job sequence representation method and an exchange sequence-based particle update operation,which can better reflect the characteristics of sequence differences among particles.The MDU-MoPSO updates the particle in multiple directions and interacts in each direction,which speeds up the convergence while maintaining a good distribution performance.The experimental results and comparison of six classical evolutionary algorithms for various benchmark problems demonstrate the effectiveness of the proposed algorithm.展开更多
In reality, processing times are often imprecise and this imprecision is critical for the scheduling procedure. This research deals with flow-shop scheduling in rough environment. In this type of scheduling problem, ...In reality, processing times are often imprecise and this imprecision is critical for the scheduling procedure. This research deals with flow-shop scheduling in rough environment. In this type of scheduling problem, we employ the rough sets to represent the job parameters. The job processing times are assumed to be rough variables, and the problem is to minimize the makespan. Three novel types of rough scheduling models are presented. A rough simulation-based genetic algorithm is designed to solve these models and its effectiveness is well illustrated by numerical experiments.展开更多
A cooperative game theoretical approach is taken to production and transportation coordinated scheduling problems of two-machine flow-shop(TFS-PTCS problems)with an interstage transporter.The authors assume that there...A cooperative game theoretical approach is taken to production and transportation coordinated scheduling problems of two-machine flow-shop(TFS-PTCS problems)with an interstage transporter.The authors assume that there is an initial scheduling order for processing jobs on the machines.The cooperative sequencing game models associated with TFS-PTCS problems are established with jobs as players and the maximal cost savings of a coalition as its value.The properties of cooperative games under two different types of admissible rearrangements are analysed.For TFS-PTCS problems with identical processing time,it is proved that,the corresponding games areσ_(0)-component additive and convex under one admissible rearrangement.The Shapley value gives a core allocation,and is provided in a computable form.Under the other admissible rearrangement,the games neither need to beσ_(0)-component additive nor convex,and an allocation rule of modified Shapley value is designed.The properties of the cooperative games are analysed by a counterexample for general problems.展开更多
Automatic solution of vehicle operation adjustment is the important content in realizing vehicle traffic command automation on Internet of Things platform. Based on both the organization realization of Internet of Thi...Automatic solution of vehicle operation adjustment is the important content in realizing vehicle traffic command automation on Internet of Things platform. Based on both the organization realization of Internet of Things platform and the merging vehicle operation adjustment into the Flow-Shop scheduling problem in manufacturing systems,this paper has constructed the optimization model with a two-lane vehicle operation adjustment. With respect to the large model solution space and complex constraints,a better solution algorithm is proposed based on ant colony algorithm for optimal quick solution. The simulation results show that the algorithm is feasible and the approximate optimal solution can be quickly obtained.展开更多
基金supported by the National Natural Science Fundation of China (60774082 70871065+2 种基金 60834004)the Program for New Century Excellent Talents in University (NCET-10-0505)the Doctoral Program Foundation of Institutions of Higher Education of China(20100002110014)
文摘Aiming at the hybrid flow-shop (HFS) scheduling that is a complex NP-hard combinatorial problem with wide engineering background, an effective algorithm based on differential evolution (DE) is proposed. By using a special encoding scheme and combining DE based evolutionary search and local search, the exploration and exploitation abilities are enhanced and well balanced for solving the HFS problems. Simulation results based on some typical problems and comparisons with some existing genetic algorithms demonstrate the proposed algorithm is effective, efficient and robust for solving the HFS problems.
基金Sponsored by the Innovation Foundation of Shanghai University(Grant No.A.10-0101-07 -406)NNSF of China(Grant No.60874039)
文摘This paper considers a hybrid two-stage flow-shop scheduling problem with m identical parallel machines on one stage and a batch processor on the other stage. The processing time of job Jj on any of m identical parallel machines is aj≡a (j∈N), and the processing time of job Jj is bj(j∈N) on a batch processorM. We take makespan (Cmax) as our minimization objective. In this paper, for the problem of FSMP-BI (m identical parallel machines on the first stage and a batch processor on the second stage), based on the algorithm given by Sung and Choung for the problem of 1 |ri, BI|Cmax under the constraint of the given processing sequence, we develop an optimal dynamic programming Algorithm H1 for it in max {O(nlogn), O(nB)} time. A max {O(nlogn) , O(nB)}time symmetric Algorithm H2 is given then for the problem of BI-FSMP (a batch processor on the first stage and m identical parallel machines on the second stage).
基金This project is supported by National Natural Science Foundation of China (No.60274013, No.60474002)Shanghai City Development Found for Science and Technology, China(No.04DZ11008)
文摘A new bottleneck-based heuristic for large-scale flow-shop scheduling problems with a bottleneck is proposed, which is simpler but more tailored than the shifting bottleneck (SB) procedure. In this algorithm, a schedule for the bottleneck machine is first constructed optimally and then the non-bottleneck machines are scheduled around the bottleneck schedule by some effective dispatching rules. Computational results show that the modified bottleneck-based procedure can achieve a tradeoff between solution quality and computational time comparing with SB procedure for medium-size problems. Furthermore it can obtain a good solution in quite short time for large-scale scheduling problems.
基金supported by the National Natural Science Foundations of China(No. 51875171)
文摘It is urgent to effectively improve the production efficiency in the running process of manufacturing systems through a new generation of information technology.According to the current growing trend of the internet of things(IOT)in the manufacturing industry,aiming at the capacitor manufacturing plant,a multi-level architecture oriented to IOT-based manufacturing environment is established for a flexible flow-shop scheduling system.Next,according to multi-source manufacturing information driven in the manufacturing execution process,a scheduling optimization model based on the lot-streaming strategy is proposed under the framework.An improved distribution estimation algorithm is developed to obtain the optimal solution of the problem by balancing local search and global search.Finally,experiments are carried out and the results verify the feasibility and effectiveness of the proposed approach.
基金Shanghai Natural Science Foundation (01ZF14004) National Technology Innovation Project (02CJ-14 -05 -01)
文摘Production scheduling is one of the most important problems to be considered in the effective performance of the automatic manufacturing system.It is the typical kind of NP-complete problem. The methods commonly used are not suitable to solve complicated problems because the calculating time rises exponentially with the increase of the problem size. In this paper, a new algorithm - immune based scheduling algorithm (IBSA) is proposed. After the description of the mathematics model and the calculating procedure of immune based scheduling,some examples are tested in the software system called HM IM& C that is developed usingVC+ +6.0. The testing results show that IBSA has high efficiency to solve scheduling problem.
基金Project supported by the National Natural Science Foundation of China(No.61403163)the Zhejiang Provincial Natural Science Foundation of China(Nos.LQ14G010008 and LY15F030021)
文摘An important production planning problem is how to best schedule jobs(or lots)when each job consists of a large number of identical parts.This problem is often approached by breaking each job/lot into sublots(termed lot streaming).When the total number of transfer sublots in lot streaming is large,the computational effort to calculate job completion time can be significant.However,researchers have largely neglected this computation time issue.To provide a practical method for production scheduling for this situation,we propose a method to address the n-job,m-machine,and lot streaming flow-shop scheduling problem.We consider the variable sublot sizes,setup time,and the possibility that transfer sublot sizes may be bounded because of capacity constrained transportation activities.The proposed method has three stages:initial lot splitting,job sequencing optimization with efficient calculation of the makespan/total flow time criterion,and transfer adjustment.Computational experiments are conducted to confirm the effectiveness of the three-stage method.The experiments reveal that relative to results reported on lot streaming problems for five standard datasets,the proposed method saves substantial computation time and provides better solutions,especially for large-size problems.
基金This work was partly supported by the National Natural Science Foundation of China(No.61772173)the Science and Technology Research Project of Henan Province(No.202102210131)+1 种基金the Innovative Funds Plan of Henan University of Technology(No.2020ZKCJ02)the Grant-in-Aid for Scientific Research(C)of Japan Society of Promotion of Science(No.19K12148).
文摘The Mixed No-Idle Flow-shop Scheduling Problem(MNIFSP)is an extension of flow-shop scheduling,which has practical significance and application prospects in production scheduling.To improve the efficacy of solving the complicated multiobjective MNIFSP,a MultiDirection Update(MDU)based Multiobjective Particle Swarm Optimization(MDU-MoPSO)is proposed in this study.For the biobjective optimization problem of the MNIFSP with minimization of makespan and total processing time,the MDU strategy divides particles into three subgroups according to a hybrid selection mechanism.Each subgroup prefers one convergence direction.Two subgroups are individually close to the two edge areas of the Pareto Front(PF)and serve two objectives,whereas the other one approaches the central area of the PF,preferring the two objectives at the same time.The MDU-MoPSO adopts a job sequence representation method and an exchange sequence-based particle update operation,which can better reflect the characteristics of sequence differences among particles.The MDU-MoPSO updates the particle in multiple directions and interacts in each direction,which speeds up the convergence while maintaining a good distribution performance.The experimental results and comparison of six classical evolutionary algorithms for various benchmark problems demonstrate the effectiveness of the proposed algorithm.
基金Supported by the National Natural Science Foundationof China ( No. 6 0 1740 49),the Sino- French JoinL aboratory for Research in Com puter Science,Controland Applied Mathematics ( L IAMA ),and the KeyProject ( No.2 0 0 1A430 0 7) of Education D
文摘In reality, processing times are often imprecise and this imprecision is critical for the scheduling procedure. This research deals with flow-shop scheduling in rough environment. In this type of scheduling problem, we employ the rough sets to represent the job parameters. The job processing times are assumed to be rough variables, and the problem is to minimize the makespan. Three novel types of rough scheduling models are presented. A rough simulation-based genetic algorithm is designed to solve these models and its effectiveness is well illustrated by numerical experiments.
基金supported in part by the Liaoning Province Xingliao Talents Plan Project under Grant No.XLYC2006017in part by the Scientific Research Funds Project of Educational Department of Liaoning Province under Grant Nos.LG202025 and LJKZ0260。
文摘A cooperative game theoretical approach is taken to production and transportation coordinated scheduling problems of two-machine flow-shop(TFS-PTCS problems)with an interstage transporter.The authors assume that there is an initial scheduling order for processing jobs on the machines.The cooperative sequencing game models associated with TFS-PTCS problems are established with jobs as players and the maximal cost savings of a coalition as its value.The properties of cooperative games under two different types of admissible rearrangements are analysed.For TFS-PTCS problems with identical processing time,it is proved that,the corresponding games areσ_(0)-component additive and convex under one admissible rearrangement.The Shapley value gives a core allocation,and is provided in a computable form.Under the other admissible rearrangement,the games neither need to beσ_(0)-component additive nor convex,and an allocation rule of modified Shapley value is designed.The properties of the cooperative games are analysed by a counterexample for general problems.
基金Sponsored by the Natural Science Foundation of Shandong Province(Grant No.ZR2011FL006)2012 International Cooperation Training Fund of Outstanding Young Backbone Teachers of Colleges and Universities in Shandong Province,and Shandong Province Science,2012 Shandong ProvinceSpark Program and Technology Development Plan(Grant No.2011YD01044)
文摘Automatic solution of vehicle operation adjustment is the important content in realizing vehicle traffic command automation on Internet of Things platform. Based on both the organization realization of Internet of Things platform and the merging vehicle operation adjustment into the Flow-Shop scheduling problem in manufacturing systems,this paper has constructed the optimization model with a two-lane vehicle operation adjustment. With respect to the large model solution space and complex constraints,a better solution algorithm is proposed based on ant colony algorithm for optimal quick solution. The simulation results show that the algorithm is feasible and the approximate optimal solution can be quickly obtained.