期刊文献+
共找到8,555篇文章
< 1 2 250 >
每页显示 20 50 100
The Stability of Multi-modal Traffic Network
1
作者 HAN Ling-Hui Sun Hui-Jun +2 位作者 ZHU Cheng-Juan WU Jian-Jun JIA Bin 《Communications in Theoretical Physics》 SCIE CAS CSCD 2013年第7期48-54,共7页
There is an explicit and implicit assumption in multimodal traffic equilibrium models, that is, if the equilibrium exists, then it will also occur. The assumption is very idealized; in fact, it may be shown that the q... There is an explicit and implicit assumption in multimodal traffic equilibrium models, that is, if the equilibrium exists, then it will also occur. The assumption is very idealized; in fact, it may be shown that the quite contrary could happen, because in multimodal traffic network, especially in mixed traffic conditions the interaction among traffic modes is asymmetric and the asymmetric interaction may result in the instability of traffic system. In this paper, to study the stability of multimodal traffic system, we respectively present the travel cost function in mixed traffic conditions and in traffic network with dedicated bus lanes. Based on a day-to-day dynamical model, we study the evolution of daily route choice of travelers in multimodal traffic network using 10000 random initial values for different cases. From the results of simulation, it can be concluded that the asymmetric interaction between the cars and buses in mixed traffic conditions can lead the traffic system to instability when traffic demand is larger. We also study the effect of travelers' perception error on the stability of multimodal traffic network. Although the larger perception error can alleviate the effect of interaction between cars and buses and improve the stability of traffic system in mixed traffic conditions, the traffic system also become instable when the traffic demand is larger than a number. For all cases simulated in this study, with the same parameters, traffic system with dedicated bus lane has better stability for traffic demand than that in mixed traffic conditions. We also find that the network with dedicated bus lane has higher portion of travelers by bus than it of mixed traffic network. So it can be concluded that building dedicated bus lane can improve the stability of traffic system and attract more travelers to choose bus reducing the traffic congestion. 展开更多
关键词 multi-modal traffic network day-to-day dynamical model STABILITY
原文传递
Multi-dimension and multi-modal rolling mill vibration prediction model based on multi-level network fusion
2
作者 CHEN Shu-zong LIU Yun-xiao +3 位作者 WANG Yun-long QIAN Cheng HUA Chang-chun SUN Jie 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3329-3348,共20页
Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction mode... Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction models do not consider the features contained in the data,resulting in limited improvement of model accuracy.To address these challenges,this paper proposes a multi-dimensional multi-modal cold rolling vibration time series prediction model(MDMMVPM)based on the deep fusion of multi-level networks.In the model,the long-term and short-term modal features of multi-dimensional data are considered,and the appropriate prediction algorithms are selected for different data features.Based on the established prediction model,the effects of tension and rolling force on mill vibration are analyzed.Taking the 5th stand of a cold mill in a steel mill as the research object,the innovative model is applied to predict the mill vibration for the first time.The experimental results show that the correlation coefficient(R^(2))of the model proposed in this paper is 92.5%,and the root-mean-square error(RMSE)is 0.0011,which significantly improves the modeling accuracy compared with the existing models.The proposed model is also suitable for the hot rolling process,which provides a new method for the prediction of strip rolling vibration. 展开更多
关键词 rolling mill vibration multi-dimension data multi-modal data convolutional neural network time series prediction
下载PDF
Applying an Improved Dung Beetle Optimizer Algorithm to Network Traffic Identification 被引量:1
3
作者 Qinyue Wu Hui Xu Mengran Liu 《Computers, Materials & Continua》 SCIE EI 2024年第3期4091-4107,共17页
Network traffic identification is critical for maintaining network security and further meeting various demands of network applications.However,network traffic data typically possesses high dimensionality and complexi... Network traffic identification is critical for maintaining network security and further meeting various demands of network applications.However,network traffic data typically possesses high dimensionality and complexity,leading to practical problems in traffic identification data analytics.Since the original Dung Beetle Optimizer(DBO)algorithm,Grey Wolf Optimization(GWO)algorithm,Whale Optimization Algorithm(WOA),and Particle Swarm Optimization(PSO)algorithm have the shortcomings of slow convergence and easily fall into the local optimal solution,an Improved Dung Beetle Optimizer(IDBO)algorithm is proposed for network traffic identification.Firstly,the Sobol sequence is utilized to initialize the dung beetle population,laying the foundation for finding the global optimal solution.Next,an integration of levy flight and golden sine strategy is suggested to give dung beetles a greater probability of exploring unvisited areas,escaping from the local optimal solution,and converging more effectively towards a global optimal solution.Finally,an adaptive weight factor is utilized to enhance the search capabilities of the original DBO algorithm and accelerate convergence.With the improvements above,the proposed IDBO algorithm is then applied to traffic identification data analytics and feature selection,as so to find the optimal subset for K-Nearest Neighbor(KNN)classification.The simulation experiments use the CICIDS2017 dataset to verify the effectiveness of the proposed IDBO algorithm and compare it with the original DBO,GWO,WOA,and PSO algorithms.The experimental results show that,compared with other algorithms,the accuracy and recall are improved by 1.53%and 0.88%in binary classification,and the Distributed Denial of Service(DDoS)class identification is the most effective in multi-classification,with an improvement of 5.80%and 0.33%for accuracy and recall,respectively.Therefore,the proposed IDBO algorithm is effective in increasing the efficiency of traffic identification and solving the problem of the original DBO algorithm that converges slowly and falls into the local optimal solution when dealing with high-dimensional data analytics and feature selection for network traffic identification. 展开更多
关键词 network security network traffic identification data analytics feature selection dung beetle optimizer
下载PDF
Network traffic classification:Techniques,datasets,and challenges 被引量:1
4
作者 Ahmad Azab Mahmoud Khasawneh +2 位作者 Saed Alrabaee Kim-Kwang Raymond Choo Maysa Sarsour 《Digital Communications and Networks》 SCIE CSCD 2024年第3期676-692,共17页
In network traffic classification,it is important to understand the correlation between network traffic and its causal application,protocol,or service group,for example,in facilitating lawful interception,ensuring the... In network traffic classification,it is important to understand the correlation between network traffic and its causal application,protocol,or service group,for example,in facilitating lawful interception,ensuring the quality of service,preventing application choke points,and facilitating malicious behavior identification.In this paper,we review existing network classification techniques,such as port-based identification and those based on deep packet inspection,statistical features in conjunction with machine learning,and deep learning algorithms.We also explain the implementations,advantages,and limitations associated with these techniques.Our review also extends to publicly available datasets used in the literature.Finally,we discuss existing and emerging challenges,as well as future research directions. 展开更多
关键词 network classification Machine learning Deep learning Deep packet inspection traffic monitoring
下载PDF
Network Intrusion Traffic Detection Based on Feature Extraction 被引量:1
5
作者 Xuecheng Yu Yan Huang +2 位作者 Yu Zhang Mingyang Song Zhenhong Jia 《Computers, Materials & Continua》 SCIE EI 2024年第1期473-492,共20页
With the increasing dimensionality of network traffic,extracting effective traffic features and improving the identification accuracy of different intrusion traffic have become critical in intrusion detection systems(... With the increasing dimensionality of network traffic,extracting effective traffic features and improving the identification accuracy of different intrusion traffic have become critical in intrusion detection systems(IDS).However,both unsupervised and semisupervised anomalous traffic detection methods suffer from the drawback of ignoring potential correlations between features,resulting in an analysis that is not an optimal set.Therefore,in order to extract more representative traffic features as well as to improve the accuracy of traffic identification,this paper proposes a feature dimensionality reduction method combining principal component analysis and Hotelling’s T^(2) and a multilayer convolutional bidirectional long short-term memory(MSC_BiLSTM)classifier model for network traffic intrusion detection.This method reduces the parameters and redundancy of the model by feature extraction and extracts the dependent features between the data by a bidirectional long short-term memory(BiLSTM)network,which fully considers the influence between the before and after features.The network traffic is first characteristically downscaled by principal component analysis(PCA),and then the downscaled principal components are used as input to Hotelling’s T^(2) to compare the differences between groups.For datasets with outliers,Hotelling’s T^(2) can help identify the groups where the outliers are located and quantitatively measure the extent of the outliers.Finally,a multilayer convolutional neural network and a BiLSTM network are used to extract the spatial and temporal features of network traffic data.The empirical consequences exhibit that the suggested approach in this manuscript attains superior outcomes in precision,recall and F1-score juxtaposed with the prevailing techniques.The results show that the intrusion detection accuracy,precision,and F1-score of the proposed MSC_BiLSTM model for the CIC-IDS 2017 dataset are 98.71%,95.97%,and 90.22%. 展开更多
关键词 network intrusion traffic detection PCA Hotelling’s T^(2) BiLSTM
下载PDF
Network Traffic Synthesis and Simulation Framework for Cybersecurity Exercise Systems
6
作者 Dong-Wook Kim Gun-Yoon Sin +3 位作者 Kwangsoo Kim Jaesik Kang Sun-Young Im Myung-Mook Han 《Computers, Materials & Continua》 SCIE EI 2024年第9期3637-3653,共17页
In the rapidly evolving field of cybersecurity,the challenge of providing realistic exercise scenarios that accurately mimic real-world threats has become increasingly critical.Traditional methods often fall short in ... In the rapidly evolving field of cybersecurity,the challenge of providing realistic exercise scenarios that accurately mimic real-world threats has become increasingly critical.Traditional methods often fall short in capturing the dynamic and complex nature of modern cyber threats.To address this gap,we propose a comprehensive framework designed to create authentic network environments tailored for cybersecurity exercise systems.Our framework leverages advanced simulation techniques to generate scenarios that mirror actual network conditions faced by professionals in the field.The cornerstone of our approach is the use of a conditional tabular generative adversarial network(CTGAN),a sophisticated tool that synthesizes realistic synthetic network traffic by learning fromreal data patterns.This technology allows us to handle technical components and sensitive information with high fidelity,ensuring that the synthetic data maintains statistical characteristics similar to those observed in real network environments.By meticulously analyzing the data collected from various network layers and translating these into structured tabular formats,our framework can generate network traffic that closely resembles that found in actual scenarios.An integral part of our process involves deploying this synthetic data within a simulated network environment,structured on software-defined networking(SDN)principles,to test and refine the traffic patterns.This simulation not only facilitates a direct comparison between the synthetic and real traffic but also enables us to identify discrepancies and refine the accuracy of our simulations.Our initial findings indicate an error rate of approximately 29.28%between the synthetic and real traffic data,highlighting areas for further improvement and adjustment.By providing a diverse array of network scenarios through our framework,we aim to enhance the exercise systems used by cybersecurity professionals.This not only improves their ability to respond to actual cyber threats but also ensures that the exercise is cost-effective and efficient. 展开更多
关键词 Cybersecurity exercise synthetic network traffic generative adversarial network traffic generation software-defined networking
下载PDF
Classified VPN Network Traffic Flow Using Time Related to Artificial Neural Network
7
作者 Saad Abdalla Agaili Mohamed Sefer Kurnaz 《Computers, Materials & Continua》 SCIE EI 2024年第7期819-841,共23页
VPNs are vital for safeguarding communication routes in the continually changing cybersecurity world.However,increasing network attack complexity and variety require increasingly advanced algorithms to recognize and c... VPNs are vital for safeguarding communication routes in the continually changing cybersecurity world.However,increasing network attack complexity and variety require increasingly advanced algorithms to recognize and categorizeVPNnetwork data.We present a novelVPNnetwork traffic flowclassificationmethod utilizing Artificial Neural Networks(ANN).This paper aims to provide a reliable system that can identify a virtual private network(VPN)traffic fromintrusion attempts,data exfiltration,and denial-of-service assaults.We compile a broad dataset of labeled VPN traffic flows from various apps and usage patterns.Next,we create an ANN architecture that can handle encrypted communication and distinguish benign from dangerous actions.To effectively process and categorize encrypted packets,the neural network model has input,hidden,and output layers.We use advanced feature extraction approaches to improve the ANN’s classification accuracy by leveraging network traffic’s statistical and behavioral properties.We also use cutting-edge optimizationmethods to optimize network characteristics and performance.The suggested ANN-based categorization method is extensively tested and analyzed.Results show the model effectively classifies VPN traffic types.We also show that our ANN-based technique outperforms other approaches in precision,recall,and F1-score with 98.79%accuracy.This study improves VPN security and protects against new cyberthreats.Classifying VPNtraffic flows effectively helps enterprises protect sensitive data,maintain network integrity,and respond quickly to security problems.This study advances network security and lays the groundwork for ANN-based cybersecurity solutions. 展开更多
关键词 VPN network traffic flow ANN classification intrusion detection data exfiltration encrypted traffic feature extraction network security
下载PDF
HGNN-ETC: Higher-Order Graph Neural Network Based on Chronological Relationships for Encrypted Traffic Classification
8
作者 Rongwei Yu Xiya Guo +1 位作者 Peihao Zhang Kaijuan Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第11期2643-2664,共22页
Encrypted traffic plays a crucial role in safeguarding network security and user privacy.However,encrypting malicious traffic can lead to numerous security issues,making the effective classification of encrypted traff... Encrypted traffic plays a crucial role in safeguarding network security and user privacy.However,encrypting malicious traffic can lead to numerous security issues,making the effective classification of encrypted traffic essential.Existing methods for detecting encrypted traffic face two significant challenges.First,relying solely on the original byte information for classification fails to leverage the rich temporal relationships within network traffic.Second,machine learning and convolutional neural network methods lack sufficient network expression capabilities,hindering the full exploration of traffic’s potential characteristics.To address these limitations,this study introduces a traffic classification method that utilizes time relationships and a higher-order graph neural network,termed HGNN-ETC.This approach fully exploits the original byte information and chronological relationships of traffic packets,transforming traffic data into a graph structure to provide the model with more comprehensive context information.HGNN-ETC employs an innovative k-dimensional graph neural network to effectively capture the multi-scale structural features of traffic graphs,enabling more accurate classification.We select the ISCXVPN and the USTC-TK2016 dataset for our experiments.The results show that compared with other state-of-the-art methods,our method can obtain a better classification effect on different datasets,and the accuracy rate is about 97.00%.In addition,by analyzing the impact of varying input specifications on classification performance,we determine the optimal network data truncation strategy and confirm the model’s excellent generalization ability on different datasets. 展开更多
关键词 Encrypted network traffic graph neural network traffic classification deep learning
下载PDF
Abnormal Traffic Detection for Internet of Things Based on an Improved Residual Network
9
作者 Tingting Su Jia Wang +2 位作者 Wei Hu Gaoqiang Dong Jeon Gwanggil 《Computers, Materials & Continua》 SCIE EI 2024年第6期4433-4448,共16页
Along with the progression of Internet of Things(IoT)technology,network terminals are becoming continuously more intelligent.IoT has been widely applied in various scenarios,including urban infrastructure,transportati... Along with the progression of Internet of Things(IoT)technology,network terminals are becoming continuously more intelligent.IoT has been widely applied in various scenarios,including urban infrastructure,transportation,industry,personal life,and other socio-economic fields.The introduction of deep learning has brought new security challenges,like an increment in abnormal traffic,which threatens network security.Insufficient feature extraction leads to less accurate classification results.In abnormal traffic detection,the data of network traffic is high-dimensional and complex.This data not only increases the computational burden of model training but also makes information extraction more difficult.To address these issues,this paper proposes an MD-MRD-ResNeXt model for abnormal network traffic detection.To fully utilize the multi-scale information in network traffic,a Multi-scale Dilated feature extraction(MD)block is introduced.This module can effectively understand and process information at various scales and uses dilated convolution technology to significantly broaden the model’s receptive field.The proposed Max-feature-map Residual with Dual-channel pooling(MRD)block integrates the maximum feature map with the residual block.This module ensures the model focuses on key information,thereby optimizing computational efficiency and reducing unnecessary information redundancy.Experimental results show that compared to the latest methods,the proposed abnormal traffic detection model improves accuracy by about 2%. 展开更多
关键词 Abnormal network traffic deep learning residual network multi-scale feature extraction max-feature-map
下载PDF
Generative Multi-Modal Mutual Enhancement Video Semantic Communications
10
作者 Yuanle Chen Haobo Wang +3 位作者 Chunyu Liu Linyi Wang Jiaxin Liu Wei Wu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2985-3009,共25页
Recently,there have been significant advancements in the study of semantic communication in single-modal scenarios.However,the ability to process information in multi-modal environments remains limited.Inspired by the... Recently,there have been significant advancements in the study of semantic communication in single-modal scenarios.However,the ability to process information in multi-modal environments remains limited.Inspired by the research and applications of natural language processing across different modalities,our goal is to accurately extract frame-level semantic information from videos and ultimately transmit high-quality videos.Specifically,we propose a deep learning-basedMulti-ModalMutual Enhancement Video Semantic Communication system,called M3E-VSC.Built upon a VectorQuantized Generative AdversarialNetwork(VQGAN),our systemaims to leverage mutual enhancement among different modalities by using text as the main carrier of transmission.With it,the semantic information can be extracted fromkey-frame images and audio of the video and performdifferential value to ensure that the extracted text conveys accurate semantic information with fewer bits,thus improving the capacity of the system.Furthermore,a multi-frame semantic detection module is designed to facilitate semantic transitions during video generation.Simulation results demonstrate that our proposed model maintains high robustness in complex noise environments,particularly in low signal-to-noise ratio conditions,significantly improving the accuracy and speed of semantic transmission in video communication by approximately 50 percent. 展开更多
关键词 Generative adversarial networks multi-modal mutual enhancement video semantic transmission deep learning
下载PDF
Predicting Traffic Flow Using Dynamic Spatial-Temporal Graph Convolution Networks
11
作者 Yunchang Liu Fei Wan Chengwu Liang 《Computers, Materials & Continua》 SCIE EI 2024年第3期4343-4361,共19页
Traffic flow prediction plays a key role in the construction of intelligent transportation system.However,due to its complex spatio-temporal dependence and its uncertainty,the research becomes very challenging.Most of... Traffic flow prediction plays a key role in the construction of intelligent transportation system.However,due to its complex spatio-temporal dependence and its uncertainty,the research becomes very challenging.Most of the existing studies are based on graph neural networks that model traffic flow graphs and try to use fixed graph structure to deal with the relationship between nodes.However,due to the time-varying spatial correlation of the traffic network,there is no fixed node relationship,and these methods cannot effectively integrate the temporal and spatial features.This paper proposes a novel temporal-spatial dynamic graph convolutional network(TSADGCN).The dynamic time warping algorithm(DTW)is introduced to calculate the similarity of traffic flow sequence among network nodes in the time dimension,and the spatiotemporal graph of traffic flow is constructed to capture the spatiotemporal characteristics and dependencies of traffic flow.By combining graph attention network and time attention network,a spatiotemporal convolution block is constructed to capture spatiotemporal characteristics of traffic data.Experiments on open data sets PEMSD4 and PEMSD8 show that TSADGCN has higher prediction accuracy than well-known traffic flow prediction algorithms. 展开更多
关键词 Intelligent transportation graph convolutional network traffic flow DTW algorithm attention mechanism
下载PDF
Real-Time Prediction of Urban Traffic Problems Based on Artificial Intelligence-Enhanced Mobile Ad Hoc Networks(MANETS)
12
作者 Ahmed Alhussen Arshiya S.Ansari 《Computers, Materials & Continua》 SCIE EI 2024年第5期1903-1923,共21页
Traffic in today’s cities is a serious problem that increases travel times,negatively affects the environment,and drains financial resources.This study presents an Artificial Intelligence(AI)augmentedMobile Ad Hoc Ne... Traffic in today’s cities is a serious problem that increases travel times,negatively affects the environment,and drains financial resources.This study presents an Artificial Intelligence(AI)augmentedMobile Ad Hoc Networks(MANETs)based real-time prediction paradigm for urban traffic challenges.MANETs are wireless networks that are based on mobile devices and may self-organize.The distributed nature of MANETs and the power of AI approaches are leveraged in this framework to provide reliable and timely traffic congestion forecasts.This study suggests a unique Chaotic Spatial Fuzzy Polynomial Neural Network(CSFPNN)technique to assess real-time data acquired from various sources within theMANETs.The framework uses the proposed approach to learn from the data and create predictionmodels to detect possible traffic problems and their severity in real time.Real-time traffic prediction allows for proactive actions like resource allocation,dynamic route advice,and traffic signal optimization to reduce congestion.The framework supports effective decision-making,decreases travel time,lowers fuel use,and enhances overall urban mobility by giving timely information to pedestrians,drivers,and urban planners.Extensive simulations and real-world datasets are used to test the proposed framework’s prediction accuracy,responsiveness,and scalability.Experimental results show that the suggested framework successfully anticipates urban traffic issues in real-time,enables proactive traffic management,and aids in creating smarter,more sustainable cities. 展开更多
关键词 Mobile AdHocnetworks(MANET) urban traffic prediction artificial intelligence(AI) traffic congestion chaotic spatial fuzzy polynomial neural network(CSFPNN)
下载PDF
Energy-Efficient Traffic Offloading for RSMA-Based Hybrid Satellite Terrestrial Networks with Deep Reinforcement Learning
13
作者 Qingmiao Zhang Lidong Zhu +1 位作者 Yanyan Chen Shan Jiang 《China Communications》 SCIE CSCD 2024年第2期49-58,共10页
As the demands of massive connections and vast coverage rapidly grow in the next wireless communication networks, rate splitting multiple access(RSMA) is considered to be the new promising access scheme since it can p... As the demands of massive connections and vast coverage rapidly grow in the next wireless communication networks, rate splitting multiple access(RSMA) is considered to be the new promising access scheme since it can provide higher efficiency with limited spectrum resources. In this paper, combining spectrum splitting with rate splitting, we propose to allocate resources with traffic offloading in hybrid satellite terrestrial networks. A novel deep reinforcement learning method is adopted to solve this challenging non-convex problem. However, the neverending learning process could prohibit its practical implementation. Therefore, we introduce the switch mechanism to avoid unnecessary learning. Additionally, the QoS constraint in the scheme can rule out unsuccessful transmission. The simulation results validates the energy efficiency performance and the convergence speed of the proposed algorithm. 展开更多
关键词 deep reinforcement learning energy efficiency hybrid satellite terrestrial networks rate splitting multiple access traffic offloading
下载PDF
Cluster DetectionMethod of Endogenous Security Abnormal Attack Behavior in Air Traffic Control Network
14
作者 Ruchun Jia Jianwei Zhang +2 位作者 Yi Lin Yunxiang Han Feike Yang 《Computers, Materials & Continua》 SCIE EI 2024年第5期2523-2546,共24页
In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set f... In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set for ATC cybersecurity attacks is constructed by setting the feature states,adding recursive features,and determining the feature criticality.The expected information gain and entropy of the feature data are computed to determine the information gain of the feature data and reduce the interference of similar feature data.An autoencoder is introduced into the AI(artificial intelligence)algorithm to encode and decode the characteristics of ATC network security attack behavior to reduce the dimensionality of the ATC network security attack behavior data.Based on the above processing,an unsupervised learning algorithm for clustering detection of ATC network security attacks is designed.First,determine the distance between the clustering clusters of ATC network security attack behavior characteristics,calculate the clustering threshold,and construct the initial clustering center.Then,the new average value of all feature objects in each cluster is recalculated as the new cluster center.Second,it traverses all objects in a cluster of ATC network security attack behavior feature data.Finally,the cluster detection of ATC network security attack behavior is completed by the computation of objective functions.The experiment took three groups of experimental attack behavior data sets as the test object,and took the detection rate,false detection rate and recall rate as the test indicators,and selected three similar methods for comparative test.The experimental results show that the detection rate of this method is about 98%,the false positive rate is below 1%,and the recall rate is above 97%.Research shows that this method can improve the detection performance of security attacks in air traffic control network. 展开更多
关键词 Air traffic control network security attack behavior cluster detection behavioral characteristics information gain cluster threshold automatic encoder
下载PDF
Unsupervised multi-modal image translation based on the squeeze-and-excitation mechanism and feature attention module
15
作者 胡振涛 HU Chonghao +1 位作者 YANG Haoran SHUAI Weiwei 《High Technology Letters》 EI CAS 2024年第1期23-30,共8页
The unsupervised multi-modal image translation is an emerging domain of computer vision whose goal is to transform an image from the source domain into many diverse styles in the target domain.However,the multi-genera... The unsupervised multi-modal image translation is an emerging domain of computer vision whose goal is to transform an image from the source domain into many diverse styles in the target domain.However,the multi-generator mechanism is employed among the advanced approaches available to model different domain mappings,which results in inefficient training of neural networks and pattern collapse,leading to inefficient generation of image diversity.To address this issue,this paper introduces a multi-modal unsupervised image translation framework that uses a generator to perform multi-modal image translation.Specifically,firstly,the domain code is introduced in this paper to explicitly control the different generation tasks.Secondly,this paper brings in the squeeze-and-excitation(SE)mechanism and feature attention(FA)module.Finally,the model integrates multiple optimization objectives to ensure efficient multi-modal translation.This paper performs qualitative and quantitative experiments on multiple non-paired benchmark image translation datasets while demonstrating the benefits of the proposed method over existing technologies.Overall,experimental results have shown that the proposed method is versatile and scalable. 展开更多
关键词 multi-modal image translation generative adversarial network(GAN) squeezeand-excitation(SE)mechanism feature attention(FA)module
下载PDF
Adaptive spatial-temporal graph attention network for traffic speed prediction
16
作者 ZHANG Xijun ZHANG Baoqi +2 位作者 ZHANG Hong NIE Shengyuan ZHANG Xianli 《High Technology Letters》 EI CAS 2024年第3期221-230,共10页
Considering the nonlinear structure and spatial-temporal correlation of traffic network,and the influence of potential correlation between nodes of traffic network on the spatial features,this paper proposes a traffic... Considering the nonlinear structure and spatial-temporal correlation of traffic network,and the influence of potential correlation between nodes of traffic network on the spatial features,this paper proposes a traffic speed prediction model based on the combination of graph attention network with self-adaptive adjacency matrix(SAdpGAT)and bidirectional gated recurrent unit(BiGRU).First-ly,the model introduces graph attention network(GAT)to extract the spatial features of real road network and potential road network respectively in spatial dimension.Secondly,the spatial features are input into BiGRU to extract the time series features.Finally,the prediction results of the real road network and the potential road network are connected to generate the final prediction results of the model.The experimental results show that the prediction accuracy of the proposed model is im-proved obviously on METR-LA and PEMS-BAY datasets,which proves the advantages of the pro-posed spatial-temporal model in traffic speed prediction. 展开更多
关键词 traffic speed prediction spatial-temporal correlation self-adaptive adjacency ma-trix graph attention network(GAT) bidirectional gated recurrent unit(BiGRU)
下载PDF
Multi-Head Attention Spatial-Temporal Graph Neural Networks for Traffic Forecasting
17
作者 Xiuwei Hu Enlong Yu Xiaoyu Zhao 《Journal of Computer and Communications》 2024年第3期52-67,共16页
Accurate traffic prediction is crucial for an intelligent traffic system (ITS). However, the excessive non-linearity and complexity of the spatial-temporal correlation in traffic flow severely limit the prediction acc... Accurate traffic prediction is crucial for an intelligent traffic system (ITS). However, the excessive non-linearity and complexity of the spatial-temporal correlation in traffic flow severely limit the prediction accuracy of most existing models, which simply stack temporal and spatial modules and fail to capture spatial-temporal features effectively. To improve the prediction accuracy, a multi-head attention spatial-temporal graph neural network (MSTNet) is proposed in this paper. First, the traffic data is decomposed into unique time spans that conform to positive rules, and valuable traffic node attributes are mined through an adaptive graph structure. Second, time and spatial features are captured using a multi-head attention spatial-temporal module. Finally, a multi-step prediction module is used to achieve future traffic condition prediction. Numerical experiments were conducted on an open-source dataset, and the results demonstrate that MSTNet performs well in spatial-temporal feature extraction and achieves more positive forecasting results than the baseline methods. 展开更多
关键词 traffic Prediction Intelligent traffic System Multi-Head Attention Graph Neural networks
下载PDF
Prediction and Analysis of Elevator Traffic Flow under the LSTM Neural Network
18
作者 Mo Shi Entao Sun +1 位作者 Xiaoyan Xu Yeol Choi 《Intelligent Control and Automation》 2024年第2期63-82,共20页
Elevators are essential components of contemporary buildings, enabling efficient vertical mobility for occupants. However, the proliferation of tall buildings has exacerbated challenges such as traffic congestion with... Elevators are essential components of contemporary buildings, enabling efficient vertical mobility for occupants. However, the proliferation of tall buildings has exacerbated challenges such as traffic congestion within elevator systems. Many passengers experience dissatisfaction with prolonged wait times, leading to impatience and frustration among building occupants. The widespread adoption of neural networks and deep learning technologies across various fields and industries represents a significant paradigm shift, and unlocking new avenues for innovation and advancement. These cutting-edge technologies offer unprecedented opportunities to address complex challenges and optimize processes in diverse domains. In this study, LSTM (Long Short-Term Memory) network technology is leveraged to analyze elevator traffic flow within a typical office building. By harnessing the predictive capabilities of LSTM, the research aims to contribute to advancements in elevator group control design, ultimately enhancing the functionality and efficiency of vertical transportation systems in built environments. The findings of this research have the potential to reference the development of intelligent elevator management systems, capable of dynamically adapting to fluctuating passenger demand and optimizing elevator usage in real-time. By enhancing the efficiency and functionality of vertical transportation systems, the research contributes to creating more sustainable, accessible, and user-friendly living environments for individuals across diverse demographics. 展开更多
关键词 Elevator traffic Flow Neural network LSTM Elevator Group Control
下载PDF
A Multilayer Perceptron Artificial Neural Network Study of Fatal Road Traffic Crashes
19
作者 Ed Pearson III Aschalew Kassu +1 位作者 Louisa Tembo Oluwatodimu Adegoke 《Journal of Data Analysis and Information Processing》 2024年第3期419-431,共13页
This paper examines the relationship between fatal road traffic accidents and potential predictors using multilayer perceptron artificial neural network (MLANN) models. The initial analysis employed twelve potential p... This paper examines the relationship between fatal road traffic accidents and potential predictors using multilayer perceptron artificial neural network (MLANN) models. The initial analysis employed twelve potential predictors, including traffic volume, prevailing weather conditions, roadway characteristics and features, drivers’ age and gender, and number of lanes. Based on the output of the model and the variables’ importance factors, seven significant variables are identified and used for further analysis to improve the performance of models. The model is optimized by systematically changing the parameters, including the number of hidden layers and the activation function of both the hidden and output layers. The performances of the MLANN models are evaluated using the percentage of the achieved accuracy, R-squared, and Sum of Square Error (SSE) functions. 展开更多
关键词 Artificial Neural network Multilayer Perceptron Fatal Crash traffic Safety
下载PDF
Proactive traffic responsive control based on state-space neural network and extended Kalman filter 被引量:3
20
作者 过秀成 李岩 杨洁 《Journal of Southeast University(English Edition)》 EI CAS 2010年第3期466-470,共5页
The state-space neural network and extended Kalman filter model is used to directly predict the optimal timing plan that corresponds to futuristic traffic conditions in real time with the purposes of avoiding the lagg... The state-space neural network and extended Kalman filter model is used to directly predict the optimal timing plan that corresponds to futuristic traffic conditions in real time with the purposes of avoiding the lagging of the signal timing plans to traffic conditions. Utilizing the traffic conditions in current and former intervals, the network topology of the state-space neural network (SSNN), which is derived from the geometry of urban arterial routes, is used to predict the optimal timing plan corresponding to the traffic conditions in the next time interval. In order to improve the effectiveness of the SSNN, the extended Kalman filter (EKF) is proposed to train the SSNN instead of conventional approaches. Raw traffic data of the Guangzhou Road, Nanjing and the optimal signal timing plan generated by a multi-objective optimization genetic algorithm are applied to test the performance of the proposed model. The results indicate that compared with the SSNN and the BP neural network, the proposed model can closely match the optimal timing plans in futuristic states with higher efficiency. 展开更多
关键词 state-space neural network extended Kalman filter traffic responsive control timing plan traffic state prediction
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部