期刊文献+
共找到31,377篇文章
< 1 2 250 >
每页显示 20 50 100
BDSec:Security Authentication Protocol for BeiDou-II Civil Navigation Message
1
作者 Wu Zhijun Zhang Yuan +2 位作者 Yang Yiming Wang Peng Yue Meng 《China Communications》 SCIE CSCD 2024年第6期206-218,共13页
Due to the lack of authentication mechanism in BeiDou navigation satellite system(BDS),BD-II civil navigation message(BDII-CNAV)are vulnerable to spoofing attack and replay attack.To solve this problem,we present a se... Due to the lack of authentication mechanism in BeiDou navigation satellite system(BDS),BD-II civil navigation message(BDII-CNAV)are vulnerable to spoofing attack and replay attack.To solve this problem,we present a security authentication protocol,called as BDSec,which is designed by using China’s cryptography Shangyong Mima(SM)series algorithms,such as SM2/4/9 and Zu Chongzhi(ZUC)algorithm.In BDSec protocol,both of BDII-CNAV and signature information are encrypted using the SM4 algorithm(Symmetric encryption mechanism).The encrypted result is used as the subject authentication information.BDSec protocol applies SM9 algorithm(Identity-based cryptography mechanism)to protect the integrity of the BDII-CNAV,adopts the SM2 algorithm(Public key cryptosystem)to guarantee the confidentiality of the important session information,and uses the ZUC algorithm(Encryption and integrity algorithm)to verify the integrity of the message authentication serial number and initial information and the information in authentication initialization sub-protocol respectively.The results of the SVO logic reasoning and performance analysis show that BDSec protocol meets security requirements for the dual user identity authentication in BDS and can realize the security authentication of BDII-CNAV. 展开更多
关键词 BDII civil navigation messages(BDIICNAV) BeiDou navigation satellite system(BDS) identity-based cryptography mechanism navigation message authentication protocol(BDSec)
下载PDF
Effect of navigation endoscopy combined with threedimensional printing technology in the treatment of orbital blowout fractures
2
作者 Jin-Hai Yu Yao-Hua Wang +3 位作者 Qi-Hua Xu Chao Xiong An-An Wang Hong-Fei Liao 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第3期570-576,共7页
●AIM:To explore the combined application of surgical navigation nasal endoscopy(NNE)and three-dimensional printing technology(3DPT)for the adjunctive treatment of orbital blowout fractures(OBF).●METHODS:Retrospectiv... ●AIM:To explore the combined application of surgical navigation nasal endoscopy(NNE)and three-dimensional printing technology(3DPT)for the adjunctive treatment of orbital blowout fractures(OBF).●METHODS:Retrospective analysis was conducted on the data of patients with OBF who underwent surgical treatment at the Affiliated Eye Hospital of Nanchang University between July 2012 and November 2022.The control group consisted of patients who received traditional surgical treatment(n=43),while the new surgical group(n=52)consisted of patients who received NNE with 3DPT.The difference in therapeutic effects between the two groups was evaluated by comparing the duration of the operation,best corrected visual acuity(BCVA),enophthalmos difference,recovery rate of eye movement disorder,recovery rate of diplopia,and incidence of postoperative complications.●RESULTS:The study included 95 cases(95 eyes),with 63 men and 32 women.The patients’age ranged from 5 to 67y(35.21±15.75y).The new surgical group and the control group exhibited no statistically significant differences in the duration of the operation,BCVA and enophthalmos difference.The recovery rates of diplopia in the new surgical group were significantly higher than those in the control group at 1mo[OR=0.03,95%CI(0.01–0.15),P<0.0000]and 3mo[OR=0.11,95%CI(0.03–0.36),P<0.0000]postoperation.Additionally,the recovery rates of eye movement disorders at 1 and 3mo after surgery were OR=0.08,95%CI(0.03–0.24),P<0.0000;and OR=0.01,95%CI(0.00–0.18),P<0.0000.The incidence of postoperative complications was lower in the new surgical group compared to the control group[OR=4.86,95%CI(0.95–24.78),P<0.05].●CONCLUSION:The combination of NNE and 3DPT can shorten the recovery time of diplopia and eye movement disorder in patients with OBF. 展开更多
关键词 orbital blowout fracture three-dimensional printing ENDOSCOPY surgical navigation
下载PDF
Fake News Detection Based on Text-Modal Dominance and Fusing Multiple Multi-Model Clues
3
作者 Li fang Fu Huanxin Peng +1 位作者 Changjin Ma Yuhan Liu 《Computers, Materials & Continua》 SCIE EI 2024年第3期4399-4416,共18页
In recent years,how to efficiently and accurately identify multi-model fake news has become more challenging.First,multi-model data provides more evidence but not all are equally important.Secondly,social structure in... In recent years,how to efficiently and accurately identify multi-model fake news has become more challenging.First,multi-model data provides more evidence but not all are equally important.Secondly,social structure information has proven to be effective in fake news detection and how to combine it while reducing the noise information is critical.Unfortunately,existing approaches fail to handle these problems.This paper proposes a multi-model fake news detection framework based on Tex-modal Dominance and fusing Multiple Multi-model Cues(TD-MMC),which utilizes three valuable multi-model clues:text-model importance,text-image complementary,and text-image inconsistency.TD-MMC is dominated by textural content and assisted by image information while using social network information to enhance text representation.To reduce the irrelevant social structure’s information interference,we use a unidirectional cross-modal attention mechanism to selectively learn the social structure’s features.A cross-modal attention mechanism is adopted to obtain text-image cross-modal features while retaining textual features to reduce the loss of important information.In addition,TD-MMC employs a new multi-model loss to improve the model’s generalization ability.Extensive experiments have been conducted on two public real-world English and Chinese datasets,and the results show that our proposed model outperforms the state-of-the-art methods on classification evaluation metrics. 展开更多
关键词 Fake news detection cross-modal attention mechanism multi-modal fusion social network transfer learning
下载PDF
Navigation Finsler metrics on a gradient Ricci soliton
4
作者 LI Ying MO Xiao-huan WANG Xiao-yang 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第2期266-275,共10页
In this paper,we study a class of Finsler metrics defined by a vector field on a gradient Ricci soliton.We obtain a necessary and sufficient condition for these Finsler metrics on a compact gradient Ricci soliton to b... In this paper,we study a class of Finsler metrics defined by a vector field on a gradient Ricci soliton.We obtain a necessary and sufficient condition for these Finsler metrics on a compact gradient Ricci soliton to be of isotropic S-curvature by establishing a new integral inequality.Then we determine the Ricci curvature of navigation Finsler metrics of isotropic S-curvature on a gradient Ricci soliton generalizing result only known in the case when such soliton is of Einstein type.As its application,we obtain the Ricci curvature of all navigation Finsler metrics of isotropic S-curvature on Gaussian shrinking soliton. 展开更多
关键词 gradient Ricci soliton navigation Finsler metric isotropic S-curvature Ricci curvature Gaussian shrinking soliton
下载PDF
Single-center experience with Knee+^(TM) augmented reality navigation system in primary total knee arthroplasty
5
作者 Evangelos Sakellariou Panagiotis Alevrogiannis +6 位作者 Fani Alevrogianni Athanasios Galanis Michail Vavourakis Panagiotis Karampinas Panagiotis Gavriil John Vlamis Stavros Alevrogiannis 《World Journal of Orthopedics》 2024年第3期247-256,共10页
BACKGROUND Computer-assisted systems obtained an increased interest in orthopaedic surgery over the last years,as they enhance precision compared to conventional hardware.The expansion of computer assistance is evolvi... BACKGROUND Computer-assisted systems obtained an increased interest in orthopaedic surgery over the last years,as they enhance precision compared to conventional hardware.The expansion of computer assistance is evolving with the employment of augmented reality.Yet,the accuracy of augmented reality navigation systems has not been determined.AIM To examine the accuracy of component alignment and restoration of the affected limb’s mechanical axis in primary total knee arthroplasty(TKA),utilizing an augmented reality navigation system and to assess whether such systems are conspicuously fruitful for an accomplished knee surgeon.METHODS From May 2021 to December 2021,30 patients,25 women and five men,under-went a primary unilateral TKA.Revision cases were excluded.A preoperative radiographic procedure was performed to evaluate the limb’s axial alignment.All patients were operated on by the same team,without a tourniquet,utilizing three distinct prostheses with the assistance of the Knee+™augmented reality navigation system in every operation.Postoperatively,the same radiographic exam protocol was executed to evaluate the implants’position,orientation and coronal plane alignment.We recorded measurements in 3 stages regarding femoral varus and flexion,tibial varus and posterior slope.Firstly,the expected values from the Augmented Reality system were documented.Then we calculated the same values after each cut and finally,the same measurements were recorded radiolo-gically after the operations.Concerning statistical analysis,Lin’s concordance correlation coefficient was estimated,while Wilcoxon Signed Rank Test was performed when needed.RESULTS A statistically significant difference was observed regarding mean expected values and radiographic mea-surements for femoral flexion measurements only(Z score=2.67,P value=0.01).Nonetheless,this difference was statistically significantly lower than 1 degree(Z score=-4.21,P value<0.01).In terms of discrepancies in the calculations of expected values and controlled measurements,a statistically significant difference between tibial varus values was detected(Z score=-2.33,P value=0.02),which was also statistically significantly lower than 1 degree(Z score=-4.99,P value<0.01).CONCLUSION The results indicate satisfactory postoperative coronal alignment without outliers across all three different implants utilized.Augmented reality navigation systems can bolster orthopaedic surgeons’accuracy in achieving precise axial alignment.However,further research is required to further evaluate their efficacy and potential. 展开更多
关键词 Augmented reality ORTHOPEDICS Total knee arthroplasty ROBOTICS KNEE navigation
下载PDF
Improving path planning efficiency for underwater gravity-aided navigation based on a new depth sorting fast search algorithm
6
作者 Xiaocong Zhou Wei Zheng +2 位作者 Zhaowei Li Panlong Wu Yongjin Sun 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期285-296,共12页
This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapi... This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results. 展开更多
关键词 Depth Sorting Fast Search algorithm Underwater gravity-aided navigation Path planning efficiency Quick Rapidly-exploring Random Trees*(QRRT*)
下载PDF
Free-walking:Pedestrian inertial navigation based on dual foot-mounted IMU
7
作者 Qu Wang Meixia Fu +6 位作者 Jianquan Wang Lei Sun Rong Huang Xianda Li Zhuqing Jiang Yan Huang Changhui Jiang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期573-587,共15页
The inertial navigation system(INS),which is frequently used in emergency rescue operations and other situations,has the benefits of not relying on infrastructure,high positioning frequency,and strong real-time perfor... The inertial navigation system(INS),which is frequently used in emergency rescue operations and other situations,has the benefits of not relying on infrastructure,high positioning frequency,and strong real-time performance.However,the intricate and unpredictable pedestrian motion patterns lead the INS localization error to significantly diverge with time.This paper aims to enhance the accuracy of zero-velocity interval(ZVI)detection and reduce the heading and altitude drift of foot-mounted INS via deep learning and equation constraint of dual feet.Aiming at the observational noise problem of low-cost inertial sensors,we utilize a denoising autoencoder to automatically eliminate the inherent noise.Aiming at the problem that inaccurate detection of the ZVI detection results in obvious displacement error,we propose a sample-level ZVI detection algorithm based on the U-Net neural network,which effectively solves the problem of mislabeling caused by sliding windows.Aiming at the problem that Zero-Velocity Update(ZUPT)cannot suppress heading and altitude error,we propose a bipedal INS method based on the equation constraint and ellipsoid constraint,which uses foot-to-foot distance as a new observation to correct heading and altitude error.We conduct extensive and well-designed experiments to evaluate the performance of the proposed method.The experimental results indicate that the position error of our proposed method did not exceed 0.83% of the total traveled distance. 展开更多
关键词 Indoor positioning Inertial navigation system(INS) Zero-velocity update(ZUPT) Internet of things(IoTs) Location-based service(LBS)
下载PDF
An intelligent navigation experimental system based on multi-mode fusion
8
作者 Rui HAN Zhiquan FENG +3 位作者 Jinglan TIAN Xue FAN Xiaohui YANG Qingbei GUO 《Virtual Reality & Intelligent Hardware》 2020年第4期345-353,共9页
At present,most experimental teaching systems lack guidance of an operator,and thus users often do not know what to do during an experiment.The user load is therefore increased,and the learning efficiency of the stude... At present,most experimental teaching systems lack guidance of an operator,and thus users often do not know what to do during an experiment.The user load is therefore increased,and the learning efficiency of the students is decreased.To solve the problem of insufficient system interactivity and guidance,an experimental navigation system based on multi-mode fusion is proposed in this paper.The system first obtains user information by sensing the hardware devices,intelligently perceives the user intention and progress of the experiment according to the information acquired,and finally carries out a multi-modal intelligent navigation process for users.As an innovative aspect of this study,an intelligent multi-mode navigation system is used to guide users in conducting experiments,thereby reducing the user load and enabling the users to effectively complete their experiments.The results prove that this system can guide users in completing their experiments,and can effectively reduce the user load during the interaction process and improve the efficiency. 展开更多
关键词 navigation interaction Chemical experiment system multi-mode fusion
下载PDF
Vision Navigation Based PID Control for Line Tracking Robot 被引量:1
9
作者 Rihem Farkh Khaled Aljaloud 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期901-911,共11页
In a controlled indoor environment,line tracking has become the most practical and reliable navigation strategy for autonomous mobile robots.A line tracking robot is a self-mobile machine that can recognize and track ... In a controlled indoor environment,line tracking has become the most practical and reliable navigation strategy for autonomous mobile robots.A line tracking robot is a self-mobile machine that can recognize and track a painted line on thefloor.In general,the path is set and can be visible,such as a black line on a white surface with high contrasting colors.The robot’s path is marked by a distinct line or track,which the robot follows to move.Several scientific contributions from the disciplines of vision and control have been made to mobile robot vision-based navigation.Localization,automated map generation,autonomous navigation and path tracking is all becoming more frequent in vision applications.A visual navigation line tracking robot should detect the line with a camera using an image processing technique.The paper focuses on combining computer vision techniques with a proportional-integral-derivative(PID)control-ler for automatic steering and speed control.A prototype line tracking robot is used to evaluate the proposed control strategy. 展开更多
关键词 Line tracking robot vision navigation PID control image processing OPENCV raspberry pi
下载PDF
Resilient tightly coupled INS/UWB integration method for indoor UAV navigation under challenging scenarios 被引量:1
10
作者 Qian Meng Yang Song +1 位作者 Sheng-ying Li Yuan Zhuang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第4期185-196,共12页
Based on the high positioning accuracy,low cost and low-power consumption,the ultra-wide-band(UWB)is an ideal solution for indoor unmanned aerial vehicle(UAV)localization and navigation.However,the UWB signals are eas... Based on the high positioning accuracy,low cost and low-power consumption,the ultra-wide-band(UWB)is an ideal solution for indoor unmanned aerial vehicle(UAV)localization and navigation.However,the UWB signals are easy to be blocked or reflected by obstacles such as walls and furniture.A resilient tightly-coupled inertial navigation system(INS)/UWB integration is proposed and implemented for indoor UAV navigation in this paper.A factor graph optimization(FGO)method enhanced by resilient stochastic model is established to cope with the indoor challenging scenarios.To deal with the impact of UWB non-line-of-sight(NLOS)signals and noise uncertainty,the conventional neural net-works(CNNs)are introduced into the stochastic modelling to improve the resilience and reliability of the integration.Based on the status that the UWB features are limited,a‘two-phase'CNNs structure was designed and implemented:one for signal classification and the other one for measurement noise prediction.The proposed resilient FGO method is tested on flighting UAV platform under actual indoor challenging scenario.Compared to classical FGO method,the overall positioning errors can be decreased from about 0.60 m to centimeter-level under signal block and reflection scenarios.The superiority of resilient FGO which effectively verified in constrained environment is pretty important for positioning accuracy and integrity for indoor navigation task. 展开更多
关键词 Unmanned aerial vehicle(UAV) Resilient navigation Indoor positioning Factor graph optimization Ultra-wide band(UWB)
下载PDF
Adaptive navigation assistance based on eye movement features in virtual reality 被引量:1
11
作者 Song ZHAO Shiwei CHENG 《Virtual Reality & Intelligent Hardware》 2023年第3期232-248,共17页
Background Navigation assistance is essential for users when roaming virtual reality scenes;however,the traditional navigation method requires users to manually request a map for viewing,which leads to low immersion a... Background Navigation assistance is essential for users when roaming virtual reality scenes;however,the traditional navigation method requires users to manually request a map for viewing,which leads to low immersion and poor user experience.Methods To address this issue,we first collected data on who required navigation assistance in a virtual reality environment,including various eye movement features,such as gaze fixation,pupil size,and gaze angle.Subsequently,we used the boosting-based XGBoost algorithm to train a prediction model and finally used it to predict whether users require navigation assistance in a roaming task.Results After evaluating the performance of the model,the accuracy,precision,recall,and F1-score of our model reached approximately 95%.In addition,by applying the model to a virtual reality scene,an adaptive navigation assistance system based on the real-time eye movement data of the user was implemented.Conclusions Compared with traditional navigation assistance methods,our new adaptive navigation assistance method could enable the user to be more immersive and effective while roaming in a virtual reality(VR)environment. 展开更多
关键词 Eye movement navigation Human-computer interaction Virtual reality Eye tracking
下载PDF
Context-Aware Practice Problem Recommendation Using Learners’ Skill Level Navigation Patterns 被引量:1
12
作者 P.N.Ramesh S.Kannimuthu 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3845-3860,共16页
The use of programming online judges(POJs)has risen dramatically in recent years,owing to the fact that the auto-evaluation of codes during practice motivates students to learn programming.Since POJs have greater numb... The use of programming online judges(POJs)has risen dramatically in recent years,owing to the fact that the auto-evaluation of codes during practice motivates students to learn programming.Since POJs have greater number of pro-gramming problems in their repository,learners experience information overload.Recommender systems are a common solution to information overload.Current recommender systems used in e-learning platforms are inadequate for POJ since recommendations should consider learners’current context,like learning goals and current skill level(topic knowledge and difficulty level).To overcome the issue,we propose a context-aware practice problem recommender system based on learners’skill level navigation patterns.Our system initially performs skill level navigation pattern mining to discover frequent skill level navigations in the POJ and tofind learners’learning goals.Collaborativefiltering(CF)and con-tent-basedfiltering approaches are employed to recommend problems in the cur-rent and next skill levels based on frequent skill level navigation patterns.The sequence similarity measure is used tofind the top k neighbors based on the sequence of problems solved by the learners.The experiment results based on the real-world POJ dataset show that our approach considering the learners’cur-rent skill level and learning goals outperforms the other approaches in practice problem recommender systems. 展开更多
关键词 Recommender systems skill level navigation pattern programming online judge collaborativefiltering content-basedfiltering
下载PDF
Scene Visual Perception and AR Navigation Applications 被引量:1
13
作者 LU Ping SHENG Bin +1 位作者 SHI Wenzhe 《ZTE Communications》 2023年第1期81-88,共8页
With the rapid popularization of mobile devices and the wide application of various sensors,scene perception methods applied to mobile devices occupy an important position in location-based services such as navigation... With the rapid popularization of mobile devices and the wide application of various sensors,scene perception methods applied to mobile devices occupy an important position in location-based services such as navigation and augmented reality(AR).The development of deep learning technologies has greatly improved the visual perception ability of machines to scenes.The basic framework of scene visual perception,related technologies and the specific process applied to AR navigation are introduced,and future technology development is proposed.An application(APP)is designed to improve the application effect of AR navigation.The APP includes three modules:navigation map generation,cloud navigation algorithm,and client design.The navigation map generation tool works offline.The cloud saves the navigation map and provides navigation algorithms for the terminal.The terminal realizes local real-time positioning and AR path rendering. 展开更多
关键词 3D reconstruction image matching visual localization AR navigation deep learning
下载PDF
Satellite Navigation Method Based on High-Speed Frequency Hopping Signal
14
作者 En Yuan Peng Liu +4 位作者 Weiwei Chen Rui Wang Bing Xu Wenyu Zhang Yanqin Tang 《China Communications》 SCIE CSCD 2023年第7期321-337,共17页
Global navigation satellite system has been widely used,but it is vulnerable to jamming.In military satellite communications,frequency hopping(FH)signal is usually used for anti-jamming communications.If the FH signal... Global navigation satellite system has been widely used,but it is vulnerable to jamming.In military satellite communications,frequency hopping(FH)signal is usually used for anti-jamming communications.If the FH signal can be used in satellite navigation,the anti-jamming ability of satellite navigation can be improved.Although a recently proposed timefrequency matrix ranging method(TFMR)can use FH signals to realize pseudorange measurement,it cannot transmit navigation messages using the ranging signal which is crucial for satellite navigation.In this article,we propose dual-tone binary frequency shift keyingbased TFMR(DBFSK-TFMR).DBFSK-TFMR designs an extended time-frequency matrix(ETFM)and its generation algorithm,which can use the frequency differences in different dual-tone signals in ETFM to modulate data and eliminate the negative impact of data modulation on pseudorange measurement.Using ETFM,DBFSK-TFMR not only realizes the navigation message transmission but also ensures the precision and unambiguous measurement range of pseudorange measurement.DBFSK-TFMR can be used as an integrated solution for anti-jamming communication and navigation based on FH signals.Simulation results show that DBFSK-TFMR has almost the same ranging performance as TFMR. 展开更多
关键词 satellite navigation frequency hopping RANGING navigation message transmission
下载PDF
A Multi-mode Electronic Load Sensing Control Scheme with Power Limitation and Pressure Cut-off for Mobile Machinery
15
作者 Min Cheng Bolin Sun +1 位作者 Ruqi Ding Bing Xu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第1期157-170,共14页
In mobile machinery,hydro-mechanical pumps are increasingly replaced by electronically controlled pumps to improve the automation level,but diversified control functions(e.g.,power limitation and pressure cut-off)are ... In mobile machinery,hydro-mechanical pumps are increasingly replaced by electronically controlled pumps to improve the automation level,but diversified control functions(e.g.,power limitation and pressure cut-off)are integrated into the electronic controller only from the pump level,leading to the potential instability of the overall system.To solve this problem,a multi-mode electrohydraulic load sensing(MELS)control scheme is proposed especially considering the switching stability from the system level,which includes four working modes of flow control,load sensing,power limitation,and pressure control.Depending on the actual working requirements,the switching rules for the different modes and the switching direction(i.e.,the modes can be switched bilaterally or unilaterally)are defined.The priority of different modes is also defined,from high to low:pressure control,power limitation,load sensing,and flow control.When multiple switching rules are satisfied at the same time,the system switches to the control mode with the highest priority.In addition,the switching stability between flow control and pressure control modes is analyzed,and the controller parameters that guarantee the switching stability are obtained.A comparative study is carried out based on a test rig with a 2-ton hydraulic excavator.The results show that the MELS controller can achieve the control functions of proper flow supplement,power limitation,and pressure cut-off,which has good stability performance when switching between different control modes.This research proposes the MELS control method that realizes the stability of multi-mode switching of the hydraulic system of mobile machinery under different working conditions. 展开更多
关键词 Hydraulic control Load sensing multi-mode Power limitation Mobile machinery
下载PDF
Indoor Navigation Network Model Construction Method Based on Building Information Model
16
作者 Ruirong Guo Chaokui Li Haibin Guo 《Journal of Geographic Information System》 2023年第4期367-378,共12页
In view of the poor information integrity of the 3D model used to make the indoor road network and the lack of versatility of the constructed indoor road network, a method for building an indoor navigation network mod... In view of the poor information integrity of the 3D model used to make the indoor road network and the lack of versatility of the constructed indoor road network, a method for building an indoor navigation network model that can be seamlessly connected with outdoor paths is proposed in this paper. First, the IFC model is converted to the CityGML model using the BIM model as the indoor data source. Then, using GIS technology and limited Delaunay triangulation refinement algorithm, the necessary elements of indoor navigate on network model such as semantic information, geometric information and topological relationship contained in CityGML model are extracted. Finally, it is visualized and verified based on experimental model data. The results show that the indoor navigation network model constructed based on the CityGML model can accurately perform indoor navigation, make the constructed road network more general, and provide reference and technical support for the integrated construction of indoor and outdoor road network models. 展开更多
关键词 IFC CITYGML Indoor navigation Network DELAUNAY DIJKSTRA Integrated navigation
下载PDF
INS-GNSS Integrated Navigation Algorithm Based on TransGAN
17
作者 Wang Linxuan Kong Xiangwei +1 位作者 Xu Hongzhe Li Hong 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期91-110,共20页
With the rapid development of autopilot technology,a variety of engi-neering applications require higher and higher requirements for navigation and positioning accuracy,as well as the error range should reach centimet... With the rapid development of autopilot technology,a variety of engi-neering applications require higher and higher requirements for navigation and positioning accuracy,as well as the error range should reach centimeter level.Single navigation systems such as the inertial navigation system(INS)and the global navigation satellite system(GNSS)cannot meet the navigation require-ments in many cases of high mobility and complex environments.For the purpose of improving the accuracy of INS-GNSS integrated navigation system,an INS-GNSS integrated navigation algorithm based on TransGAN is proposed.First of all,the GNSS data in the actual test process is applied to establish the data set.Secondly,the generator and discriminator are constructed.Borrowing the model structure of generator transformer,the generator is constructed by multi-layer transformer encoder,which can obtain a wider data perception ability.The generator and discriminator are trained and optimized by the production countermeasure network,so as to realize the speed and position error compensa-tion of INS.Consequently,when GNSS works normally,TransGAN is trained into a high-precision prediction model using INS-GNSS data.The trained Trans-GAN model is emoloyed to compensate the speed and position errors for INS.Through the test analysis offlight test data,the test results are compared with the performance of traditional multi-layer perceptron(MLP)and fuzzy wavelet neural network(WNN),demonstrating that TransGAN can effectively correct the speed and position information when GNSS is interrupted,with the high accuracy. 展开更多
关键词 GNSS INS TransGAN integrated navigation
下载PDF
Bioinspired Underwater Navigation Using Polarization Patterns Within Snell’s Window
18
作者 CHENG Hao-yuan YU Shi-min +2 位作者 YU Hao ZHU Jin-chi CHU Jin-kui 《China Ocean Engineering》 SCIE EI CSCD 2023年第4期628-636,共9页
Aiming at the requirement of autonomous navigation capability of the underwater unmanned vehicle(UUV),a novel bionic method for underwater navigation based on polarization pattern within Snell’s window is proposed.In... Aiming at the requirement of autonomous navigation capability of the underwater unmanned vehicle(UUV),a novel bionic method for underwater navigation based on polarization pattern within Snell’s window is proposed.Inspired by creatures,polarization navigation is a satellite-free navigation scheme and has great potential to be used in the water.However,because of the complex underwater environment,whether UUV polarization navigation can be realized is doubtful.To illustrate the feasibility of underwater polarization navigation,we firstly establish the model of under-water polarization patterns to prove the stability and predictability of the underwater polarization pattern within Snell’s window.Then,we carry out static and dynamic experiments of underwater heading determination based on developed polarization information detection equipment.Finally,we obtain underwater polarization patterns and conduct the tracking experiment at different water depths.The experimental results of the underwater polarization patterns are consistent with the simulation,which proves the correctness of the proposed model.At the water depth of 5 m,the average angle and position error of the tracking experiment are 14.3508°and 4.0812 m,respectively.It is illustrated that underwater polarization navigation is realizable and the precision can meet the real-time navigation requirements of UUV.This study promotes the improvement of underwater navigation ability and the development of marine equipment. 展开更多
关键词 underwater navigation polarization pattern heading determination tracking experiment
下载PDF
Cooperative Angles-Only Relative Navigation Algorithm for Multi-Spacecraft Formation in Close-Range
19
作者 Sha Wang Chenglong He +2 位作者 Baichun Gong Xin Ding Yanhua Yuan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第1期121-134,共14页
As to solve the collaborative relative navigation problem for near-circular orbiting small satellites in close-range under GNSS denied environment,a novel consensus constrained relative navigation algorithm based on t... As to solve the collaborative relative navigation problem for near-circular orbiting small satellites in close-range under GNSS denied environment,a novel consensus constrained relative navigation algorithm based on the lever arm effect of the sensor offset from the spacecraft center of mass is proposed.Firstly,the orbital propagation model for the relative motion of multi-spacecraft is established based on Hill-Clohessy-Wiltshire dynamics and the line-of-sight measurement under sensor offset condition is modeled in Local Vertical Local Horizontal frame.Secondly,the consensus constraint model for the relative orbit state is constructed by introducing the geometry constraint between the spacecraft,based on which the consensus unscented Kalman filter is designed.Thirdly,the observability analysis is done and the necessary conditions of the sensor offset to make the state observable are obtained.Lastly,digital simulations are conducted to verify the proposed algorithm,where the comparison to the unconstrained case is also done.The results show that the estimated error of the relative position converges very quickly,the location error is smaller than 10m under the condition of 10−3 rad level camera and 5m offset. 展开更多
关键词 Relative navigation spacecraft formation observability analysis angles-only measurement
下载PDF
Multi-mode Multi-frequency GNSS-IR Combination System for Sea Level Retrieval
20
作者 Wenyue CHE Xiaolei WANG +1 位作者 Xiufeng HE Jin LIU 《Journal of Geodesy and Geoinformation Science》 CSCD 2023年第2期32-39,共8页
With the development of Global Navigation Satellite Systems(GNSS),geodetic GNSS receivers have been utilized to monitor sea levels using GNSS-Interferometry Reflectometry(GNSS-IR)technology.The multi-mode,multi-freque... With the development of Global Navigation Satellite Systems(GNSS),geodetic GNSS receivers have been utilized to monitor sea levels using GNSS-Interferometry Reflectometry(GNSS-IR)technology.The multi-mode,multi-frequency signals of GPS,GLONASS,Galileo,and Beidou can be used for GNSS-IR sea level retrieval,but combining these retrievals remains problematic.To address this issue,a GNSS-IR sea level retrieval combination system has been developed,which begins by analyzing error sources in GNSS-IR sea level retrieval and establishing and solving the GNSS-IR retrieval equation.This paper focuses on two key points:time window selection and equation stability.The stability of the retrieval combination equations is determined by the condition number of the coefficient matrix within the time window.The impact of ill-conditioned coefficient matrices on the retrieval results is demonstrated using an extreme case of SNR data with only ascending or descending trajectories.After determining the time window and removing ill-conditioned equations,the multi-mode,multi-frequency GNSS-IR retrieval is performed.Results from three International GNSS Service(IGS)stations show that the combination method produces high-precision,high-resolution,and high-reliability sea level retrieval combination sequences. 展开更多
关键词 GNSS-IR sea level retrieval multi-mode multi-frequency combination equation stability
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部