The spatial spread of COVID-19 during early 2020 in China was primarily driven by outbound travelers leaving the epicenter,Wuhan,Hubei province.Existing studies focus on the influence of aggregated out-bound populatio...The spatial spread of COVID-19 during early 2020 in China was primarily driven by outbound travelers leaving the epicenter,Wuhan,Hubei province.Existing studies focus on the influence of aggregated out-bound population flows originating from Wuhan;however,the impacts of different modes of transportation and the network structure of transportation systems on the early spread of COVID-19 in China are not well understood.Here,we assess the roles of the road,railway,and air transportation networks in driving the spatial spread of COVID-19 in China.We find that the short-range spread within Hubei province was dominated by ground traffic,notably,the railway transportation.In contrast,long-range spread to cities in other provinces was mediated by multiple factors,including a higher risk of case importation associated with air transportation and a larger outbreak size in hub cities located at the center of transportation networks.We further show that,although the dissemination of SARS-CoV-2 across countries and continents is determined by the worldwide air transportation network,the early geographic dispersal of COVID-19 within China is better predicted by the railway traffic.Given the recent emergence of multiple more transmissible variants of SARS-CoV-2,our findings can support a better assessment of the spread risk of those variants and improve future pandemic preparedness and responses.展开更多
As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crud...As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems.展开更多
This paper describes the development and optimization plans for the China Railway Express(CR Express).As a new type of international land transport organization,CR Express has emerged with the continuous expansion of ...This paper describes the development and optimization plans for the China Railway Express(CR Express).As a new type of international land transport organization,CR Express has emerged with the continuous expansion of China toward European investment and trade,and in particular,has expanded with the continuous progress of the One Belt and One Road(OBOR)initiative.In addition to improving the service quality of CR Express,the operating costs must be reduced for developing“smart railways”that serve“smart cities”.We propose a dualobjective-based function mathematical optimization model;the satisfaction of the cargo owner is considered,and the timeliness,transportation capacity,and goods category constraints of CR Express transportation are designed.Moreover,we present the normalized equivalent method of the two-objective function of the model.Finally,a case study is conducted against the background of certain trains in the western corridor of CR Express to validate the effectiveness of the model and research methods proposed in this study.展开更多
The number of accidents in the campus of Suranaree University of Technology(SUT)has increased due to increasing number of personal vehicles.In this paper,we focus on the development of public transportation system usi...The number of accidents in the campus of Suranaree University of Technology(SUT)has increased due to increasing number of personal vehicles.In this paper,we focus on the development of public transportation system using Intelligent Transportation System(ITS)along with the limitation of personal vehicles using sharing economy model.The SUT Smart Transit is utilized as a major public transportation system,while MoreSai@SUT(electric motorcycle services)is a minor public transportation system in this work.They are called Multi-Mode Transportation system as a combination.Moreover,a Vehicle toNetwork(V2N)is used for developing theMulti-Mode Transportation system in the campus.Due to equipping vehicles with On Board Unit(OBU)and 4G LTE modules,the real time speed and locations are transmitted to the cloud.The data is then applied in the proposed mathematical model for the estimation of Estimated Time of Arrival(ETA).In terms of vehicle classifications and counts,we deployed CCTV cameras,and the recorded videos are analyzed by using You Only Look Once(YOLO)algorithm.The simulation and measurement results of SUT Smart Transit and MoreSai@SUT before the covid-19 pandemic are discussed.Contrary to the existing researches,the proposed system is implemented in the real environment.The final results unveil the attractiveness and satisfaction of users.Also,due to the proposed system,the CO_(2) gas gets reduced when Multi-Mode Transportation is implemented practically in the campus.展开更多
Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction mode...Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction models do not consider the features contained in the data,resulting in limited improvement of model accuracy.To address these challenges,this paper proposes a multi-dimensional multi-modal cold rolling vibration time series prediction model(MDMMVPM)based on the deep fusion of multi-level networks.In the model,the long-term and short-term modal features of multi-dimensional data are considered,and the appropriate prediction algorithms are selected for different data features.Based on the established prediction model,the effects of tension and rolling force on mill vibration are analyzed.Taking the 5th stand of a cold mill in a steel mill as the research object,the innovative model is applied to predict the mill vibration for the first time.The experimental results show that the correlation coefficient(R^(2))of the model proposed in this paper is 92.5%,and the root-mean-square error(RMSE)is 0.0011,which significantly improves the modeling accuracy compared with the existing models.The proposed model is also suitable for the hot rolling process,which provides a new method for the prediction of strip rolling vibration.展开更多
In recent years,how to efficiently and accurately identify multi-model fake news has become more challenging.First,multi-model data provides more evidence but not all are equally important.Secondly,social structure in...In recent years,how to efficiently and accurately identify multi-model fake news has become more challenging.First,multi-model data provides more evidence but not all are equally important.Secondly,social structure information has proven to be effective in fake news detection and how to combine it while reducing the noise information is critical.Unfortunately,existing approaches fail to handle these problems.This paper proposes a multi-model fake news detection framework based on Tex-modal Dominance and fusing Multiple Multi-model Cues(TD-MMC),which utilizes three valuable multi-model clues:text-model importance,text-image complementary,and text-image inconsistency.TD-MMC is dominated by textural content and assisted by image information while using social network information to enhance text representation.To reduce the irrelevant social structure’s information interference,we use a unidirectional cross-modal attention mechanism to selectively learn the social structure’s features.A cross-modal attention mechanism is adopted to obtain text-image cross-modal features while retaining textual features to reduce the loss of important information.In addition,TD-MMC employs a new multi-model loss to improve the model’s generalization ability.Extensive experiments have been conducted on two public real-world English and Chinese datasets,and the results show that our proposed model outperforms the state-of-the-art methods on classification evaluation metrics.展开更多
In future optical transport networks,lightpath performance analysis is of great practical significance for fully automated management.In general,the quality of transmission(QoT)of lightpaths,measured by optical qualit...In future optical transport networks,lightpath performance analysis is of great practical significance for fully automated management.In general,the quality of transmission(QoT)of lightpaths,measured by optical quality factor or optical signal-to-noise ratio,has a complex time-varying process,along with the interactions of the other lightpath state parameters(LSPs),such as transmit power,chromatic dispersion,polarization mode dispersion.Current studies are mostly focused on lightpath QoT estimation,but ignoring lightpath-level data analytics.In this case,our article proposes a novel lightpath performance analysis method considering recurrence plot(RP)and cross recurrence plot(CRP).Firstly,we give a detailed interpretation on the recurrence patterns of LSPs via a qualitative 2-D RP representation and its quantitative measure.It can potentially enable the accurate and fast lightpath failure detection with a low computational burden.On the other hand,CRP is devoted to modeling the relationships between lightpath QoT and LSPs,and the correlation degree is determined by a geometric mean of multiple indexes of cross recurrence quantification analysis.From the view of application,such CRP analysis can provide the effective knowledge sharing to guarantee more credible QoT prediction.Extensive experiments on a real-world optical network dataset have clearly demonstrated the effectiveness of our proposal.展开更多
To provide a much more resilient transport scheme for tractor and trailer transportation systems,this paper explores the generation method of tractor and trailer transport schemes considering the influence of disrupte...To provide a much more resilient transport scheme for tractor and trailer transportation systems,this paper explores the generation method of tractor and trailer transport schemes considering the influence of disrupted events.Three states of tractors including towing loaded trailers,towing empty trailers,and idle driving are taken into account.Based on the disruption management theory,a scheduling model is constructed to minimize the total deviation cost including transportation time,transportation path,and number of used vehicles under the three states of tractors.A heuristics based on the contract net and simulated annealing algorithm is designed to solve the proposed model.Through comparative analysis of examples with different numbers of newly added transportation tasks and different types of road networks,the performance of the contract net algorithm in terms of deviations in idle driving paths,empty trailer paths,loaded trailer paths,time,number of used vehicles,and total deviation cost are analyzed.The results demonstrate the effectiveness of the model and algorithm,highlighting the superiority of the disruption management model and the contract net annealing algorithm.The study provides a reference for handling unexpected events in the tractor and trailer transportation industry.展开更多
Buses and subways are essential to urban public transportation systems and an important engine for activating high-quality urban development. Traditional multi-modal transportation networks focus on the structural fea...Buses and subways are essential to urban public transportation systems and an important engine for activating high-quality urban development. Traditional multi-modal transportation networks focus on the structural feature mining of single-layer networks or each layer, ignoring the structural association of multi-layer networks. In this paper, we examined the multi-layer structural property of the bus-subway network of Shanghai at both global and nodal scales. A dual-layer model of the city’s bus and subway system was built. Single-layer complex network indicators were also extended. The paper also explored the spatial coupling properties of the city’s bus and subway system and identified its primary traffic nodes. It was found that 1) the dual-layer network increased the network’s connectivity to a certain extent and broke through the spatial limitation in terms of physical structure, making the connection between any two locations more direct. 2) The dual-layer network changed the topological characteristics of the transit network, increasing the centrality value and bit order in degree centrality, betweenness centrality, and closeness centrality to different degrees, and making each centrality tend to converge to the city center in spatial distribution. Enhancing the management of critical network nodes would help the integrated public transportation system operate more effectively and provide higher-quality services.展开更多
Evacuated Tube Transport Technologies (ET3) offers the potential for more than an order of magnitude improvement in transportation efficiency, speed, cost, and effectiveness. An ET3 network may be optimized to susta...Evacuated Tube Transport Technologies (ET3) offers the potential for more than an order of magnitude improvement in transportation efficiency, speed, cost, and effectiveness. An ET3 network may be optimized to sustainably displace most global transportation by car, ship, truck, train, and jet aircraft. To do this, ET3 standards should adhere to certain key principals: maximum value through efficiency, reliability, and simplicity; equal consideration for passenger and cargo loads; optimum size; high speed/high frequency operation; demand oriented; random accessibility; scalability; high granularity; automated control; full speed passive switching; open standards of implementation; and maximum use of existing capacities, materials, and processes.展开更多
The objective of this research is to determine the effect earthquakes have on the performance of transportation network systems.To do this,bridge fragility curves,expressed as a function of peak ground acceleration(PG...The objective of this research is to determine the effect earthquakes have on the performance of transportation network systems.To do this,bridge fragility curves,expressed as a function of peak ground acceleration(PGA)and peak ground velocity(PGV),were developed.Network damage was evaluated under the 1994 Northridge earthquake and scenario earthquakes.A probabilistic model was developed to determine the effect of repair of bridge damage on the improvement of the network performance as days passed after the event.As an example,the system performance degradation measured in terms of an index,'Drivers Delay,'is calculated for the Los Angeles area transportation system,and losses due to Drivers Delay with and without retrofit were estimated.展开更多
To increase airspace capacity, alleviate flight delay,and improve network robustness, an optimization method of multi-layer air transportation networks is put forward based on Laplacian energy maximization. The effect...To increase airspace capacity, alleviate flight delay,and improve network robustness, an optimization method of multi-layer air transportation networks is put forward based on Laplacian energy maximization. The effectiveness of taking Laplacian energy as a measure of network robustness is validated through numerical experiments. The flight routes addition optimization model is proposed with the principle of maximizing Laplacian energy. Three methods including the depth-first search( DFS) algorithm, greedy algorithm and Monte-Carlo tree search( MCTS) algorithm are applied to solve the proposed problem. The trade-off between system performance and computational efficiency is compared through simulation experiments. Finally, a case study on Chinese airport network( CAN) is conducted using the proposed model. Through encapsulating it into multi-layer infrastructure via k-core decomposition algorithm, Laplacian energy maximization for the sub-networks is discussed which can provide a useful tool for the decision-makers to optimize the robustness of the air transportation network on different scales.展开更多
The identification of key nodes plays an important role in improving the robustness of the transportation network.For different types of transportation networks,the effect of the same identification method may be diff...The identification of key nodes plays an important role in improving the robustness of the transportation network.For different types of transportation networks,the effect of the same identification method may be different.It is of practical significance to study the key nodes identification methods corresponding to various types of transportation networks.Based on the knowledge of complex networks,the metro networks and the bus networks are selected as the objects,and the key nodes are identified by the node degree identification method,the neighbor node degree identification method,the weighted k-shell degree neighborhood identification method(KSD),the degree k-shell identification method(DKS),and the degree k-shell neighborhood identification method(DKSN).Take the network efficiency and the largest connected subgraph as the effective indicators.The results show that the KSD identification method that comprehensively considers the elements has the best recognition effect and has certain practical significance.展开更多
Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effe...Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effectively addresses the aforementioned problems;however,the impact of its quality on lithium-ion transfer and structure durability is yet to be explored.Herein,the influence of an interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time.2D modeling simulation and Cryo-transmission electron microscopy precisely reveal the mitigation of interface polarization owing to a higher fraction of conductive inorganic species formation in bilayer solid electrolyte interphase is mainly responsible for a linear decrease in ionic diffusion energy barrier.Furthermore,atomic force microscopy and Raman shift exhibit substantial stress dissipation generated by a complete conductive network,which is critical to the linear reduction of electrode residual stress.This study provides insights into the rational design of optimized interface SiO-based anodes with reinforced fast-charging performance.展开更多
Located in the western hinterland,Southwest China is a typical mountainous area covered by plateaus,mountains and hills.Its ruggedness hinders regional internal and external connections,and its poor transportation inf...Located in the western hinterland,Southwest China is a typical mountainous area covered by plateaus,mountains and hills.Its ruggedness hinders regional internal and external connections,and its poor transportation infrastructure has long constrained the socioeconomic development of Southwest China.Based on the GIS transportation database,this paper explored the spatiotemporal evolution and characteristics of the land transportation networks and the accessibility of Southwest China from 1917 to 2017.Regional accessibility in Southwest China has significantly improved,and transportation infrastructure has gradually integrated the transportation circles of the52 central cities.The transportation network has followed an evolutionary process from a"hub-spoke pattern"to a"network pattern",while the construction of a high-speed railway(HSR)has brought about significant spatial polarization.We argue that innovation in transportation technology is one of the most effective factors for promoting a significant change in regional accessibility.In addition,the spatial distribution and evolution of accessibility in Southwest China presents a verticalcharacteristic that distinguishes it from the plains,as the spillover effects of new transportation infrastructure on accessibility improvement are partly offset by the mountainous terrain.Additionally,in Southwest China,there is significant"path dependence"in the evolution of the transportation network,since a large portion of the population is concentrated along transportation corridors in mountainous areas.展开更多
This research applies network structuring theories to the aviation domain and predicts aviation network growth, considering a flight connection between airports as a link between nodes. Our link prediction approach is...This research applies network structuring theories to the aviation domain and predicts aviation network growth, considering a flight connection between airports as a link between nodes. Our link prediction approach is based on network structure information, and to improve prediction accuracy, it is necessary to estimate the mechanism of aviation network growth. This research critically evaluates the prediction accuracy of two methods: the receiver operating characteristic curve method (ROC) and the logistic regression method. We propose a four-step method to evaluate the relative predictive accuracy among different link prediction methods. A case study of US aviation networks indicated that the ROC method provided better prediction accuracy compared with the logistic regression method. This result suggests that tuning of the prediction distribution and the regression model coefficients can further improve the accuracy of the logistic regression method.展开更多
Environment perception is one of the most critical technology of intelligent transportation systems(ITS).Motion interaction between multiple vehicles in ITS makes it important to perform multi-object tracking(MOT).How...Environment perception is one of the most critical technology of intelligent transportation systems(ITS).Motion interaction between multiple vehicles in ITS makes it important to perform multi-object tracking(MOT).However,most existing MOT algorithms follow the tracking-by-detection framework,which separates detection and tracking into two independent segments and limit the global efciency.Recently,a few algorithms have combined feature extraction into one network;however,the tracking portion continues to rely on data association,and requires com‑plex post-processing for life cycle management.Those methods do not combine detection and tracking efciently.This paper presents a novel network to realize joint multi-object detection and tracking in an end-to-end manner for ITS,named as global correlation network(GCNet).Unlike most object detection methods,GCNet introduces a global correlation layer for regression of absolute size and coordinates of bounding boxes,instead of ofsetting predictions.The pipeline of detection and tracking in GCNet is conceptually simple,and does not require compli‑cated tracking strategies such as non-maximum suppression and data association.GCNet was evaluated on a multivehicle tracking dataset,UA-DETRAC,demonstrating promising performance compared to state-of-the-art detectors and trackers.展开更多
It is very important to establish cooperative mechanism to guarantee allmembers to develop their e-conomies in the Yellow Sea Rim. In this paper, the development strategiesof shipping centers and transportation networ...It is very important to establish cooperative mechanism to guarantee allmembers to develop their e-conomies in the Yellow Sea Rim. In this paper, the development strategiesof shipping centers and transportation network are discussed based on economic globalizationtendency. The results argue that a united transportation network should be built in order to promotethe economic competition of Northeast Asia in the world. As a key component of the economiccooperation, a hierarchical shipping centers network should be established with Hong Kong, Shanghai,Pusan, Kobe, and Tokyo as cores. The authorities of China, Japan, R. 0. Korea and D. P. R. Koreashould make more efforts to build a set of cooperation institutions based on raising thetransportation efficiency.展开更多
The air transportation network, one of the common multilayer complex systems, is composed of a collection of individual airlines, and each airline corresponds to a different layer. An important question is then how ma...The air transportation network, one of the common multilayer complex systems, is composed of a collection of individual airlines, and each airline corresponds to a different layer. An important question is then how many airlines are really necessary to represent the optimal structure of a multilayer air transportation system. Here we take the Chinese air transportation network (CATN) as an example to explore the nature of multiplex systems through the procedure of network aggregation. Specifically, we propose a series of structural measures to characterize the CATN from the multilayered to the aggregated network level. We show how these measures evolve during the network aggregation process in which layers are gradually merged together and find that there is an evident structural transition that happened in the aggregated network with nine randomly chosen airlines merged, where the network features and construction cost of this network are almost equivalent to those of the present CATN with twenty-two airlines under this condition. These findings could shed some light on network structure optimization and management of the Chinese air transportation system.展开更多
With the rise of the Internet of Vehicles(IoV)and the number of connected vehicles increasing on the roads,Cooperative Intelligent Transportation Systems(C-ITSs)have become an important area of research.As the number ...With the rise of the Internet of Vehicles(IoV)and the number of connected vehicles increasing on the roads,Cooperative Intelligent Transportation Systems(C-ITSs)have become an important area of research.As the number of Vehicle to Vehicle(V2V)and Vehicle to Interface(V2I)communication links increases,the amount of data received and processed in the network also increases.In addition,networking interfaces need to be made more secure for which existing cryptography-based security schemes may not be sufficient.Thus,there is a need to augment them with intelligent network intrusion detection techniques.Some machine learning-based intrusion detection and anomaly detection techniques for vehicular networks have been proposed in recent times.However,given the expected large network size,there is a necessity for extensive data processing for use in such anomaly detection methods.Deep learning solutions are lucrative options as they remove the necessity for feature selection.Therefore,with the amount of vehicular network traffic increasing at an unprecedented rate in the C-ITS scenario,the need for deep learning-based techniques is all the more heightened.This work presents three deep learning-based misbehavior classification schemes for intrusion detection in IoV networks using Long Short Term Memory(LSTM)and Convolutional Neural Networks(CNNs).The proposed Deep Learning Classification Engines(DCLE)comprise of single or multi-step classification done by deep learning models that are deployed on the vehicular edge servers.Vehicular data received by the Road Side Units(RSUs)is pre-processed and forwarded to the edge server for classifications following the three classification schemes proposed in this paper.The proposed classifiers identify 18 different vehicular behavior types,the F1-scores ranging from 95.58%to 96.75%,much higher than the existing works.By running the classifiers on testbeds emulating edge servers,the prediction performance and prediction time comparison of the proposed scheme is compared with those of the existing studies.展开更多
基金supported by the National Natural Science Foundation of China[61773091 and 62173065 to X.-K.X.,11975025 to L.W.,11875005 to Y.W.,72025405 and 82041020 to X.L.,71974029 to X.W.]the Grand Challenges ICODA pilot initiative,delivered by Health Data Research UK and funded by the Bill&Melinda Gates Foundation and the Minderoo Foundation[to X.F.L.]+1 种基金US CDC Grant 20U01CK000592[to S.P.]US CDC and CSTE Grant NU38OT00297[to S.P.].
文摘The spatial spread of COVID-19 during early 2020 in China was primarily driven by outbound travelers leaving the epicenter,Wuhan,Hubei province.Existing studies focus on the influence of aggregated out-bound population flows originating from Wuhan;however,the impacts of different modes of transportation and the network structure of transportation systems on the early spread of COVID-19 in China are not well understood.Here,we assess the roles of the road,railway,and air transportation networks in driving the spatial spread of COVID-19 in China.We find that the short-range spread within Hubei province was dominated by ground traffic,notably,the railway transportation.In contrast,long-range spread to cities in other provinces was mediated by multiple factors,including a higher risk of case importation associated with air transportation and a larger outbreak size in hub cities located at the center of transportation networks.We further show that,although the dissemination of SARS-CoV-2 across countries and continents is determined by the worldwide air transportation network,the early geographic dispersal of COVID-19 within China is better predicted by the railway traffic.Given the recent emergence of multiple more transmissible variants of SARS-CoV-2,our findings can support a better assessment of the spread risk of those variants and improve future pandemic preparedness and responses.
基金This work was financially supported by the National Natural Science Foundation of China(52074089 and 52104064)Natural Science Foundation of Heilongjiang Province of China(LH2019E019).
文摘As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems.
基金supported by the National Natural Science Foundation of China(Grant No.62102032)the R&D Program of Beijing Municipal Education Commission(Grant No.KM202211417010).
文摘This paper describes the development and optimization plans for the China Railway Express(CR Express).As a new type of international land transport organization,CR Express has emerged with the continuous expansion of China toward European investment and trade,and in particular,has expanded with the continuous progress of the One Belt and One Road(OBOR)initiative.In addition to improving the service quality of CR Express,the operating costs must be reduced for developing“smart railways”that serve“smart cities”.We propose a dualobjective-based function mathematical optimization model;the satisfaction of the cargo owner is considered,and the timeliness,transportation capacity,and goods category constraints of CR Express transportation are designed.Moreover,we present the normalized equivalent method of the two-objective function of the model.Finally,a case study is conducted against the background of certain trains in the western corridor of CR Express to validate the effectiveness of the model and research methods proposed in this study.
基金This work was supported by Suranaree University of Technology(SUT).The authors would also like to thank SUT Smart Transit and Thai AI for supporting the experimental and datasets.
文摘The number of accidents in the campus of Suranaree University of Technology(SUT)has increased due to increasing number of personal vehicles.In this paper,we focus on the development of public transportation system using Intelligent Transportation System(ITS)along with the limitation of personal vehicles using sharing economy model.The SUT Smart Transit is utilized as a major public transportation system,while MoreSai@SUT(electric motorcycle services)is a minor public transportation system in this work.They are called Multi-Mode Transportation system as a combination.Moreover,a Vehicle toNetwork(V2N)is used for developing theMulti-Mode Transportation system in the campus.Due to equipping vehicles with On Board Unit(OBU)and 4G LTE modules,the real time speed and locations are transmitted to the cloud.The data is then applied in the proposed mathematical model for the estimation of Estimated Time of Arrival(ETA).In terms of vehicle classifications and counts,we deployed CCTV cameras,and the recorded videos are analyzed by using You Only Look Once(YOLO)algorithm.The simulation and measurement results of SUT Smart Transit and MoreSai@SUT before the covid-19 pandemic are discussed.Contrary to the existing researches,the proposed system is implemented in the real environment.The final results unveil the attractiveness and satisfaction of users.Also,due to the proposed system,the CO_(2) gas gets reduced when Multi-Mode Transportation is implemented practically in the campus.
基金Project(2023JH26-10100002)supported by the Liaoning Science and Technology Major Project,ChinaProjects(U21A20117,52074085)supported by the National Natural Science Foundation of China+1 种基金Project(2022JH2/101300008)supported by the Liaoning Applied Basic Research Program Project,ChinaProject(22567612H)supported by the Hebei Provincial Key Laboratory Performance Subsidy Project,China。
文摘Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction models do not consider the features contained in the data,resulting in limited improvement of model accuracy.To address these challenges,this paper proposes a multi-dimensional multi-modal cold rolling vibration time series prediction model(MDMMVPM)based on the deep fusion of multi-level networks.In the model,the long-term and short-term modal features of multi-dimensional data are considered,and the appropriate prediction algorithms are selected for different data features.Based on the established prediction model,the effects of tension and rolling force on mill vibration are analyzed.Taking the 5th stand of a cold mill in a steel mill as the research object,the innovative model is applied to predict the mill vibration for the first time.The experimental results show that the correlation coefficient(R^(2))of the model proposed in this paper is 92.5%,and the root-mean-square error(RMSE)is 0.0011,which significantly improves the modeling accuracy compared with the existing models.The proposed model is also suitable for the hot rolling process,which provides a new method for the prediction of strip rolling vibration.
基金This research was funded by the General Project of Philosophy and Social Science of Heilongjiang Province,Grant Number:20SHB080.
文摘In recent years,how to efficiently and accurately identify multi-model fake news has become more challenging.First,multi-model data provides more evidence but not all are equally important.Secondly,social structure information has proven to be effective in fake news detection and how to combine it while reducing the noise information is critical.Unfortunately,existing approaches fail to handle these problems.This paper proposes a multi-model fake news detection framework based on Tex-modal Dominance and fusing Multiple Multi-model Cues(TD-MMC),which utilizes three valuable multi-model clues:text-model importance,text-image complementary,and text-image inconsistency.TD-MMC is dominated by textural content and assisted by image information while using social network information to enhance text representation.To reduce the irrelevant social structure’s information interference,we use a unidirectional cross-modal attention mechanism to selectively learn the social structure’s features.A cross-modal attention mechanism is adopted to obtain text-image cross-modal features while retaining textual features to reduce the loss of important information.In addition,TD-MMC employs a new multi-model loss to improve the model’s generalization ability.Extensive experiments have been conducted on two public real-world English and Chinese datasets,and the results show that our proposed model outperforms the state-of-the-art methods on classification evaluation metrics.
基金supported in part by the Science and Technology Project of Hebei Education Department,Grant ZD2021088in part by the S&T Major Project of the Science and Technology Ministry of China,Grant 2017YFE0135700。
文摘In future optical transport networks,lightpath performance analysis is of great practical significance for fully automated management.In general,the quality of transmission(QoT)of lightpaths,measured by optical quality factor or optical signal-to-noise ratio,has a complex time-varying process,along with the interactions of the other lightpath state parameters(LSPs),such as transmit power,chromatic dispersion,polarization mode dispersion.Current studies are mostly focused on lightpath QoT estimation,but ignoring lightpath-level data analytics.In this case,our article proposes a novel lightpath performance analysis method considering recurrence plot(RP)and cross recurrence plot(CRP).Firstly,we give a detailed interpretation on the recurrence patterns of LSPs via a qualitative 2-D RP representation and its quantitative measure.It can potentially enable the accurate and fast lightpath failure detection with a low computational burden.On the other hand,CRP is devoted to modeling the relationships between lightpath QoT and LSPs,and the correlation degree is determined by a geometric mean of multiple indexes of cross recurrence quantification analysis.From the view of application,such CRP analysis can provide the effective knowledge sharing to guarantee more credible QoT prediction.Extensive experiments on a real-world optical network dataset have clearly demonstrated the effectiveness of our proposal.
基金support provided by the National Natural Science Foundation of China(Grant No.52362055)the Science and Technology Plan Project of Guangxi Zhuang Autonomous Region(Grant No.2021AC19334)Guangxi Science and Technology Major Program(Grant No.AA23062053).
文摘To provide a much more resilient transport scheme for tractor and trailer transportation systems,this paper explores the generation method of tractor and trailer transport schemes considering the influence of disrupted events.Three states of tractors including towing loaded trailers,towing empty trailers,and idle driving are taken into account.Based on the disruption management theory,a scheduling model is constructed to minimize the total deviation cost including transportation time,transportation path,and number of used vehicles under the three states of tractors.A heuristics based on the contract net and simulated annealing algorithm is designed to solve the proposed model.Through comparative analysis of examples with different numbers of newly added transportation tasks and different types of road networks,the performance of the contract net algorithm in terms of deviations in idle driving paths,empty trailer paths,loaded trailer paths,time,number of used vehicles,and total deviation cost are analyzed.The results demonstrate the effectiveness of the model and algorithm,highlighting the superiority of the disruption management model and the contract net annealing algorithm.The study provides a reference for handling unexpected events in the tractor and trailer transportation industry.
文摘Buses and subways are essential to urban public transportation systems and an important engine for activating high-quality urban development. Traditional multi-modal transportation networks focus on the structural feature mining of single-layer networks or each layer, ignoring the structural association of multi-layer networks. In this paper, we examined the multi-layer structural property of the bus-subway network of Shanghai at both global and nodal scales. A dual-layer model of the city’s bus and subway system was built. Single-layer complex network indicators were also extended. The paper also explored the spatial coupling properties of the city’s bus and subway system and identified its primary traffic nodes. It was found that 1) the dual-layer network increased the network’s connectivity to a certain extent and broke through the spatial limitation in terms of physical structure, making the connection between any two locations more direct. 2) The dual-layer network changed the topological characteristics of the transit network, increasing the centrality value and bit order in degree centrality, betweenness centrality, and closeness centrality to different degrees, and making each centrality tend to converge to the city center in spatial distribution. Enhancing the management of critical network nodes would help the integrated public transportation system operate more effectively and provide higher-quality services.
文摘Evacuated Tube Transport Technologies (ET3) offers the potential for more than an order of magnitude improvement in transportation efficiency, speed, cost, and effectiveness. An ET3 network may be optimized to sustainably displace most global transportation by car, ship, truck, train, and jet aircraft. To do this, ET3 standards should adhere to certain key principals: maximum value through efficiency, reliability, and simplicity; equal consideration for passenger and cargo loads; optimum size; high speed/high frequency operation; demand oriented; random accessibility; scalability; high granularity; automated control; full speed passive switching; open standards of implementation; and maximum use of existing capacities, materials, and processes.
基金The Federal Highway Administration(FHWA)under Contract No.DTFH61-98-C-00094the California Department of Transportation(CALTRANS)
文摘The objective of this research is to determine the effect earthquakes have on the performance of transportation network systems.To do this,bridge fragility curves,expressed as a function of peak ground acceleration(PGA)and peak ground velocity(PGV),were developed.Network damage was evaluated under the 1994 Northridge earthquake and scenario earthquakes.A probabilistic model was developed to determine the effect of repair of bridge damage on the improvement of the network performance as days passed after the event.As an example,the system performance degradation measured in terms of an index,'Drivers Delay,'is calculated for the Los Angeles area transportation system,and losses due to Drivers Delay with and without retrofit were estimated.
基金The National Natural Science Foundation of China(No.61573098,71401072)the Natural Science Foundation of Jiangsu Province(No.BK20130814)
文摘To increase airspace capacity, alleviate flight delay,and improve network robustness, an optimization method of multi-layer air transportation networks is put forward based on Laplacian energy maximization. The effectiveness of taking Laplacian energy as a measure of network robustness is validated through numerical experiments. The flight routes addition optimization model is proposed with the principle of maximizing Laplacian energy. Three methods including the depth-first search( DFS) algorithm, greedy algorithm and Monte-Carlo tree search( MCTS) algorithm are applied to solve the proposed problem. The trade-off between system performance and computational efficiency is compared through simulation experiments. Finally, a case study on Chinese airport network( CAN) is conducted using the proposed model. Through encapsulating it into multi-layer infrastructure via k-core decomposition algorithm, Laplacian energy maximization for the sub-networks is discussed which can provide a useful tool for the decision-makers to optimize the robustness of the air transportation network on different scales.
基金supported by the National Natural Science Foundation of China(Grant No.61961019)the Youth Key Project of the Natural Science Foundation of Jiangxi Province of China(Grant No.20202ACBL212003).
文摘The identification of key nodes plays an important role in improving the robustness of the transportation network.For different types of transportation networks,the effect of the same identification method may be different.It is of practical significance to study the key nodes identification methods corresponding to various types of transportation networks.Based on the knowledge of complex networks,the metro networks and the bus networks are selected as the objects,and the key nodes are identified by the node degree identification method,the neighbor node degree identification method,the weighted k-shell degree neighborhood identification method(KSD),the degree k-shell identification method(DKS),and the degree k-shell neighborhood identification method(DKSN).Take the network efficiency and the largest connected subgraph as the effective indicators.The results show that the KSD identification method that comprehensively considers the elements has the best recognition effect and has certain practical significance.
基金the National Natural Science Foundation of China(Nos.22209095 and 22238004).
文摘Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effectively addresses the aforementioned problems;however,the impact of its quality on lithium-ion transfer and structure durability is yet to be explored.Herein,the influence of an interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time.2D modeling simulation and Cryo-transmission electron microscopy precisely reveal the mitigation of interface polarization owing to a higher fraction of conductive inorganic species formation in bilayer solid electrolyte interphase is mainly responsible for a linear decrease in ionic diffusion energy barrier.Furthermore,atomic force microscopy and Raman shift exhibit substantial stress dissipation generated by a complete conductive network,which is critical to the linear reduction of electrode residual stress.This study provides insights into the rational design of optimized interface SiO-based anodes with reinforced fast-charging performance.
基金supported by the National Natural Science Foundation of China(Grants No.41671159)Fundamental Research Funds for the Central Universities for funding(Grants No.XDJK2018B011)Major Projects on Philosophy and Social Sciences of Chongqing Education Commission(Grants No.19SKZDZX08)。
文摘Located in the western hinterland,Southwest China is a typical mountainous area covered by plateaus,mountains and hills.Its ruggedness hinders regional internal and external connections,and its poor transportation infrastructure has long constrained the socioeconomic development of Southwest China.Based on the GIS transportation database,this paper explored the spatiotemporal evolution and characteristics of the land transportation networks and the accessibility of Southwest China from 1917 to 2017.Regional accessibility in Southwest China has significantly improved,and transportation infrastructure has gradually integrated the transportation circles of the52 central cities.The transportation network has followed an evolutionary process from a"hub-spoke pattern"to a"network pattern",while the construction of a high-speed railway(HSR)has brought about significant spatial polarization.We argue that innovation in transportation technology is one of the most effective factors for promoting a significant change in regional accessibility.In addition,the spatial distribution and evolution of accessibility in Southwest China presents a verticalcharacteristic that distinguishes it from the plains,as the spillover effects of new transportation infrastructure on accessibility improvement are partly offset by the mountainous terrain.Additionally,in Southwest China,there is significant"path dependence"in the evolution of the transportation network,since a large portion of the population is concentrated along transportation corridors in mountainous areas.
文摘This research applies network structuring theories to the aviation domain and predicts aviation network growth, considering a flight connection between airports as a link between nodes. Our link prediction approach is based on network structure information, and to improve prediction accuracy, it is necessary to estimate the mechanism of aviation network growth. This research critically evaluates the prediction accuracy of two methods: the receiver operating characteristic curve method (ROC) and the logistic regression method. We propose a four-step method to evaluate the relative predictive accuracy among different link prediction methods. A case study of US aviation networks indicated that the ROC method provided better prediction accuracy compared with the logistic regression method. This result suggests that tuning of the prediction distribution and the regression model coefficients can further improve the accuracy of the logistic regression method.
基金Supported by National Key Research and Development Program of China(Grant No.2021YFB1600402)National Natural Science Foundation of China(Grant No.52072212)+1 种基金Dongfeng USharing Technology Co.,Ltd.,China Intelli‑gent and Connected Vehicles(Beijing)Research Institute Co.,Ltd.“Shuimu Tsinghua Scholarship”of Tsinghua University of China.
文摘Environment perception is one of the most critical technology of intelligent transportation systems(ITS).Motion interaction between multiple vehicles in ITS makes it important to perform multi-object tracking(MOT).However,most existing MOT algorithms follow the tracking-by-detection framework,which separates detection and tracking into two independent segments and limit the global efciency.Recently,a few algorithms have combined feature extraction into one network;however,the tracking portion continues to rely on data association,and requires com‑plex post-processing for life cycle management.Those methods do not combine detection and tracking efciently.This paper presents a novel network to realize joint multi-object detection and tracking in an end-to-end manner for ITS,named as global correlation network(GCNet).Unlike most object detection methods,GCNet introduces a global correlation layer for regression of absolute size and coordinates of bounding boxes,instead of ofsetting predictions.The pipeline of detection and tracking in GCNet is conceptually simple,and does not require compli‑cated tracking strategies such as non-maximum suppression and data association.GCNet was evaluated on a multivehicle tracking dataset,UA-DETRAC,demonstrating promising performance compared to state-of-the-art detectors and trackers.
文摘It is very important to establish cooperative mechanism to guarantee allmembers to develop their e-conomies in the Yellow Sea Rim. In this paper, the development strategiesof shipping centers and transportation network are discussed based on economic globalizationtendency. The results argue that a united transportation network should be built in order to promotethe economic competition of Northeast Asia in the world. As a key component of the economiccooperation, a hierarchical shipping centers network should be established with Hong Kong, Shanghai,Pusan, Kobe, and Tokyo as cores. The authorities of China, Japan, R. 0. Korea and D. P. R. Koreashould make more efforts to build a set of cooperation institutions based on raising thetransportation efficiency.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11405118,11401448 and 11301403
文摘The air transportation network, one of the common multilayer complex systems, is composed of a collection of individual airlines, and each airline corresponds to a different layer. An important question is then how many airlines are really necessary to represent the optimal structure of a multilayer air transportation system. Here we take the Chinese air transportation network (CATN) as an example to explore the nature of multiplex systems through the procedure of network aggregation. Specifically, we propose a series of structural measures to characterize the CATN from the multilayered to the aggregated network level. We show how these measures evolve during the network aggregation process in which layers are gradually merged together and find that there is an evident structural transition that happened in the aggregated network with nine randomly chosen airlines merged, where the network features and construction cost of this network are almost equivalent to those of the present CATN with twenty-two airlines under this condition. These findings could shed some light on network structure optimization and management of the Chinese air transportation system.
基金The work of Vinay Chamola and F.Richard Yu was supported in part by the SICI SICRG Grant through the Project Artificial Intelligence Enabled Security Provisioning and Vehicular Vision Innovations for Autonomous Vehicles,and in part by the Government of Canada's National Crime Prevention Strategy and Natural Sciences and Engineering Research Council of Canada(NSERC)CREATE Program for Building Trust in Connected and Autonomous Vehicles(TrustCAV).
文摘With the rise of the Internet of Vehicles(IoV)and the number of connected vehicles increasing on the roads,Cooperative Intelligent Transportation Systems(C-ITSs)have become an important area of research.As the number of Vehicle to Vehicle(V2V)and Vehicle to Interface(V2I)communication links increases,the amount of data received and processed in the network also increases.In addition,networking interfaces need to be made more secure for which existing cryptography-based security schemes may not be sufficient.Thus,there is a need to augment them with intelligent network intrusion detection techniques.Some machine learning-based intrusion detection and anomaly detection techniques for vehicular networks have been proposed in recent times.However,given the expected large network size,there is a necessity for extensive data processing for use in such anomaly detection methods.Deep learning solutions are lucrative options as they remove the necessity for feature selection.Therefore,with the amount of vehicular network traffic increasing at an unprecedented rate in the C-ITS scenario,the need for deep learning-based techniques is all the more heightened.This work presents three deep learning-based misbehavior classification schemes for intrusion detection in IoV networks using Long Short Term Memory(LSTM)and Convolutional Neural Networks(CNNs).The proposed Deep Learning Classification Engines(DCLE)comprise of single or multi-step classification done by deep learning models that are deployed on the vehicular edge servers.Vehicular data received by the Road Side Units(RSUs)is pre-processed and forwarded to the edge server for classifications following the three classification schemes proposed in this paper.The proposed classifiers identify 18 different vehicular behavior types,the F1-scores ranging from 95.58%to 96.75%,much higher than the existing works.By running the classifiers on testbeds emulating edge servers,the prediction performance and prediction time comparison of the proposed scheme is compared with those of the existing studies.