The majority of nonlinear stochastic systems can be expressed as the quasi-Hamiltonian systems in science and engineering. Moreover, the corresponding Hamiltonian system offers two concepts of integrability and resona...The majority of nonlinear stochastic systems can be expressed as the quasi-Hamiltonian systems in science and engineering. Moreover, the corresponding Hamiltonian system offers two concepts of integrability and resonance that can fully describe the global relationship among the degrees-of-freedom(DOFs) of the system. In this work, an effective and promising approximate semi-analytical method is proposed for the steady-state response of multi-dimensional quasi-Hamiltonian systems. To be specific, the trial solution of the reduced Fokker–Plank–Kolmogorov(FPK) equation is obtained by using radial basis function(RBF) neural networks. Then, the residual generated by substituting the trial solution into the reduced FPK equation is considered, and a loss function is constructed by combining random sampling technique. The unknown weight coefficients are optimized by minimizing the loss function through the Lagrange multiplier method. Moreover, an efficient sampling strategy is employed to promote the implementation of algorithms. Finally, two numerical examples are studied in detail, and all the semi-analytical solutions are compared with Monte Carlo simulations(MCS) results. The results indicate that the complex nonlinear dynamic features of the system response can be captured through the proposed scheme accurately.展开更多
In order to study the differences in vertical component between onshore and offshore motions,the vertical-to-horizontal peak ground acceleration ratio(V/H PGA ratio) and vertical-to-horizontal response spectral ratio(...In order to study the differences in vertical component between onshore and offshore motions,the vertical-to-horizontal peak ground acceleration ratio(V/H PGA ratio) and vertical-to-horizontal response spectral ratio(V/H) were investigated using the ground motion recordings from the K-NET network and the seafloor earthquake measuring system(SEMS).The results indicate that the vertical component of offshore motions is lower than that of onshore motions.The V/H PGA ratio of acceleration time histories at offshore stations is about 50%of the ratio at onshore stations.The V/H for offshore ground motions is lower than that for onshore motions,especially for periods less than 0.8 s.Furthermore,based on the results in statistical analysis for offshore recordings in the K-NET,the simplified V/H design equations for offshore motions in minor and moderate earthquakes are proposed for seismic analysis of offshore structures.展开更多
The non-rectangular hyperbola(NRH)equation is the most popular method that plots the photosynthetic light-response(PLR)curve and helps to identify plant photosynthetic capability.However,the PLR curve can't be plo...The non-rectangular hyperbola(NRH)equation is the most popular method that plots the photosynthetic light-response(PLR)curve and helps to identify plant photosynthetic capability.However,the PLR curve can't be plotted well by the NRH equation at different plant growth phases due to the variations of plant development.Recently,plant physiological parameters have been considered into the NRH equation to establish the modified NRH equation,but plant height(H),an important parameter in plant growth phases,is not taken into account.In this study,H was incorporated into the NRH equation to establish the modified NRH equation,which could be used to estimate photosynthetic capability of herbage at different growth phases.To explore photosynthetic capability of herbage,we selected the dominant herbage species Potentilla anserina L.and Elymus nutans Griseb.in the Heihe River Basin,Northwest China as the research materials.Totally,twenty-four PLR curves and H at different growth phases were measured during the growing season in 2016.Results showed that the maximum net photosynthetic rate and the initial slope of PLR curve linearly increased with H.The modified NRH equation,which is established by introducing H and an H-based adjustment factor into the NRH equation,described better the PLR curves of P.anserina and E.nutans than the original ones.The results may provide an effective method to estimate the net primary productivity of grasslands in the study area.展开更多
The performance of a soil-pile system can be significantly influenced by ground motion parameters. However, few research efforts have been performed to provide a complete description of the influence of key ground mot...The performance of a soil-pile system can be significantly influenced by ground motion parameters. However, few research efforts have been performed to provide a complete description of the influence of key ground motion parameters on the pile’s behavior in liquefiable soil. In this study, a three-dimensional finite element(FE) model, incorporating a multisurface plasticity solid-fluid fully coupled formulation soil constitutive model, is developed and calibrated based on centrifuge test data. Seventy-two near-fault non-pulse-like(NF-NP) and seventy-two near-fault pulse-like(NF-P) ground motion records are studied with the calibrated FE model to distinguish the effects of several common ground motion parameters soon afterwards. Base on the parametric study results, a simple index, RPGV/PGA(i.e., the ratio of peak ground velocity(PGV) to peak ground acceleration(PGA)), shows its capability on characterizing the pile behavior under both NF-NP and NF-P ground motions. Furthermore, two equations are developed to characterize the relationships between the RPGV/PGA as well as the maximum pile’s moments and displacements. In general, this study can be helpful to gain new insights on the influence of typical index parameters for near-field ground motions on the response of the pile foundation in liquefiable soil.展开更多
The Blot's wave equations of transversely isotropic saturated poroelastic media excited hy non-axisymmetrical harmonic source were solved by means of Fourier expansion and Hankel transform. Then the components of ...The Blot's wave equations of transversely isotropic saturated poroelastic media excited hy non-axisymmetrical harmonic source were solved by means of Fourier expansion and Hankel transform. Then the components of total stress in porous media are expressed with the solutions of Biot's wave equations. The method of research on non-axisymmetrical dynamic response of saturated porous media is discussed, and a numerical result is presented.展开更多
Based on the Schapery three-dimensional viscoelastic constitutive relationship with growing damage, a damage model with transverse matrix cracks for the unidirectional ?bre rein- forced viscoelastic composite ...Based on the Schapery three-dimensional viscoelastic constitutive relationship with growing damage, a damage model with transverse matrix cracks for the unidirectional ?bre rein- forced viscoelastic composite plates is developed. By using Karman theory, the nonlinear dynamic governing equations of the viscoelastic composite plates under transverse periodic loading are es- tablished. By applying the ?nite di?erence method in spatial domain and the Newton-Newmark method in time domain, and using the iterative procedure, the integral-partial di?erential gov- erning equations are solved. Some examples are given and the results are compared with available data.展开更多
Many studies have been done on the heave-pitch unstable coupling response for a spar platform by a 2-DOF model.In fact,in addition to the heave and pitch which are in one plane,the nonlinear unstable motion will also ...Many studies have been done on the heave-pitch unstable coupling response for a spar platform by a 2-DOF model.In fact,in addition to the heave and pitch which are in one plane,the nonlinear unstable motion will also occur in roll.From the results of the experiments,the unstable roll motion plays a dominant role in the motion of a spar platform which is much stronger than that of pitch.The objective of this paper is to study 3-DOF coupling response performance of spar platform under wave and vortex-induced force.The nonlinear coupled equations in heave,roll and pitch are established by considering time-varying wet surface and coupling.The first order steady-state response is solved by multi-scales method when the incident wave frequency approaches the heave natural frequency.Numerical integration of the motion equations has been performed to verify the first-order perturbation solution.The results are confirmed by model test.There is a saturation phenomenon associated with heave mode in 3-DOF systems and all extra energy is transferred to roll and pitch.It is observed that sub-harmonic response occurs in roll and pitch when the wave force exceeds a certain value.The energy distribution in roll and pitch is determined by the initial value and damping characteristics of roll and pitch.The energy transfers from heave to pitch and then transfers from pitch to roll.Due to the influence of the low-frequency vortex-excited force,the response of roll is more complicated than that of pitch.展开更多
A study on dynamic response of transversely isotropic saturated poroelastic media under a circular non-axisymmetrical harmonic source has been presented by Huang Yi et al. using the technique of Fourier expansion and ...A study on dynamic response of transversely isotropic saturated poroelastic media under a circular non-axisymmetrical harmonic source has been presented by Huang Yi et al. using the technique of Fourier expansion and Hankel transform. However, the method may not always be valid. The work is extended to the general case being in the rectangular coordinate. The purpose is to study the 3-d dynamic response of transversely isotropic saturated soils under a general source distributing in arbitrary rectangular zoon on the medium surface. Based on Biot's theory for fluid- saturated porous media, the 3-d wave motion equations in rectangular coordinate for transversely isotropic saturated poroelastic media were transformed into the two uncoupling governing differential equations of 6-order and 2-order respectively by means of the displacement functions. Then, using the technique of double Fourier transform, the governing differential equations were easily solved. Integral solutions of soil skeleton displacements and pore pressure as well as the total stresses for poroelastic media were obtained. Furthermore, a systematic study on half-space problem in saturated soils was performed. Integral solutions for surface displacements under the general harmonic source distributing on arbitrary surface zone, considering both case of drained surface and undrained surface, were presented.展开更多
This paper considers a model of cell-to-cell spread of HIV-I with CTL immune response. By using a discrete delay to model the intracellular delay, it is shown that the uninfected equilibrium is globally asymptotical s...This paper considers a model of cell-to-cell spread of HIV-I with CTL immune response. By using a discrete delay to model the intracellular delay, it is shown that the uninfected equilibrium is globally asymptotical stable in some conditions and the sufficient condition to ensure the stability of the infected equilibrium does not change would be enlarged by Sturm sequence. Numerical simulations are presented to illustrate the results.展开更多
Vibration mode of the constrained damping cantilever is built up according to the mode superposition of the elastic cantilever beam. The control equation of the constrained damping cantilever beam is then derived usin...Vibration mode of the constrained damping cantilever is built up according to the mode superposition of the elastic cantilever beam. The control equation of the constrained damping cantilever beam is then derived using Lagrange's equation. Dynamic response of the constrained damping cantilever beam is obtained according to the principle of virtual work, when the concentrated force is suddenly unloaded. Frequencies and transient response of a series of constrained damping cantilever beams are calculated and tested. Influence of parameters of the damping layer on the response time is analyzed. Analyitcal and experimental approaches are used for verification. The results show that the method is reliable.展开更多
An approximate method is presented to investigate the earthquake response of the fluid-single leg (shortened for S. L.) gravity platform-soil interaction system. By assuming a suitable form of the velocity potential o...An approximate method is presented to investigate the earthquake response of the fluid-single leg (shortened for S. L.) gravity platform-soil interaction system. By assuming a suitable form of the velocity potential of the radiation waves and by using the motion equation and the boundary conditions, the unknown coefficients can be obtained. Thereafter the function of frequency for the interaction system may also be obtained. In this paper, the difference of the system dynamic response between rigid foundation is analyzed and the influences of the various foundation geometric dimension and the various water-depth on the hydrodynamic loading and dynamic response of the system is illustrated.展开更多
The dynamic responses of any floating platform arc dependent on the mass, stiffness and damping characteristics of the body as well as mooring system. Therefore, it is very essential to study the effect of individual ...The dynamic responses of any floating platform arc dependent on the mass, stiffness and damping characteristics of the body as well as mooring system. Therefore, it is very essential to study the effect of individual contributions to the system that can finally help to economise their cost. This paper focuses on the effect of mooring stiffness on the responses of a truss spar platform, obtained by different grouping of lines. The study is part of our present researches on mooring systems which include the effect of line pretension, diameter and azimuth angles. The platform is modelled as a rigid body with three degrees-of-freedom and its motions are analyzed in time-domain using the implicit Newmark Beta technique. The mooring lines restoring force-excursion relationship is evaluated using a quasi-static approach. It is observed that the mooring system with lines arranged in less number of groups exhibits better performance in terms of the restoring forces as well as mean position of platform. However, the dynamic motions of platform remain unaffected for different line groups.展开更多
Considering compression of solid grain and pore fluids,viscous-coupling interactions and inertial force of fluids,dynamic governing equations for unsaturated soils are established by adopting an exact constitutive for...Considering compression of solid grain and pore fluids,viscous-coupling interactions and inertial force of fluids,dynamic governing equations for unsaturated soils are established by adopting an exact constitutive formula of saturation.These equations are highly versatile and completely compatible with Biot's wave equations for the special case of fully saturated soils.The governing equations in Cartesian coordinates are firstly transformed into a group of state differential equations by introducing the state vector.Then the transfer matrix for layered media are derived by means of a double Fourier transform.Using the transfer matrix followed by boundary and continuity conditions between strata,solutions of steady-state dynamic response for multi-layered unsaturated soils are obtained.Numerical examples show that the echoes generated by boundary and stratum interfaces make the displacement amplitude of the ground surface fluctuate with distance;the relative position of soft and hard strata has a significant influence on displacement.展开更多
In this paper, using the theory of stochastic analysis of the response to earthquake load, a stochastic analysis method of the response of piled platforms to earthquake load has been established. In the method, the st...In this paper, using the theory of stochastic analysis of the response to earthquake load, a stochastic analysis method of the response of piled platforms to earthquake load has been established. In the method, the strong ground motion is considered as three dimensional stationary white noise process and the pile-soil interaction and water-structure interaction are considered. The stochastic response of a typical platform to earthquake load has been computed with this method and the results compared with those obtained with the response spectrum analysis method. The comparison shows that the stochastic analysis method of the response of piled platforms to earthquake load is suitable for this kind of analysis.展开更多
An optimal design configuration of leading edge extensions (LEXs) is presented based on the standard genetic algorithms (GAs). Aircraft longitudinal dynamic response of the system with and without LEX is analyzed ...An optimal design configuration of leading edge extensions (LEXs) is presented based on the standard genetic algorithms (GAs). Aircraft longitudinal dynamic response of the system with and without LEX is analyzed by solving the state equation of aircraft longitudinal motion. Aerodynamic force, moments, and longitudinal stability derivatives are estimated by three-dimensional low-order panel method. A novel aircraft model with LEX is optimized and its lift curve slope is increased by 13%-17% for Ma=0. 4-0. 9 and 12% for Ma=1. 5. Numerical results show that because the frequency and damping ratio in a short period are improved, the aircraft rapidly responds to a specified deflection control input in the battle area when LEX is installed. Finally, compared the results from the panel method with those from the Cy-20 aircraft flight test data,aerodynamic characteristics are verified.展开更多
In this manuscript we present a nonlinear site amplification model for ground-motion prediction equations(GMPEs)in Japan,using a site period-based site class and a site impedance ratio as site parameters.We used a lar...In this manuscript we present a nonlinear site amplification model for ground-motion prediction equations(GMPEs)in Japan,using a site period-based site class and a site impedance ratio as site parameters.We used a large number of shear-wave velocity profiles from the Kiban-Kyoshin network(KiK-net)and the Kyoshin network(K-NET)to construct the one-dimensional(1D)numerical models.The strong-motion records from rock-sites in Japan with different earthquake categories and taken from the Pacific Earthquake Engineering Research Center dataset were used in this study.We fit a set of 1D site amplification models using the spectral amplification ratios derived from 1D equivalent linear analyses.Parameters of site impedance ratios for both linear and nonlinear site response were included in the 1D model.The 1D model could be implemented into GMPEs using a new proposed adjustment method.The adjusted site amplification ratios retain the nonlinear characteristics of the 1D model for strong motions and match the linear amplification ratio in GMPE for weak motions.The nonlinearity of the present site model is reasonably similar to that of the historical models,and the present site model could satisfactorily capture the nonlinear site response in empirical data.展开更多
The solution for the Duffing equation in a nonlinear vibration problem is studied in this paper. Clearly, in the case of the perturb parameter being a larger value, the traditional perturbation method is no longer val...The solution for the Duffing equation in a nonlinear vibration problem is studied in this paper. Clearly, in the case of the perturb parameter being a larger value, the traditional perturbation method is no longer valid but the Homotopy Perturbation Method(HPM) is applicable usually.HPM is used to solve the weak and strong nonlinear differential equations for finding the perturbed frequency of the response. The obtained frequencies via HPM and the approximate method have good accordance for weak and strong nonlinear differential equations. Additionally, the calculated responses by use of the approximate method are compared with the responses obtained from the Numerical method in the time history of the response and phase plane.The results represent good accordance between them.展开更多
In this paper, the responses of the interaction system of R.C. gravity single-leg platform to seismic excitation are mainly analysed. A set of nonlinear equations for the interaction system are established by using th...In this paper, the responses of the interaction system of R.C. gravity single-leg platform to seismic excitation are mainly analysed. A set of nonlinear equations for the interaction system are established by using the wave, one is the soil-structure interaction and the other is the fluid-structure interaction. The seismic response of the interaction system is analysed for the influence of the asymmetric structure, fluid action, etc. with the input of seismic SH waves in any direction. The numerical results are given for a simple example.展开更多
Theoretically speaking, it is impossible to make the differential equation of motion uncoupled for the natural modes of a system in consideration of the attached water. The hydro-elastic structure is equal to the non-...Theoretically speaking, it is impossible to make the differential equation of motion uncoupled for the natural modes of a system in consideration of the attached water. The hydro-elastic structure is equal to the non-proportional damping system. In this paper a perturbation analysis method is put forward. The structure motion equation is strictly solved mathematically, and the non-proportional damping problem is transformed into a series of proportional damping ones in the superposition form. The paper also presents the calculation formula of the dynamic response of the structure being subjected to harmonic and arbitrary load. The convergence of the proposed method is also studied in this paper, and the corresponding convergence conditions are given. Finally, the proposed method is used to analyze the displacement response of a real offshore platform. The calculation results show that this method has the characteristics of high accuracy and fast convergence.展开更多
It has been analyzed the influence of the tectonic ambient shear stress value on response spectrum based on the previous theory. Based on the prediction equation BJF94 presented by the famous American researchers, CLB...It has been analyzed the influence of the tectonic ambient shear stress value on response spectrum based on the previous theory. Based on the prediction equation BJF94 presented by the famous American researchers, CLB20, a new prediction formula is proposed by us, where it is introduced the influence of tectonic ambient shear stress value on response spectrum. BJF94 is the prediction equation, which mainly depends on strong ground motion data from western USA, while the prediction equation SEA99 is based on the strong ground motion data from exten-sional region all over the world. Comparing these two prediction equations in detail, it is found that after BJF94′s prediction value lg(Y) minus 0.16 logarithmic units, the value is very close to SEA99′s one. This case demonstrates that lg(Y) in extensional region is smaller; the differences of prediction equation are mainly owe to the differences of tectonic ambient shear stress value. If the factor of tectonic ambient shear stress value is included into the pre-diction equation, and the magnitude is used seismic moment magnitude to express, which is universal used around the world, and the distance is used the distance of fault project, which commonly used by many people, then re-gional differences of prediction equation will become much less, even vanish, and it can be constructed the uni-versal prediction equation proper to all over the world. The error in the earthquake-resistant design in China will be small if we directly use the results of response spectrum of USA (e.g. BJF94 or SEA99).展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 12072118)the Natural Science Funds for Distinguished Young Scholar of the Fujian Province, China (Grant No. 2021J06024)the Project for Youth Innovation Fund of Xiamen, China (Grant No. 3502Z20206005)。
文摘The majority of nonlinear stochastic systems can be expressed as the quasi-Hamiltonian systems in science and engineering. Moreover, the corresponding Hamiltonian system offers two concepts of integrability and resonance that can fully describe the global relationship among the degrees-of-freedom(DOFs) of the system. In this work, an effective and promising approximate semi-analytical method is proposed for the steady-state response of multi-dimensional quasi-Hamiltonian systems. To be specific, the trial solution of the reduced Fokker–Plank–Kolmogorov(FPK) equation is obtained by using radial basis function(RBF) neural networks. Then, the residual generated by substituting the trial solution into the reduced FPK equation is considered, and a loss function is constructed by combining random sampling technique. The unknown weight coefficients are optimized by minimizing the loss function through the Lagrange multiplier method. Moreover, an efficient sampling strategy is employed to promote the implementation of algorithms. Finally, two numerical examples are studied in detail, and all the semi-analytical solutions are compared with Monte Carlo simulations(MCS) results. The results indicate that the complex nonlinear dynamic features of the system response can be captured through the proposed scheme accurately.
基金Project(2011CB013605)supported by the National Basic Research Development Program of China(973 Program)Projects(51178071,51008041)supported by the National Natural Science Foundation of ChinaProject(NCET-12-0751)supported by the New Century Excellent Talents Program in University of Ministry of Education of China
文摘In order to study the differences in vertical component between onshore and offshore motions,the vertical-to-horizontal peak ground acceleration ratio(V/H PGA ratio) and vertical-to-horizontal response spectral ratio(V/H) were investigated using the ground motion recordings from the K-NET network and the seafloor earthquake measuring system(SEMS).The results indicate that the vertical component of offshore motions is lower than that of onshore motions.The V/H PGA ratio of acceleration time histories at offshore stations is about 50%of the ratio at onshore stations.The V/H for offshore ground motions is lower than that for onshore motions,especially for periods less than 0.8 s.Furthermore,based on the results in statistical analysis for offshore recordings in the K-NET,the simplified V/H design equations for offshore motions in minor and moderate earthquakes are proposed for seismic analysis of offshore structures.
基金funded by the National Natural Science Foundation of China(91025015,51178209)the Project of Arid Meteorological Science Research Foundation of China Meteorological Administration(IAM201608)
文摘The non-rectangular hyperbola(NRH)equation is the most popular method that plots the photosynthetic light-response(PLR)curve and helps to identify plant photosynthetic capability.However,the PLR curve can't be plotted well by the NRH equation at different plant growth phases due to the variations of plant development.Recently,plant physiological parameters have been considered into the NRH equation to establish the modified NRH equation,but plant height(H),an important parameter in plant growth phases,is not taken into account.In this study,H was incorporated into the NRH equation to establish the modified NRH equation,which could be used to estimate photosynthetic capability of herbage at different growth phases.To explore photosynthetic capability of herbage,we selected the dominant herbage species Potentilla anserina L.and Elymus nutans Griseb.in the Heihe River Basin,Northwest China as the research materials.Totally,twenty-four PLR curves and H at different growth phases were measured during the growing season in 2016.Results showed that the maximum net photosynthetic rate and the initial slope of PLR curve linearly increased with H.The modified NRH equation,which is established by introducing H and an H-based adjustment factor into the NRH equation,described better the PLR curves of P.anserina and E.nutans than the original ones.The results may provide an effective method to estimate the net primary productivity of grasslands in the study area.
基金National Key R&D Program of China under Grant No.2016YFE0205100the National Natural Science Foundation of China under Grant No.51578195+1 种基金the Technology Research and Development Plan Program of China Railway Corporation under Grant No.J2016Z025the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences under Grant No.Z016007
文摘The performance of a soil-pile system can be significantly influenced by ground motion parameters. However, few research efforts have been performed to provide a complete description of the influence of key ground motion parameters on the pile’s behavior in liquefiable soil. In this study, a three-dimensional finite element(FE) model, incorporating a multisurface plasticity solid-fluid fully coupled formulation soil constitutive model, is developed and calibrated based on centrifuge test data. Seventy-two near-fault non-pulse-like(NF-NP) and seventy-two near-fault pulse-like(NF-P) ground motion records are studied with the calibrated FE model to distinguish the effects of several common ground motion parameters soon afterwards. Base on the parametric study results, a simple index, RPGV/PGA(i.e., the ratio of peak ground velocity(PGV) to peak ground acceleration(PGA)), shows its capability on characterizing the pile behavior under both NF-NP and NF-P ground motions. Furthermore, two equations are developed to characterize the relationships between the RPGV/PGA as well as the maximum pile’s moments and displacements. In general, this study can be helpful to gain new insights on the influence of typical index parameters for near-field ground motions on the response of the pile foundation in liquefiable soil.
文摘The Blot's wave equations of transversely isotropic saturated poroelastic media excited hy non-axisymmetrical harmonic source were solved by means of Fourier expansion and Hankel transform. Then the components of total stress in porous media are expressed with the solutions of Biot's wave equations. The method of research on non-axisymmetrical dynamic response of saturated porous media is discussed, and a numerical result is presented.
基金Project supported by the National Natural Science Foundation of China (No.10272024).
文摘Based on the Schapery three-dimensional viscoelastic constitutive relationship with growing damage, a damage model with transverse matrix cracks for the unidirectional ?bre rein- forced viscoelastic composite plates is developed. By using Karman theory, the nonlinear dynamic governing equations of the viscoelastic composite plates under transverse periodic loading are es- tablished. By applying the ?nite di?erence method in spatial domain and the Newton-Newmark method in time domain, and using the iterative procedure, the integral-partial di?erential gov- erning equations are solved. Some examples are given and the results are compared with available data.
基金supported by the National Natural Science Foundation of China(Grant No.51279130)
文摘Many studies have been done on the heave-pitch unstable coupling response for a spar platform by a 2-DOF model.In fact,in addition to the heave and pitch which are in one plane,the nonlinear unstable motion will also occur in roll.From the results of the experiments,the unstable roll motion plays a dominant role in the motion of a spar platform which is much stronger than that of pitch.The objective of this paper is to study 3-DOF coupling response performance of spar platform under wave and vortex-induced force.The nonlinear coupled equations in heave,roll and pitch are established by considering time-varying wet surface and coupling.The first order steady-state response is solved by multi-scales method when the incident wave frequency approaches the heave natural frequency.Numerical integration of the motion equations has been performed to verify the first-order perturbation solution.The results are confirmed by model test.There is a saturation phenomenon associated with heave mode in 3-DOF systems and all extra energy is transferred to roll and pitch.It is observed that sub-harmonic response occurs in roll and pitch when the wave force exceeds a certain value.The energy distribution in roll and pitch is determined by the initial value and damping characteristics of roll and pitch.The energy transfers from heave to pitch and then transfers from pitch to roll.Due to the influence of the low-frequency vortex-excited force,the response of roll is more complicated than that of pitch.
文摘A study on dynamic response of transversely isotropic saturated poroelastic media under a circular non-axisymmetrical harmonic source has been presented by Huang Yi et al. using the technique of Fourier expansion and Hankel transform. However, the method may not always be valid. The work is extended to the general case being in the rectangular coordinate. The purpose is to study the 3-d dynamic response of transversely isotropic saturated soils under a general source distributing in arbitrary rectangular zoon on the medium surface. Based on Biot's theory for fluid- saturated porous media, the 3-d wave motion equations in rectangular coordinate for transversely isotropic saturated poroelastic media were transformed into the two uncoupling governing differential equations of 6-order and 2-order respectively by means of the displacement functions. Then, using the technique of double Fourier transform, the governing differential equations were easily solved. Integral solutions of soil skeleton displacements and pore pressure as well as the total stresses for poroelastic media were obtained. Furthermore, a systematic study on half-space problem in saturated soils was performed. Integral solutions for surface displacements under the general harmonic source distributing on arbitrary surface zone, considering both case of drained surface and undrained surface, were presented.
基金Supposed by the National Science Fund of China(10571143)
文摘This paper considers a model of cell-to-cell spread of HIV-I with CTL immune response. By using a discrete delay to model the intracellular delay, it is shown that the uninfected equilibrium is globally asymptotical stable in some conditions and the sufficient condition to ensure the stability of the infected equilibrium does not change would be enlarged by Sturm sequence. Numerical simulations are presented to illustrate the results.
基金Project supported by the National Natural Science Foundation of China (No. 10572150)the Natural Science Foundation of Naval University of Engineering (No. HGDQNJJ008)
文摘Vibration mode of the constrained damping cantilever is built up according to the mode superposition of the elastic cantilever beam. The control equation of the constrained damping cantilever beam is then derived using Lagrange's equation. Dynamic response of the constrained damping cantilever beam is obtained according to the principle of virtual work, when the concentrated force is suddenly unloaded. Frequencies and transient response of a series of constrained damping cantilever beams are calculated and tested. Influence of parameters of the damping layer on the response time is analyzed. Analyitcal and experimental approaches are used for verification. The results show that the method is reliable.
基金This project is financially supported by the National Natural Science Foundation of China
文摘An approximate method is presented to investigate the earthquake response of the fluid-single leg (shortened for S. L.) gravity platform-soil interaction system. By assuming a suitable form of the velocity potential of the radiation waves and by using the motion equation and the boundary conditions, the unknown coefficients can be obtained. Thereafter the function of frequency for the interaction system may also be obtained. In this paper, the difference of the system dynamic response between rigid foundation is analyzed and the influences of the various foundation geometric dimension and the various water-depth on the hydrodynamic loading and dynamic response of the system is illustrated.
文摘The dynamic responses of any floating platform arc dependent on the mass, stiffness and damping characteristics of the body as well as mooring system. Therefore, it is very essential to study the effect of individual contributions to the system that can finally help to economise their cost. This paper focuses on the effect of mooring stiffness on the responses of a truss spar platform, obtained by different grouping of lines. The study is part of our present researches on mooring systems which include the effect of line pretension, diameter and azimuth angles. The platform is modelled as a rigid body with three degrees-of-freedom and its motions are analyzed in time-domain using the implicit Newmark Beta technique. The mooring lines restoring force-excursion relationship is evaluated using a quasi-static approach. It is observed that the mooring system with lines arranged in less number of groups exhibits better performance in terms of the restoring forces as well as mean position of platform. However, the dynamic motions of platform remain unaffected for different line groups.
基金National Natural Science Foundation of China(No.10272046)
文摘Considering compression of solid grain and pore fluids,viscous-coupling interactions and inertial force of fluids,dynamic governing equations for unsaturated soils are established by adopting an exact constitutive formula of saturation.These equations are highly versatile and completely compatible with Biot's wave equations for the special case of fully saturated soils.The governing equations in Cartesian coordinates are firstly transformed into a group of state differential equations by introducing the state vector.Then the transfer matrix for layered media are derived by means of a double Fourier transform.Using the transfer matrix followed by boundary and continuity conditions between strata,solutions of steady-state dynamic response for multi-layered unsaturated soils are obtained.Numerical examples show that the echoes generated by boundary and stratum interfaces make the displacement amplitude of the ground surface fluctuate with distance;the relative position of soft and hard strata has a significant influence on displacement.
文摘In this paper, using the theory of stochastic analysis of the response to earthquake load, a stochastic analysis method of the response of piled platforms to earthquake load has been established. In the method, the strong ground motion is considered as three dimensional stationary white noise process and the pile-soil interaction and water-structure interaction are considered. The stochastic response of a typical platform to earthquake load has been computed with this method and the results compared with those obtained with the response spectrum analysis method. The comparison shows that the stochastic analysis method of the response of piled platforms to earthquake load is suitable for this kind of analysis.
文摘An optimal design configuration of leading edge extensions (LEXs) is presented based on the standard genetic algorithms (GAs). Aircraft longitudinal dynamic response of the system with and without LEX is analyzed by solving the state equation of aircraft longitudinal motion. Aerodynamic force, moments, and longitudinal stability derivatives are estimated by three-dimensional low-order panel method. A novel aircraft model with LEX is optimized and its lift curve slope is increased by 13%-17% for Ma=0. 4-0. 9 and 12% for Ma=1. 5. Numerical results show that because the frequency and damping ratio in a short period are improved, the aircraft rapidly responds to a specified deflection control input in the battle area when LEX is installed. Finally, compared the results from the panel method with those from the Cy-20 aircraft flight test data,aerodynamic characteristics are verified.
基金National Science Foundation of China under Grant No.51578470。
文摘In this manuscript we present a nonlinear site amplification model for ground-motion prediction equations(GMPEs)in Japan,using a site period-based site class and a site impedance ratio as site parameters.We used a large number of shear-wave velocity profiles from the Kiban-Kyoshin network(KiK-net)and the Kyoshin network(K-NET)to construct the one-dimensional(1D)numerical models.The strong-motion records from rock-sites in Japan with different earthquake categories and taken from the Pacific Earthquake Engineering Research Center dataset were used in this study.We fit a set of 1D site amplification models using the spectral amplification ratios derived from 1D equivalent linear analyses.Parameters of site impedance ratios for both linear and nonlinear site response were included in the 1D model.The 1D model could be implemented into GMPEs using a new proposed adjustment method.The adjusted site amplification ratios retain the nonlinear characteristics of the 1D model for strong motions and match the linear amplification ratio in GMPE for weak motions.The nonlinearity of the present site model is reasonably similar to that of the historical models,and the present site model could satisfactorily capture the nonlinear site response in empirical data.
文摘The solution for the Duffing equation in a nonlinear vibration problem is studied in this paper. Clearly, in the case of the perturb parameter being a larger value, the traditional perturbation method is no longer valid but the Homotopy Perturbation Method(HPM) is applicable usually.HPM is used to solve the weak and strong nonlinear differential equations for finding the perturbed frequency of the response. The obtained frequencies via HPM and the approximate method have good accordance for weak and strong nonlinear differential equations. Additionally, the calculated responses by use of the approximate method are compared with the responses obtained from the Numerical method in the time history of the response and phase plane.The results represent good accordance between them.
基金This project is financially supported by the National Natural Science Foundation of China
文摘In this paper, the responses of the interaction system of R.C. gravity single-leg platform to seismic excitation are mainly analysed. A set of nonlinear equations for the interaction system are established by using the wave, one is the soil-structure interaction and the other is the fluid-structure interaction. The seismic response of the interaction system is analysed for the influence of the asymmetric structure, fluid action, etc. with the input of seismic SH waves in any direction. The numerical results are given for a simple example.
文摘Theoretically speaking, it is impossible to make the differential equation of motion uncoupled for the natural modes of a system in consideration of the attached water. The hydro-elastic structure is equal to the non-proportional damping system. In this paper a perturbation analysis method is put forward. The structure motion equation is strictly solved mathematically, and the non-proportional damping problem is transformed into a series of proportional damping ones in the superposition form. The paper also presents the calculation formula of the dynamic response of the structure being subjected to harmonic and arbitrary load. The convergence of the proposed method is also studied in this paper, and the corresponding convergence conditions are given. Finally, the proposed method is used to analyze the displacement response of a real offshore platform. The calculation results show that this method has the characteristics of high accuracy and fast convergence.
基金National Natural Science Foundation of China (49874010)
文摘It has been analyzed the influence of the tectonic ambient shear stress value on response spectrum based on the previous theory. Based on the prediction equation BJF94 presented by the famous American researchers, CLB20, a new prediction formula is proposed by us, where it is introduced the influence of tectonic ambient shear stress value on response spectrum. BJF94 is the prediction equation, which mainly depends on strong ground motion data from western USA, while the prediction equation SEA99 is based on the strong ground motion data from exten-sional region all over the world. Comparing these two prediction equations in detail, it is found that after BJF94′s prediction value lg(Y) minus 0.16 logarithmic units, the value is very close to SEA99′s one. This case demonstrates that lg(Y) in extensional region is smaller; the differences of prediction equation are mainly owe to the differences of tectonic ambient shear stress value. If the factor of tectonic ambient shear stress value is included into the pre-diction equation, and the magnitude is used seismic moment magnitude to express, which is universal used around the world, and the distance is used the distance of fault project, which commonly used by many people, then re-gional differences of prediction equation will become much less, even vanish, and it can be constructed the uni-versal prediction equation proper to all over the world. The error in the earthquake-resistant design in China will be small if we directly use the results of response spectrum of USA (e.g. BJF94 or SEA99).