针对自动气象站数据采集器温度通道容易受到环境温度影响限制测量精度的问题,对数据采集器进行了温度漂移检测实验并对实验数据进行了误差分析,提出了基于改进自适应遗传算法优化的最小二乘支持向量机(improved adaptive geneticalgorit...针对自动气象站数据采集器温度通道容易受到环境温度影响限制测量精度的问题,对数据采集器进行了温度漂移检测实验并对实验数据进行了误差分析,提出了基于改进自适应遗传算法优化的最小二乘支持向量机(improved adaptive geneticalgorithm least squares support vector machine,IAGA-LSSVM)的温度补偿方法。改进的自适应遗传算法能够对最小二乘支持向量机拟合过程中的关键参数进行调整从而建立最优模型。与传统LS-SVM相比,IAGA-LSSVM对温度数据的建模均方根误差减小了0.007,有效提高了建模的精度。根据建立的最优函数模型对该数据采集器温度通道进行温度补偿结果表明,经该方法补偿后的数据采集器在任何温度环境下的温度测量误差均小于0.03℃,具有更高的测量精度和稳定性,有效提高了自动气象站的温度观测质量。同时,设计开发了温度补偿界面,为自动气象站观测数据校验和实际业务应用奠定了基础。展开更多
文摘针对自动气象站数据采集器温度通道容易受到环境温度影响限制测量精度的问题,对数据采集器进行了温度漂移检测实验并对实验数据进行了误差分析,提出了基于改进自适应遗传算法优化的最小二乘支持向量机(improved adaptive geneticalgorithm least squares support vector machine,IAGA-LSSVM)的温度补偿方法。改进的自适应遗传算法能够对最小二乘支持向量机拟合过程中的关键参数进行调整从而建立最优模型。与传统LS-SVM相比,IAGA-LSSVM对温度数据的建模均方根误差减小了0.007,有效提高了建模的精度。根据建立的最优函数模型对该数据采集器温度通道进行温度补偿结果表明,经该方法补偿后的数据采集器在任何温度环境下的温度测量误差均小于0.03℃,具有更高的测量精度和稳定性,有效提高了自动气象站的温度观测质量。同时,设计开发了温度补偿界面,为自动气象站观测数据校验和实际业务应用奠定了基础。