期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Multidisciplinary Design Optimization of Vehicle Instrument Panel Based on Multi-objective Genetic Algorithm 被引量:14
1
作者 WANG Ping WU Guangqiang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第2期304-312,共9页
Typical multidisciplinary design optimization(MDO) has gradually been proposed to balance performances of lightweight, noise, vibration and harshness(NVH) and safety for instrument panel(IP) structure in the aut... Typical multidisciplinary design optimization(MDO) has gradually been proposed to balance performances of lightweight, noise, vibration and harshness(NVH) and safety for instrument panel(IP) structure in the automotive development. Nevertheless, plastic constitutive relation of Polypropylene(PP) under different strain rates, has not been taken into consideration in current reliability-based and collaborative IP MDO design. In this paper, based on tensile test under different strain rates, the constitutive relation of Polypropylene material is studied. Impact simulation tests for head and knee bolster are carried out to meet the regulation of FMVSS 201 and FMVSS 208, respectively. NVH analysis is performed to obtain mainly the natural frequencies and corresponding mode shapes, while the crashworthiness analysis is employed to examine the crash behavior of IP structure. With the consideration of lightweight, NVH, head and knee bolster impact performance, design of experiment(DOE), response surface model(RSM), and collaborative optimization(CO) are applied to realize the determined and reliability-based optimizations, respectively. Furthermore, based on multi-objective genetic algorithm(MOGA), the optimal Pareto sets are completed to solve the multi-objective optimization(MOO) problem. The proposed research ensures the smoothness of Pareto set, enhances the ability of engineers to make a comprehensive decision about multi-objectives and choose the optimal design, and improves the quality and efficiency of MDO. 展开更多
关键词 instrument panel(IP) NVH SAFETY multidisciplinary design optimization multi-objective optimization
下载PDF
Design methodology of a mini-missile considering flight performance and guidance precision
2
作者 ZHANG Licong GONG Chunlin +1 位作者 SU Hua ANDREA Da Ronch 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期195-210,共16页
The design of mini-missiles(MMs)presents several novel challenges.The stringent mission requirement to reach a target with a certain precision imposes a high guidance precision.The miniaturization of the size of MMs m... The design of mini-missiles(MMs)presents several novel challenges.The stringent mission requirement to reach a target with a certain precision imposes a high guidance precision.The miniaturization of the size of MMs makes the design of the guidance,navigation,and control(GNC)have a larger-thanbefore impact on the main-body design(shape,motor,and layout design)and its design objective,i.e.,flight performance.Pursuing a trade-off between flight performance and guidance precision,all the relevant interactions have to be accounted for in the design of the main body and the GNC system.Herein,a multi-objective and multidisciplinary design optimization(MDO)is proposed.Disciplines pertinent to motor,aerodynamics,layout,trajectory,flight dynamics,control,and guidance are included in the proposed MDO framework.The optimization problem seeks to maximize the range and minimize the guidance error.The problem is solved by using the nondominated sorting genetic algorithm II.An optimum design that balances a longer range with a smaller guidance error is obtained.Finally,lessons learned about the design of the MM and insights into the trade-off between flight performance and guidance precision are given by comparing the optimum design to a design provided by the traditional approach. 展开更多
关键词 mini-missiles(MMs) GUIDANCE NAVIGATION and control(GNC)system multi-objective optimization multidisciplinary design optimization(MDO) flight performance guidance precision
下载PDF
Synergetic Optimization of Missile Shapes for Aerodynamic and Radar Cross-Section Performance Based on Multi-objective Evolutionary Algorithm
3
作者 刘洪 《Journal of Shanghai Jiaotong university(Science)》 EI 2004年第2期36-40,共5页
A multiple-objective evolutionary algorithm (MOEA) with a new Decision Making (DM) scheme for MOD of conceptual missile shapes was presented, which is contrived to determine suitable tradeoffs from Pareto optimal set ... A multiple-objective evolutionary algorithm (MOEA) with a new Decision Making (DM) scheme for MOD of conceptual missile shapes was presented, which is contrived to determine suitable tradeoffs from Pareto optimal set using interactive preference articulation. There are two objective functions, to maximize ratio of lift to drag and to minimize radar cross-section (RCS) value. 3D computational electromagnetic solver was used to evaluate RCS, electromagnetic performance. 3D Navier-Stokes flow solver was adopted to evaluate aerodynamic performance. A flight mechanics solver was used to analyze the stability of the missile. Based on the MOEA, a synergetic optimization of missile shapes for aerodynamic and radar cross-section performance is completed. The results show that the proposed approach can be used in more complex optimization case of flight vehicles. 展开更多
关键词 multi-objective design(MOD) multidisciplinary design optimization (MDO) evolutionary algorithm synergetic optimization decision making scheme interactive preference articulation Pareto optimal set
下载PDF
基于iSIGHT的耐压壳静动力学综合优化设计 被引量:3
4
作者 杨卓懿 庞永杰 +1 位作者 王燕 宋磊 《船海工程》 2009年第3期84-87,共4页
根据圆柱形耐压壳设计中对强度和稳定性,振动和声辐射的要求,建立了数学模型。以重量最轻,临界频率最大综合优化了耐压壳的静动力学性能。同时,运用APDL语言进行了耐压壳参数化有限元建模。分别在iSIGHT设计环境下集成了自编程序和参数... 根据圆柱形耐压壳设计中对强度和稳定性,振动和声辐射的要求,建立了数学模型。以重量最轻,临界频率最大综合优化了耐压壳的静动力学性能。同时,运用APDL语言进行了耐压壳参数化有限元建模。分别在iSIGHT设计环境下集成了自编程序和参数化有限元模型,两种方法给出了吻合的最优结果。 展开更多
关键词 圆柱耐压壳 参数化建模 多目标与多学科综合优化
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部