期刊文献+
共找到740篇文章
< 1 2 37 >
每页显示 20 50 100
An Immune-Inspired Approach with Interval Allocation in Solving Multimodal Multi-Objective Optimization Problems with Local Pareto Sets
1
作者 Weiwei Zhang Jiaqiang Li +2 位作者 Chao Wang Meng Li Zhi Rao 《Computers, Materials & Continua》 SCIE EI 2024年第6期4237-4257,共21页
In practical engineering,multi-objective optimization often encounters situations where multiple Pareto sets(PS)in the decision space correspond to the same Pareto front(PF)in the objective space,known as Multi-Modal ... In practical engineering,multi-objective optimization often encounters situations where multiple Pareto sets(PS)in the decision space correspond to the same Pareto front(PF)in the objective space,known as Multi-Modal Multi-Objective Optimization Problems(MMOP).Locating multiple equivalent global PSs poses a significant challenge in real-world applications,especially considering the existence of local PSs.Effectively identifying and locating both global and local PSs is a major challenge.To tackle this issue,we introduce an immune-inspired reproduction strategy designed to produce more offspring in less crowded,promising regions and regulate the number of offspring in areas that have been thoroughly explored.This approach achieves a balanced trade-off between exploration and exploitation.Furthermore,we present an interval allocation strategy that adaptively assigns fitness levels to each antibody.This strategy ensures a broader survival margin for solutions in their initial stages and progressively amplifies the differences in individual fitness values as the population matures,thus fostering better population convergence.Additionally,we incorporate a multi-population mechanism that precisely manages each subpopulation through the interval allocation strategy,ensuring the preservation of both global and local PSs.Experimental results on 21 test problems,encompassing both global and local PSs,are compared with eight state-of-the-art multimodal multi-objective optimization algorithms.The results demonstrate the effectiveness of our proposed algorithm in simultaneously identifying global Pareto sets and locally high-quality PSs. 展开更多
关键词 Multimodal multi-objective optimization problem local PSs immune-inspired reproduction
下载PDF
Enhancing Evolutionary Algorithms With Pattern Mining for Sparse Large-Scale Multi-Objective Optimization Problems
2
作者 Sheng Qi Rui Wang +3 位作者 Tao Zhang Weixiong Huang Fan Yu Ling Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1786-1801,共16页
Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to tr... Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges. 展开更多
关键词 Evolutionary algorithms pattern mining sparse large-scale multi-objective problems(SLMOPs) sparse large-scale optimization.
下载PDF
An Air Defense Weapon Target Assignment Method Based on Multi-Objective Artificial Bee Colony Algorithm 被引量:1
3
作者 Huaixi Xing Qinghua Xing 《Computers, Materials & Continua》 SCIE EI 2023年第9期2685-2705,共21页
With the advancement of combat equipment technology and combat concepts,new requirements have been put forward for air defense operations during a group target attack.To achieve high-efficiency and lowloss defensive o... With the advancement of combat equipment technology and combat concepts,new requirements have been put forward for air defense operations during a group target attack.To achieve high-efficiency and lowloss defensive operations,a reasonable air defense weapon assignment strategy is a key step.In this paper,a multi-objective and multi-constraints weapon target assignment(WTA)model is established that aims to minimize the defensive resource loss,minimize total weapon consumption,and minimize the target residual effectiveness.An optimization framework of air defense weapon mission scheduling based on the multiobjective artificial bee colony(MOABC)algorithm is proposed.The solution for point-to-point saturated attack targets at different operational scales is achieved by encoding the nectar with real numbers.Simulations are performed for an imagined air defense scenario,where air defense weapons are saturated.The non-dominated solution sets are obtained by the MOABC algorithm to meet the operational demand.In the case where there are more weapons than targets,more diverse assignment schemes can be selected.According to the inverse generation distance(IGD)index,the convergence and diversity for the solutions of the non-dominated sorting genetic algorithm III(NSGA-III)algorithm and the MOABC algorithm are compared and analyzed.The results prove that the MOABC algorithm has better convergence and the solutions are more evenly distributed among the solution space. 展开更多
关键词 Weapon target assignment multi-objective artificial bee colony air defense defensive resource loss total weapon consumption target residual effectiveness
下载PDF
Even Search in a Promising Region for Constrained Multi-Objective Optimization
4
作者 Fei Ming Wenyin Gong Yaochu Jin 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期474-486,共13页
In recent years, a large number of approaches to constrained multi-objective optimization problems(CMOPs) have been proposed, focusing on developing tweaked strategies and techniques for handling constraints. However,... In recent years, a large number of approaches to constrained multi-objective optimization problems(CMOPs) have been proposed, focusing on developing tweaked strategies and techniques for handling constraints. However, an overly finetuned strategy or technique might overfit some problem types,resulting in a lack of versatility. In this article, we propose a generic search strategy that performs an even search in a promising region. The promising region, determined by obtained feasible non-dominated solutions, possesses two general properties.First, the constrained Pareto front(CPF) is included in the promising region. Second, as the number of feasible solutions increases or the convergence performance(i.e., approximation to the CPF) of these solutions improves, the promising region shrinks. Then we develop a new strategy named even search,which utilizes the non-dominated solutions to accelerate convergence and escape from local optima, and the feasible solutions under a constraint relaxation condition to exploit and detect feasible regions. Finally, a diversity measure is adopted to make sure that the individuals in the population evenly cover the valuable areas in the promising region. Experimental results on 45 instances from four benchmark test suites and 14 real-world CMOPs have demonstrated that searching evenly in the promising region can achieve competitive performance and excellent versatility compared to 11 most state-of-the-art methods tailored for CMOPs. 展开更多
关键词 Constrained multi-objective optimization even search evolutionary algorithms promising region real-world problems
下载PDF
Radio resource management in energy harvesting cooperative cognitive UAV assisted IoT networks:A multi-objective approach
5
作者 Muhammad Rashid Ramzan Muhammad Naeem +2 位作者 Omer Chughtai Waleed Ejaz Mohammad Altaf 《Digital Communications and Networks》 SCIE CSCD 2024年第4期1088-1102,共15页
Cooperative communication through energy harvested relays in Cognitive Internet of Things(CIoT)has been envisioned as a promising solution to support massive connectivity of Cognitive Radio(CR)based IoT devices and to... Cooperative communication through energy harvested relays in Cognitive Internet of Things(CIoT)has been envisioned as a promising solution to support massive connectivity of Cognitive Radio(CR)based IoT devices and to achieve maximal energy and spectral efficiency in upcoming wireless systems.In this work,a cooperative CIoT system is contemplated,in which a source acts as a satellite,communicating with multiple CIoT devices over numerous relays.Unmanned Aerial Vehicles(UAVs)are used as relays,which are equipped with onboard Energy Harvesting(EH)facility.We adopted a Power Splitting(PS)method for EH at relays,which are harvested from the Radio frequency(RF)signals.In conjunction with this,the Decode and Forward(DF)relaying strategy is used at UAV relays to transmit the messages from the satellite source to the CIoT devices.We developed a Multi-Objective Optimization(MOO)framework for joint optimization of source power allocation,CIoT device selection,UAV relay assignment,and PS ratio determination.We formulated three objectives:maximizing the sum rate and the number of admitted CIoT in the network and minimizing the carbon dioxide emission.The MOO formulation is a Mixed-Integer Non-Linear Programming(MINLP)problem,which is challenging to solve.To address the joint optimization problem for an epsilon optimal solution,an Outer Approximation Algorithm(OAA)is proposed with reduced complexity.The simulation results show that the proposed OAA is superior in terms of CIoT device selection and network utility maximization when compared to those obtained using the Nonlinear Optimization with Mesh Adaptive Direct-search(NOMAD)algorithm. 展开更多
关键词 Cooperative communication Energy harvesting Power splitting Unmanned aerial vehicles Cognitive radio Internet of things multi-objective optimization Relay assignment Power allocation
下载PDF
Energy-Saving Distributed Flexible Job Shop Scheduling Optimization with Dual Resource Constraints Based on Integrated Q-Learning Multi-Objective Grey Wolf Optimizer
6
作者 Hongliang Zhang Yi Chen +1 位作者 Yuteng Zhang Gongjie Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1459-1483,共25页
The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worke... The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality. 展开更多
关键词 Distributed flexible job shop scheduling problem dual resource constraints energy-saving scheduling multi-objective grey wolf optimizer Q-LEARNING
下载PDF
Solving Multi-Objective Linear Programming Problem by Statistical Averaging Method with the Help of Fuzzy Programming Method
7
作者 Samsun Nahar Marin Akter Md. Abdul Alim 《American Journal of Operations Research》 2023年第2期19-32,共14页
A multi-objective linear programming problem is made from fuzzy linear programming problem. It is due the fact that it is used fuzzy programming method during the solution. The Multi objective linear programming probl... A multi-objective linear programming problem is made from fuzzy linear programming problem. It is due the fact that it is used fuzzy programming method during the solution. The Multi objective linear programming problem can be converted into the single objective function by various methods as Chandra Sen’s method, weighted sum method, ranking function method, statistical averaging method. In this paper, Chandra Sen’s method and statistical averaging method both are used here for making single objective function from multi-objective function. Two multi-objective programming problems are solved to verify the result. One is numerical example and the other is real life example. Then the problems are solved by ordinary simplex method and fuzzy programming method. It can be seen that fuzzy programming method gives better optimal values than the ordinary simplex method. 展开更多
关键词 Fuzzy Programming Method Fuzzy Linear Programming problem multi-objective Linear Programming problem Statistical Averaging Method New Statistical Averaging Method
下载PDF
Multi-Objective Task Assignment for Maximizing Social Welfare in Spatio-Temporal Crowdsourcing 被引量:3
8
作者 Shengnan Wu Yingjie Wang Xiangrong Tong 《China Communications》 SCIE CSCD 2021年第11期11-25,共15页
With the development of the Internet of Things(IoT),spatio-temporal crowdsourcing(mobile crowdsourcing)has become an emerging paradigm for addressing location-based sensing tasks.However,the delay caused by network tr... With the development of the Internet of Things(IoT),spatio-temporal crowdsourcing(mobile crowdsourcing)has become an emerging paradigm for addressing location-based sensing tasks.However,the delay caused by network transmission has led to low data processing efficiency.Fortunately,edge computing can solve this problem,effectively reduce the delay of data transmission,and improve data processing capacity,so that the crowdsourcing platform can make better decisions faster.Therefore,this paper combines spatio-temporal crowdsourcing and edge computing to study the Multi-Objective Optimization Task Assignment(MOO-TA)problem in the edge computing environment.The proposed online incentive mechanism considers the task difficulty attribute to motivate crowd workers to perform sensing tasks in the unpopular area.In this paper,the Weighted and Multi-Objective Particle Swarm Combination(WAMOPSC)algorithm is proposed to maximize both platform’s and crowd workers’utility,so as to maximize social welfare.The algorithm combines the traditional Linear Weighted Summation(LWS)algorithm and Multi-Objective Particle Swarm Optimization(MOPSO)algorithm to find pareto optimal solutions of multi-objective optimization task assignment problem as much as possible for crowdsourcing platform to choose.Through comparison experiments on real data sets,the effectiveness and feasibility of the proposed method are evaluated. 展开更多
关键词 spatio-temporal crowdsourcing edge computing task assignment multi-objective optimization particle swarm optimization Pareto optimal solution
下载PDF
A multi-objective train-scheduling optimization model considering locomotive assignment and segment emission constraints for energy saving 被引量:1
9
作者 Hui Hu Keping Li Xiaoming Xu 《Journal of Modern Transportation》 2013年第1期9-16,共8页
Energy saving and emission reduction for railway systems should not only be studied from a technical perspective but should also be focused on management and economics. On the basis of relevant trainscheduling models ... Energy saving and emission reduction for railway systems should not only be studied from a technical perspective but should also be focused on management and economics. On the basis of relevant trainscheduling models for train operation management, in this paper we introduce an extended multi-objective trainscheduling optimization model considering locomotive assignment and segment emission constraints for energy saving. The objective of setting up this model is to reduce the energy and emission cost as well as total passenger- time. The decision variables include continuous variables such as train arrival and departure time, and binary vari- ables such as locomotive assignment and segment occu- pancy. The constraints are concerned with train movement, trip time, headway, and segment emission, etc. To obtain a non-dominated satisfactory solution on these objectives, a fuzzy multi-objective optimization algorithm is employed to solve the model. Finally, a numerical example is performed and used to compare the proposed model with the existing model. The results show that the proposed model can reduce the energy consumption, meet exhausts emission demands effectively by optimal locomotive assignment, and its solution methodology is effective. 展开更多
关键词 Energy saving Emission reduction Trair KeywordSscheduling multi-objective optimization LOCOMOTIVE assignment
下载PDF
MULTI-OBJECTIVE PROGRAMMING FOR AIRPORT GATE REASSIGNMENT
10
作者 李军会 陈欣 朱金福 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2013年第2期209-215,共7页
To improve the efficiency of gate reassignment and optimize the plan of gate reassignment,the concept of disruption management is introduced,and a multi-objective programming model for airport gate reassignment is pro... To improve the efficiency of gate reassignment and optimize the plan of gate reassignment,the concept of disruption management is introduced,and a multi-objective programming model for airport gate reassignment is proposed.Considering the interests of passengers and the airport,the model minimizes the total flight delay,the total passengers′walking distance and the number of flights reassigned to other gates different from the planned ones.According to the characteristics of the gate reassignment,the model is simplified.As the multi-objective programming model is hard to reach the optimal solutions simultaneously,a threshold of satisfactory solutions of the model is set.Then a simulated annealing algorithm is designed for the model.Case studies show that the model decreases the total flight delay to the satisfactory solutions,and minimizes the total passengers′walking distance.The least change of planned assignment is also reached.The results achieve the goals of disruption management.Therefore,the model is verified to be effective. 展开更多
关键词 gate assignment multi-objective programming simulated annealing algorithm disruption management
下载PDF
Shuffled frog leaping algorithm with non-dominated sorting for dynamic weapon-target assignment 被引量:1
11
作者 ZHAO Yang LIU Jicheng +1 位作者 JIANG Ju ZHEN Ziyang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第4期1007-1019,共13页
The dynamic weapon target assignment(DWTA)problem is of great significance in modern air combat.However,DWTA is a highly complex constrained multi-objective combinatorial optimization problem.An improved elitist non-d... The dynamic weapon target assignment(DWTA)problem is of great significance in modern air combat.However,DWTA is a highly complex constrained multi-objective combinatorial optimization problem.An improved elitist non-dominated sorting genetic algorithm-II(NSGA-II)called the non-dominated shuffled frog leaping algorithm(NSFLA)is proposed to maximize damage to enemy targets and minimize the self-threat in air combat constraints.In NSFLA,the shuffled frog leaping algorithm(SFLA)is introduced to NSGA-II to replace the inside evolutionary scheme of the genetic algorithm(GA),displaying low optimization speed and heterogeneous space search defects.Two improvements have also been raised to promote the internal optimization performance of SFLA.Firstly,the local evolution scheme,a novel crossover mechanism,ensures that each individual participates in updating instead of only the worst ones,which can expand the diversity of the population.Secondly,a discrete adaptive mutation algorithm based on the function change rate is applied to balance the global and local search.Finally,the scheme is verified in various air combat scenarios.The results show that the proposed NSFLA has apparent advantages in solution quality and efficiency,especially in many aircraft and the dynamic air combat environment. 展开更多
关键词 dynamic weapon-target assignment(DWTA)problem shuffled frog leaping algorithm(SFLA) air combat research
下载PDF
A Survey of Evolutionary Algorithms for Multi-Objective Optimization Problems With Irregular Pareto Fronts 被引量:24
12
作者 Yicun Hua Qiqi Liu +1 位作者 Kuangrong Hao Yaochu Jin 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第2期303-318,I0001-I0004,共20页
Evolutionary algorithms have been shown to be very successful in solving multi-objective optimization problems(MOPs).However,their performance often deteriorates when solving MOPs with irregular Pareto fronts.To remed... Evolutionary algorithms have been shown to be very successful in solving multi-objective optimization problems(MOPs).However,their performance often deteriorates when solving MOPs with irregular Pareto fronts.To remedy this issue,a large body of research has been performed in recent years and many new algorithms have been proposed.This paper provides a comprehensive survey of the research on MOPs with irregular Pareto fronts.We start with a brief introduction to the basic concepts,followed by a summary of the benchmark test problems with irregular problems,an analysis of the causes of the irregularity,and real-world optimization problems with irregular Pareto fronts.Then,a taxonomy of the existing methodologies for handling irregular problems is given and representative algorithms are reviewed with a discussion of their strengths and weaknesses.Finally,open challenges are pointed out and a few promising future directions are suggested. 展开更多
关键词 Evolutionary algorithm machine learning multi-objective optimization problems(MOPs) irregular Pareto fronts
下载PDF
Colony location algorithm for assignment problems 被引量:3
13
作者 DingweiWANG 《控制理论与应用(英文版)》 EI 2004年第2期111-116,共6页
A novel algorithm called Colony Location Algorithm (CLA) is proposed. It mimics the phenomena in biotic community that colonies of species could be located in the places most suitable to their growth. The factors work... A novel algorithm called Colony Location Algorithm (CLA) is proposed. It mimics the phenomena in biotic community that colonies of species could be located in the places most suitable to their growth. The factors working on the species location such as the nutrient of soil, resource competition between species, growth and decline process, and effect on environment were considered in CLA via the nutrient function, growth and decline rates, environment evaluation and fertilization strategy. CLA was applied to solve the classical assignment problems. The computation results show that CLA can achieve the optimal solution with higher possibility and shorter running time. 展开更多
关键词 Evolutionary computation Artificial life Bionic computation OPTIMIZATION assignment problem
下载PDF
Solving material distribution routing problem in mixed manufacturing systems with a hybrid multi-objective evolutionary algorithm 被引量:7
14
作者 高贵兵 张国军 +2 位作者 黄刚 朱海平 顾佩华 《Journal of Central South University》 SCIE EI CAS 2012年第2期433-442,共10页
The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency... The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency. A multi-objective model was presented for the material distribution routing problem in mixed manufacturing systems, and it was solved by a hybrid multi-objective evolutionary algorithm (HMOEA). The characteristics of the HMOEA are as follows: 1) A route pool is employed to preserve the best routes for the population initiation; 2) A specialized best?worst route crossover (BWRC) mode is designed to perform the crossover operators for selecting the best route from Chromosomes 1 to exchange with the worst one in Chromosomes 2, so that the better genes are inherited to the offspring; 3) A route swap mode is used to perform the mutation for improving the convergence speed and preserving the better gene; 4) Local heuristics search methods are applied in this algorithm. Computational study of a practical case shows that the proposed algorithm can decrease the total travel distance by 51.66%, enhance the average vehicle load rate by 37.85%, cut down 15 routes and reduce a deliver vehicle. The convergence speed of HMOEA is faster than that of famous NSGA-II. 展开更多
关键词 material distribution routing problem multi-objective optimization evolutionary algorithm local search
下载PDF
CHARACTERIZATION OF EFFICIENT SOLUTIONS FOR MULTI-OBJECTIVE OPTIMIZATION PROBLEMS INVOLVING SEMI-STRONG AND GENERALIZED SEMI-STRONG E-CONVEXITY 被引量:5
15
作者 E.A.Youness Tarek Emam 《Acta Mathematica Scientia》 SCIE CSCD 2008年第1期7-16,共10页
The authors of this article are interested in characterization of efficient solutions for special classes of problems. These classes consider semi-strong E-convexity of involved functions. Sufficient and necessary con... The authors of this article are interested in characterization of efficient solutions for special classes of problems. These classes consider semi-strong E-convexity of involved functions. Sufficient and necessary conditions for a feasible solution to be an efficient or properly efficient solution are obtained. 展开更多
关键词 multi-objective optimization problems semi-strong E-convex efficient solutions properly efficient solutions
下载PDF
Improved MOEA/D for Dynamic Weapon-Target Assignment Problem 被引量:6
16
作者 Ying Zhang Rennong Yang +1 位作者 Jialiang Zuo Xiaoning Jing 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第6期121-128,共8页
Conducting reasonable weapon-target assignment( WTA) with near real time can bring the maximum awards with minimum costs which are especially significant in the modern war. A framework of dynamic WTA( DWTA) model base... Conducting reasonable weapon-target assignment( WTA) with near real time can bring the maximum awards with minimum costs which are especially significant in the modern war. A framework of dynamic WTA( DWTA) model based on a series of staged static WTA( SWTA) models is established where dynamic factors including time window of target and time window of weapon are considered in the staged SWTA model. Then,a hybrid algorithm for the staged SWTA named Decomposition-Based Dynamic Weapon-target Assignment( DDWTA) is proposed which is based on the framework of multi-objective evolutionary algorithm based on decomposition( MOEA / D) with two major improvements: one is the coding based on constraint of resource to generate the feasible solutions, and the other is the tabu search strategy to speed up the convergence.Comparative experiments prove that the proposed algorithm is capable of obtaining a well-converged and well diversified set of solutions on a problem instance and meets the time demand in the battlefield environment. 展开更多
关键词 multi-objective optimization(MOP) dynamic weapon-target assignment(DWTA) multi-objective evolutionary algorithm based on decomposition(MOEA/D) tabu search
下载PDF
Improved Hungarian algorithm for assignment problems of serial-parallel systems 被引量:4
17
作者 Tingpeng Li Yue Li Yanling Qian 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第4期858-870,共13页
In order to overcome the shortcoming of the classical Hungarian algorithm that it can only solve the problems where the total cost is the sum of that of each job, an improved Hungarian algorithm is proposed and used t... In order to overcome the shortcoming of the classical Hungarian algorithm that it can only solve the problems where the total cost is the sum of that of each job, an improved Hungarian algorithm is proposed and used to solve the assignment problem of serial-parallel systems. First of all, by replacing parallel jobs with virtual jobs, the proposed algorithm converts the serial-parallel system into a pure serial system, where the classical Hungarian algorithm can be used to generate a temporal assignment plan via optimization. Afterwards, the assignment plan is validated by checking whether the virtual jobs can be realized by real jobs through local searching. If the assignment plan is not valid, the converted system will be adapted by adjusting the parameters of virtual jobs, and then be optimized again. Through iterative searching, the valid optimal assignment plan can eventually be obtained.To evaluate the proposed algorithm, the valid optimal assignment plan is applied to labor allocation of a manufacturing system which is a typical serial-parallel system. 展开更多
关键词 Hungarian algorithm assignment problem virtual job serial-parallel system optimization
下载PDF
Competition assignment problem algorithm based on Hungarian method 被引量:1
18
作者 KONG Chao REN Yongtai +1 位作者 GE Huiling DENG Hualing 《Journal of Northeast Agricultural University(English Edition)》 CAS 2007年第1期67-71,共5页
Traditional Hungarian method can only solve standard assignment problems, while can not solve competition assignment problems. This article emphatically discussed the difference between standard assignment problems an... Traditional Hungarian method can only solve standard assignment problems, while can not solve competition assignment problems. This article emphatically discussed the difference between standard assignment problems and competition assignment problems. The kinds of competition assignment problem algorithms based on Hungarian method and the solutions of them were studied. 展开更多
关键词 optimal assignment problem competition assignment problem Hungarian method
下载PDF
Airport gate assignment problem with deep reinforcement learning 被引量:3
19
作者 Zhao Jiaming Wu Wenjun +3 位作者 Liu Zhiming Han Changhao Zhang Xuanyi Zhang Yanhua 《High Technology Letters》 EI CAS 2020年第1期102-107,共6页
With the rapid development of air transportation in recent years,airport operations have attracted a lot of attention.Among them,airport gate assignment problem(AGAP)has become a research hotspot.However,the real-time... With the rapid development of air transportation in recent years,airport operations have attracted a lot of attention.Among them,airport gate assignment problem(AGAP)has become a research hotspot.However,the real-time AGAP algorithm is still an open issue.In this study,a deep reinforcement learning based AGAP(DRL-AGAP)is proposed.The optimization object is to maximize the rate of flights assigned to fixed gates.The real-time AGAP is modeled as a Markov decision process(MDP).The state space,action space,value and rewards have been defined.The DRL-AGAP algorithm is evaluated via simulation and it is compared with the flight pre-assignment results of the optimization software Gurobiand Greedy.Simulation results show that the performance of the proposed DRL-AGAP algorithm is close to that of pre-assignment obtained by the Gurobi optimization solver.Meanwhile,the real-time assignment ability is ensured by the proposed DRL-AGAP algorithm due to the dynamic modeling and lower complexity. 展开更多
关键词 AIRPORT gate assignment problem(AGAP) DEEP reinforcement learning(DRL) MARKOV decision process(MDP)
下载PDF
Time variant multi-objective linear fractional interval-valued transportation problem 被引量:1
20
作者 Dharmadas Mardanya Sankar Kumar Roy 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2022年第1期111-130,共20页
This paper studies a time-variant multi-objective linear fractional transportation problem. In reality, transported goods should reach in destinations within a specific time. Considering the importance of time, a time... This paper studies a time-variant multi-objective linear fractional transportation problem. In reality, transported goods should reach in destinations within a specific time. Considering the importance of time, a time-variant multi-objective linear fractional transportation problem is formulated here. We take into account the parameters as cost, supply and demand are interval valued that involved in the proposed model, so we treat the model as a multi-objective linear fractional interval transportation problem. To solve the formulated model, we first convert it into a deterministic form using a new transformation technique and then apply fuzzy programming to solve it. The applicability of our proposed method is shown by considering two numerical examples. At last, conclusions and future research directions regarding our study is included. 展开更多
关键词 fractional transportation problem multi-objective optimization interval number time variant parameter fuzzy programming Pareto optimal solution
下载PDF
上一页 1 2 37 下一页 到第
使用帮助 返回顶部