期刊文献+
共找到68篇文章
< 1 2 4 >
每页显示 20 50 100
Multi-objective Optimization of a Parallel Ankle Rehabilitation Robot Using Modified Differential Evolution Algorithm 被引量:13
1
作者 WANG Congzhe FANG Yuefa GUO Sheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第4期702-715,共14页
Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitati... Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitation, a methodology of dimensional synthesis based on multi-objective optimization is presented. First, the dimensional synthesis of the redundant parallel robot is formulated as a nonlinear constrained multi-objective optimization problem. Then four objective functions, separately reflecting occupied space, input/output transmission and torque performances, and multi-criteria constraints, such as dimension, interference and kinematics, are defined. In consideration of the passive exercise of plantar/dorsiflexion requiring large output moment, a torque index is proposed. To cope with the actuation redundancy of the parallel robot, a new output transmission index is defined as well. The multi-objective optimization problem is solved by using a modified Differential Evolution(DE) algorithm, which is characterized by new selection and mutation strategies. Meanwhile, a special penalty method is presented to tackle the multi-criteria constraints. Finally, numerical experiments for different optimization algorithms are implemented. The computation results show that the proposed indices of output transmission and torque, and constraint handling are effective for the redundant parallel robot; the modified DE algorithm is superior to the other tested algorithms, in terms of the ability of global search and the number of non-dominated solutions. The proposed methodology of multi-objective optimization can be also applied to the dimensional synthesis of other redundantly actuated parallel robots only with rotational movements. 展开更多
关键词 ankle rehabilitation parallel robot multi-objective optimization differential evolution algorithm
下载PDF
Strengthened Dominance Relation NSGA-Ⅲ Algorithm Based on Differential Evolution to Solve Job Shop Scheduling Problem
2
作者 Liang Zeng Junyang Shi +2 位作者 Yanyan Li Shanshan Wang Weigang Li 《Computers, Materials & Continua》 SCIE EI 2024年第1期375-392,共18页
The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various ... The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem. 展开更多
关键词 multi-objective job shop scheduling non-dominated sorting genetic algorithm differential evolution simulated binary crossover
下载PDF
Multi-objective optimization design of anti-roll torsion bar using improved beluga whale optimization algorithm
3
作者 Yonghua Li Zhe Chen +1 位作者 Maorui Hou Tao Guo 《Railway Sciences》 2024年第1期32-46,共15页
Purpose – This study aims to reduce the redundant weight of the anti-roll torsion bar brought by thetraditional empirical design and improving its strength and stiffness.Design/methodology/approach – Based on the fi... Purpose – This study aims to reduce the redundant weight of the anti-roll torsion bar brought by thetraditional empirical design and improving its strength and stiffness.Design/methodology/approach – Based on the finite element approach coupled with the improved belugawhale optimization (IBWO) algorithm, a collaborative optimization method is suggested to optimize the designof the anti-roll torsion bar structure and weight. The dimensions and material properties of the torsion bar weredefined as random variables, and the torsion bar’s mass and strength were investigated using finite elements.Then, chaotic mapping and differential evolution (DE) operators are introduced to improve the beluga whaleoptimization (BWO) algorithm and run case studies.Findings – The findings demonstrate that the IBWO has superior solution set distribution uniformity,convergence speed, solution correctness and stability than the BWO. The IBWO algorithm is used to optimizethe anti-roll torsion bar design. The error between the optimization and finite element simulation results wasless than 1%. The weight of the optimized anti-roll torsion bar was lessened by 4%, the maximum stress wasreduced by 35% and the stiffness was increased by 1.9%.Originality/value – The study provides a methodological reference for the simulation optimization process ofthe lateral anti-roll torsion bar. 展开更多
关键词 Anti-roll torsion bar multi-objective optimization IBWO chaotic mapping differential evolution
下载PDF
Dynamic multi-objective differential evolution algorithm based on the information of evolution progress 被引量:4
4
作者 HOU Ying WU YiLin +2 位作者 LIU Zheng HAN HongGui WANG Pu 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第8期1676-1689,共14页
The multi-objective differential evolution(MODE)algorithm is an effective method to solve multi-objective optimization problems.However,in the absence of any information of evolution progress,the optimization strategy... The multi-objective differential evolution(MODE)algorithm is an effective method to solve multi-objective optimization problems.However,in the absence of any information of evolution progress,the optimization strategy of the MODE algorithm still appears as an open problem.In this paper,a dynamic multi-objective differential evolution algorithm,based on the information of evolution progress(DMODE-IEP),is developed to improve the optimization performance.The main contributions of DMODE-IEP are as follows.First,the information of evolution progress,using the fitness values,is proposed to describe the evolution progress of MODE.Second,the dynamic adjustment mechanisms of evolution parameter values,mutation strategies and selection parameter value based on the information of evolution progress,are designed to balance the global exploration ability and the local exploitation ability.Third,the convergence of DMODE-IEP is proved using the probability theory.Finally,the testing results on the standard multi-objective optimization problem and the wastewater treatment process verify that the optimization effect of DMODE-IEP algorithm is superior to the other compared state-of-the-art multi-objective optimization algorithms,including the quality of the solutions,and the optimization speed of the algorithm. 展开更多
关键词 information of evolution progress multi-objective differential evolution algorithm optimization effect optimization speed CONVERGENCE
原文传递
Evolutionary Trajectory Planning for an Industrial Robot 被引量:6
5
作者 R.Saravanan S.Ramabalan +1 位作者 C.Balamurugan A.Subash 《International Journal of Automation and computing》 EI 2010年第2期190-198,共9页
This paper presents a novel general method for computing optimal motions of an industrial robot manipulator (AdeptOne XL robot) in the presence of fixed and oscillating obstacles. The optimization model considers th... This paper presents a novel general method for computing optimal motions of an industrial robot manipulator (AdeptOne XL robot) in the presence of fixed and oscillating obstacles. The optimization model considers the nonlinear manipulator dynamics, actuator constraints, joint limits, and obstacle avoidance. The problem has 6 objective functions, 88 variables, and 21 constraints. Two evolutionary algorithms, namely, elitist non-dominated sorting genetic algorithm (NSGA-II) and multi-objective differential evolution (MODE), have been used for the optimization. Two methods (normalized weighting objective functions and average fitness factor) are used to select the best solution tradeoffs. Two multi-objective performance measures, namely solution spread measure and ratio of non-dominated individuals, are used to evaluate the Pareto optimal fronts. Two multi-objective performance measures, namely, optimizer overhead and algorithm effort, are used to find the computational effort of the optimization algorithm. The trajectories are defined by B-spline functions. The results obtained from NSGA-II and MODE are compared and analyzed. 展开更多
关键词 multi-objective optimal trajectory planning oscillating obstacles elitist non-dominated sorting genetic algorithm (NSGA-II) multi-objective differential evolution (MODE) multi-objective performance metrics.
下载PDF
Multi-objective optimization for draft scheduling of hot strip mill 被引量:2
6
作者 李维刚 刘相华 郭朝晖 《Journal of Central South University》 SCIE EI CAS 2012年第11期3069-3078,共10页
A multi-objective optimization model for draft scheduling of hot strip mill was presented, rolling power minimizing, rolling force ratio distribution and good strip shape as the objective functions. A multi-objective ... A multi-objective optimization model for draft scheduling of hot strip mill was presented, rolling power minimizing, rolling force ratio distribution and good strip shape as the objective functions. A multi-objective differential evolution algorithm based on decomposition (MODE/D). The two-objective and three-objective optimization experiments were performed respectively to demonstrate the optimal solutions of trade-off. The simulation results show that MODE/D can obtain a good Pareto-optimal front, which suggests a series of alternative solutions to draft scheduling. The extreme Pareto solutions are found feasible and the centres of the Pareto fronts give a good compromise. The conflict exists between each two ones of three objectives. The final optimal solution is selected from the Pareto-optimal front by the importance of objectives, and it can achieve a better performance in all objective dimensions than the empirical solutions. Finally, the practical application cases confirm the feasibility of the multi-objective approach, and the optimal solutions can gain a better rolling stability than the empirical solutions, and strip flatness decreases from (0± 63) IU to (0±45) IU in industrial production. 展开更多
关键词 hot strip mill draft scheduling multi-objective optimization multi-objective differential evolution algorithm based ondecomposition (MODE/D) Pareto-optimal front
下载PDF
Multi-objective differential evolution with diversity enhancement 被引量:2
7
作者 Ponnuthurai-Nagaratnam SUGANTHAN 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2010年第7期538-543,共6页
Multi-objective differential evolution (MODE) is a powerful and efficient population-based stochastic search technique for solving multi-objective optimization problems in many scientific and engineering fields. Howev... Multi-objective differential evolution (MODE) is a powerful and efficient population-based stochastic search technique for solving multi-objective optimization problems in many scientific and engineering fields. However, premature convergence is the major drawback of MODE, especially when there are numerous local Pareto optimal solutions. To overcome this problem, we propose a MODE with a diversity enhancement (MODE-DE) mechanism to prevent the algorithm becoming trapped in a locally optimal Pareto front. The proposed algorithm combines the current population with a number of randomly generated parameter vectors to increase the diversity of the differential vectors and thereby the diversity of the newly generated offspring. The performance of the MODE-DE algorithm was evaluated on a set of 19 benchmark problem codes available from http://www3.ntu.edu.sg/home/epnsugan/. With the proposed method, the performances were either better than or equal to those of the MODE without the diversity enhancement. 展开更多
关键词 multi-objective evolutionary algorithm (MOEA) multi-objective differential evolution (MODE) Diversity enhancement
原文传递
Performance Evaluation and Comparison of Multi - Objective Optimization Algorithms for the Analytical Design of Switched Reluctance Machines
8
作者 Shen Zhang Sufei Li +1 位作者 Ronald G.Harley Thomas G.Habetler 《CES Transactions on Electrical Machines and Systems》 2017年第1期58-65,共8页
This paper systematically evaluates and compares three well-engineered and popular multi-objective optimization algorithms for the design of switched reluctance machines.The multi-physics and multi-objective nature of... This paper systematically evaluates and compares three well-engineered and popular multi-objective optimization algorithms for the design of switched reluctance machines.The multi-physics and multi-objective nature of electric machine design problems are discussed,followed by benchmark studies comparing generic algorithms(GA),differential evolution(DE)algorithms and particle swarm optimizations(PSO)on a 6/4 switched reluctance machine design with seven independent variables and a strong nonlinear multi-objective Pareto front.To better quantify the quality of the Pareto fronts,five primary quality indicators are employed to serve as the algorithm testing metrics.The results show that the three algorithms have similar performances when the optimization employs only a small number of candidate designs or ultimately,a significant amount of candidate designs.However,DE tends to perform better in terms of convergence speed and the quality of Pareto front when a relatively modest amount of candidates are considered. 展开更多
关键词 Design methodology differential evolution(DE) generic algorithm(GA) multi-objective optimization algorithms particle swarm optimization(PSO) switched reluctance machines
下载PDF
基于自适应混沌精英变异差分进化算法的中长期水资源优化调度
9
作者 何耀耀 胡千帝 张召 《长江科学院院报》 CSCD 北大核心 2024年第10期14-22,共9页
中长期水资源优化调度问题是一类具有非线性、多阶段、高维度和多重约束特性的复杂优化问题。针对经典智能算法在求解此类问题时容易陷入局部最优或者收敛效率较低等问题,应用混沌搜索策略增强算法的探索能力,同时改进传统算法的变异方... 中长期水资源优化调度问题是一类具有非线性、多阶段、高维度和多重约束特性的复杂优化问题。针对经典智能算法在求解此类问题时容易陷入局部最优或者收敛效率较低等问题,应用混沌搜索策略增强算法的探索能力,同时改进传统算法的变异方式,向精英个体学习以提升收敛速度,提出自适应混沌精英变异差分进化(ACEDE)算法。将所提出的算法应用于珠江三角洲水资源配置工程中长期调度进行实例研究,并与经典智能算法进行对比分析。结果表明:①ACEDE算法在全局探索能力、收敛精度与速度上实现了全面提升,并且表现出良好的适应性。相较于传统差分进化(DE)算法,2030年水平年6月份和2040年水平年6月份调度中ACEDE算法所计算的电费成本分别节省了74.23万元和23.55万元,降低了6.68%和1.52%。②在珠江三角洲水资源配置工程中长期调度中,充分利用调蓄水库库容满足高分水量需求,同时放缓月末补水充库过程,能够有效控制泵站的平稳运行,达到降低电费成本的目的。 展开更多
关键词 水资源优化调度 差分进化算法 混沌映射 精英变异 珠江三角洲水资源配置工程
下载PDF
基于改进差分进化算法的跨平台武器目标分配方法 被引量:1
10
作者 隆雨佟 陈爱国 +1 位作者 史红权 曾黎 《系统工程与电子技术》 EI CSCD 北大核心 2024年第3期953-962,共10页
现代战争中,跨平台武器单元的协同利用,是合同编队体系的重要内容,作战方式也正由平台级协同向着能力要素级协同转变,这对武器目标分配问题的解决提出了更大挑战。本文将武器单元的最小划分单位细化到能力要素级,以毁伤概率与成本消耗... 现代战争中,跨平台武器单元的协同利用,是合同编队体系的重要内容,作战方式也正由平台级协同向着能力要素级协同转变,这对武器目标分配问题的解决提出了更大挑战。本文将武器单元的最小划分单位细化到能力要素级,以毁伤概率与成本消耗为优化目标,面向多种来袭目标的编队防空场景,提出了跨平台武器目标分配算法。同时,基于混沌映射提出了混沌种群重构(chaotic population reconstruction,CPR)机制,并结合带存档的自适应差分进化(adaptive differential evolution with optional external archive,JADE)算法提出了CPR-JADE算法,利用CPR机制可以帮助算法在解决高维复杂约束问题时跳出局部最优。再将其运用到武器目标分配模型上,实现了对模型的高效求解。最后,通过在多种数据规模下与其他进化优化算法的仿真对比试验分析,验证了所提方法的正确性与有效性。 展开更多
关键词 跨平台武器目标分配 编队防空 混沌映射 差分进化 混沌种群重构-带存档的自适应差分进化算法
下载PDF
基于改进差分算法的数据链时隙分配方法
11
作者 朱宇挺 苏焕坤 +2 位作者 冯小东 雷诗洁 傅妍芳 《系统仿真学报》 CAS CSCD 北大核心 2024年第5期1242-1250,共9页
针对当前时隙分配策略具有算法单一、容易陷入局部最优、泛化能力弱等问题,基于差分进化算法,引入了混沌算法、自适应变异交叉算法和问题解处理机制,提出了一种基于改进差分进化算法的时隙分配策略。利用混沌算法初始化种群,增加种群多... 针对当前时隙分配策略具有算法单一、容易陷入局部最优、泛化能力弱等问题,基于差分进化算法,引入了混沌算法、自适应变异交叉算法和问题解处理机制,提出了一种基于改进差分进化算法的时隙分配策略。利用混沌算法初始化种群,增加种群多样性避免算法过早收敛;利用选择概率参数使得交叉和变异过程更加灵活,使算法初期增加搜索范围,算法后期增加获取全局最优解的概率。实验结果表明:该算法时隙分配均衡度、稳定性、算法效率和泛化能力均优于差分算法和遗传算法,时隙分配均衡度和算法效率更高、稳定性更好、泛化能力更强。 展开更多
关键词 战术数据链 时隙分配 差分进化算法 混沌映射 时隙方差
下载PDF
基于非线性自适应比例因子的雪豹优化算法
12
作者 崔铭悦 莫愿斌 +1 位作者 王子豪 胡飓风 《计算机技术与发展》 2024年第4期212-220,共9页
针对雪豹优化算法在求解复杂优化问题时,存在全局勘探能力不足、寻优精度低等问题,提出一种改进的雪豹优化算法。首先,基于分段Logistic混沌映射初始化从而提高初始种群多样性;其次,引入非线性比例因子用于平衡算法的全局勘探能力和局... 针对雪豹优化算法在求解复杂优化问题时,存在全局勘探能力不足、寻优精度低等问题,提出一种改进的雪豹优化算法。首先,基于分段Logistic混沌映射初始化从而提高初始种群多样性;其次,引入非线性比例因子用于平衡算法的全局勘探能力和局部开发能力;然后,提出了一种差分变异策略,在第一次种群更新位置后,使用5个随机个体提高全局搜索能力和算法收敛能力,在第二次种群更新位置后,使用3个随机个体保证在求解过程的中后期也具有一定的全局勘探能力,尽可能避免陷入局部最优。通过在IEEE CEC2022基准函数测试集上测试,并与其他算法进行比较,结果表明所提出的算法在种群质量、求解精度以及算法稳定性上均有较大提升。最后将所提出的算法应用于工程优化,计算结果进一步证实了算法的强优化能力。 展开更多
关键词 雪豹优化算法 混沌映射 非线性自适应比例因子 差分进化算子 约束优化问题
下载PDF
基于CDE的空间直线度误差评定
13
作者 薛耀阳 徐旭松 +2 位作者 王树刚 刘文君 耿浩然 《工具技术》 北大核心 2024年第12期128-136,共9页
针对空间直线度误差评定中求解精度不高等问题,提出基于改进差分进化算法的空间直线度误差评定方法。使用产品技术几何规范(GPS)公差标准,通过最小二乘法计算得到符合最小区域法的空间直线度数学模型;将差分进化算法(DE)加入Cubic混沌... 针对空间直线度误差评定中求解精度不高等问题,提出基于改进差分进化算法的空间直线度误差评定方法。使用产品技术几何规范(GPS)公差标准,通过最小二乘法计算得到符合最小区域法的空间直线度数学模型;将差分进化算法(DE)加入Cubic混沌映射使种群初始化,并对算法中变异因子和交叉概率进行改进,经测试函数仿真对比证实,该算法在收敛速度、精度上均有一定提高。对两个评定实例进行误差评定,研究结果表明:相比于HTMLBO,PSO,DE,ABC算法,CDE算法在计算精度、速度、稳定性上更具有优势,在同一零件的内径上提取截面圆圆心坐标时,规定最佳提取点数可以有效降低算法误差。 展开更多
关键词 计量学 误差评定 空间直线度 Cubic混沌映射 差分进化算法
下载PDF
基于混沌搜索的自适应差分进化算法 被引量:23
14
作者 卢有麟 周建中 +1 位作者 李英海 覃晖 《计算机工程与应用》 CSCD 北大核心 2008年第10期31-33,39,共4页
提出一种基于混沌搜索的自适应差分进化算法(CADE),该算法在计算过程中自适应地调整交叉率,在搜索初期保持种群多样性的同时增强算法的全局收敛性。具有较强局部遍历搜索性能的混沌搜索的引入使得算法具有较好的求解精度,增加搜索到全... 提出一种基于混沌搜索的自适应差分进化算法(CADE),该算法在计算过程中自适应地调整交叉率,在搜索初期保持种群多样性的同时增强算法的全局收敛性。具有较强局部遍历搜索性能的混沌搜索的引入使得算法具有较好的求解精度,增加搜索到全局最优解的概率。对几种典型的测试函数对CADE进行了测试,实验结果表明,该算法能有效地避免早熟收敛,具有良好的全局收敛性。 展开更多
关键词 差分进化算法 自适应 混沌搜索 全局优化
下载PDF
混沌差分文化算法及其仿真应用研究 被引量:12
15
作者 卢有麟 周建中 +2 位作者 李英海 覃晖 张勇传 《系统仿真学报》 CAS CSCD 北大核心 2009年第16期5107-5111,共5页
针对差分进化算法(DE)全局寻优能力差,无法有效的求解工程中复杂的高维非线性优化问题等缺点,提出一种混沌差分文化算法(CDECA)。该算法模型将DE嵌入文化算法的框架作为主群体空间的进化过程,同时,引入具有较强局部搜索性能的混沌搜索... 针对差分进化算法(DE)全局寻优能力差,无法有效的求解工程中复杂的高维非线性优化问题等缺点,提出一种混沌差分文化算法(CDECA)。该算法模型将DE嵌入文化算法的框架作为主群体空间的进化过程,同时,引入具有较强局部搜索性能的混沌搜索来进行信念空间的进化,并通过设计一组联系操作实现文化算法模型中两个空间的互相影响互相促进,提高算法的寻优效率。几个典型测试函数的测试结果表明CDECA的搜索能力优于DE,将其应用于某大型水库的优化调度,也取得满意的效果。 展开更多
关键词 差分进化算法 文化算法 混沌搜索 水库优化调度
下载PDF
一种改进的灰狼优化算法 被引量:63
16
作者 龙文 蔡绍洪 +1 位作者 焦建军 伍铁斌 《电子学报》 EI CAS CSCD 北大核心 2019年第1期169-175,共7页
灰狼优化算法是最近提出的一种较有竞争力的优化技术.然而,它的位置更新方程存在开发能力强而探索能力弱的缺点.受差分进化和粒子群优化算法的启发,构建一个修改的个体位置更新方程以增强算法的探索能力;受粒子群优化算法的启发,提出一... 灰狼优化算法是最近提出的一种较有竞争力的优化技术.然而,它的位置更新方程存在开发能力强而探索能力弱的缺点.受差分进化和粒子群优化算法的启发,构建一个修改的个体位置更新方程以增强算法的探索能力;受粒子群优化算法的启发,提出一种控制参数a随机动态调整策略.此外,为了提高算法的全局收敛速度,用混沌初始化方法产生初始种群.采用18个高维测试函数进行仿真实验,结果表明:对于绝大多数情形,在相同最大适应度函数评价次数下,本文算法的性能明显优于标准灰狼优化算法. 展开更多
关键词 灰狼优化算法 差分进化 粒子群优化 控制参数 混沌初始化
下载PDF
三峡梯级枢纽多目标生态优化调度模型及其求解方法 被引量:35
17
作者 卢有麟 周建中 +1 位作者 王浩 张勇传 《水科学进展》 EI CAS CSCD 北大核心 2011年第6期780-788,共9页
针对三峡梯级枢纽综合效益的充分发挥及其对长江流域典型生态系统修复及持续改善的科学需求,通过分析发电效益与生态效益之间的制约竞争关系,以发电量最大和生态缺水量最小为目标建立了梯级电站多目标生态优化调度模型,对三峡梯级枢纽... 针对三峡梯级枢纽综合效益的充分发挥及其对长江流域典型生态系统修复及持续改善的科学需求,通过分析发电效益与生态效益之间的制约竞争关系,以发电量最大和生态缺水量最小为目标建立了梯级电站多目标生态优化调度模型,对三峡梯级枢纽多目标生态优化调度进行了研究。同时,针对传统优化方法难以同时处理多个调度目标的固有缺陷,提出一种改进多目标差分进化算法对所构建模型进行高效求解。该方法针对差分进化算法在多目标协同优化和全局寻优能力等方面的不足,依据问题的特点重新设计了差分进化算法的进化算子,同时设计了一种多目标混沌搜索策略以加强算法的局部搜索能力。最后,依据多目标生态优化调度问题的特点设计了一种不需要设置惩罚因子的约束处理方法。通过三峡梯级枢纽多目标生态优化调度的实例应用,验证了本文所构建模型的合理性以及所提出算法的有效性和工程实用性。 展开更多
关键词 生态调度 多目标 差分进化算法 混沌序列 约束处理 三峡梯级
下载PDF
基于粗糙集理论与CLSDE算法的环境经济调度优化模型 被引量:13
18
作者 谭忠富 鞠立伟 +3 位作者 陈致宏 李欢欢 许长青 赵宝柱 《电网技术》 EI CSCD 北大核心 2014年第5期1339-1345,共7页
针对环境经济发电调度优化问题,提出了一种应用粗糙集理论构建评价函数的多目标优化方法,并提出了基于混沌局部搜索策略的差分进化算法(chaotic local search strategy differential evolution algorithm,CLSDE)的求解算法。应用粗糙集... 针对环境经济发电调度优化问题,提出了一种应用粗糙集理论构建评价函数的多目标优化方法,并提出了基于混沌局部搜索策略的差分进化算法(chaotic local search strategy differential evolution algorithm,CLSDE)的求解算法。应用粗糙集理论确定经济调度和环境调度函数的约束度,以确定各目标函数在优化模型中的权值。采用CLSDE算法求解环境经济调度(environmental economic dispatch,EED)多目标优化模型,该算法只对目标函数中的变量进行编码,约束条件函数中的变量随机产生,每代进化完毕后,对最优个体进行混沌局部搜索,克服了差分进化算法局部搜索能力较弱和惩罚函数方法中惩罚参数选择较难的问题。对IEEE30节点的标准测试系统进行了仿真计算,结果表明CLSDE算法在解决环境经济调度问题时具有可行性和有效性,在不增加污染气体排放量的同时降低燃料费用,使环境经济调度更能兼顾发电调度的经济利益与环境利益。 展开更多
关键词 环境经济调度 评价函数 粗糙集理论 基于混沌局部搜索策略的差分进化算法 优化 多目标
下载PDF
个体扰动的混沌对立学习与差分进化灰狼算法 被引量:10
19
作者 崔建弘 林海霞 +1 位作者 吕晓华 张卫娟 《计算机工程与设计》 北大核心 2022年第2期587-595,共9页
针对传统灰狼优化算法易于陷入局部最优、寻优精度低的问题,提出基于混沌对立学习和差分进化机制的改进灰狼优化算法CODEGWO。引入混沌对立学习策略生成灰狼初始种群,提升初始解的质量,加速算法收敛;引入差分进化的局部搜索机制,改善灰... 针对传统灰狼优化算法易于陷入局部最优、寻优精度低的问题,提出基于混沌对立学习和差分进化机制的改进灰狼优化算法CODEGWO。引入混沌对立学习策略生成灰狼初始种群,提升初始解的质量,加速算法收敛;引入差分进化的局部搜索机制,改善灰狼的局部开发与邻近区域的搜索能力;引入个体扰动机制增加种群多样性,改进灰狼的全局搜索能力。8个单峰和多峰基准函数优化求解的测试结果表明,CODEGWO算法可以有效提升寻优精度和收敛速度。 展开更多
关键词 灰狼优化算法 对立学习 混沌系统 差分进化 个体扰动
下载PDF
基于混沌差分进化FCM算法的舵回路故障诊断 被引量:9
20
作者 李丽莉 章卫国 +1 位作者 刘小雄 章萌 《测控技术》 CSCD 北大核心 2009年第5期90-93,共4页
为了提高故障分类的准确性,提出了一种混沌差分进化模糊C-均值故障识别方法(CDEFCM,cha-otic differential evolution fuzzy C-mean)。该方法利用差分进化算法高效的全局搜索能力以及混沌序列的均匀遍历特性,克服了模糊C-均值算法(FCM,f... 为了提高故障分类的准确性,提出了一种混沌差分进化模糊C-均值故障识别方法(CDEFCM,cha-otic differential evolution fuzzy C-mean)。该方法利用差分进化算法高效的全局搜索能力以及混沌序列的均匀遍历特性,克服了模糊C-均值算法(FCM,fuzzy C-mean)对初始值敏感的缺点及遗传算法易收敛到局部极值点的缺陷,用该方法进行故障聚类分析,可以准确地识别故障。以某飞控系统舵回路常见故障为例进行了仿真验证,结果表明该方法能有效地识别出故障。 展开更多
关键词 故障诊断 舵回路 混沌差分进化 FCM算法
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部