期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Multi-Objective Optimization for Active Disturbance Rejection Control for the ALSTOM Benchmark Problem 被引量:1
1
作者 Chun’e Huang Zhongli Liu 《International Journal of Clean Coal and Energy》 2015年第3期61-68,共8页
Based on a thing that it is difficult to choose the parameters of active disturbance rejection control for the non-linear ALSTOM gasifier, multi-objective optimization algorithm is applied in the choose of parameters.... Based on a thing that it is difficult to choose the parameters of active disturbance rejection control for the non-linear ALSTOM gasifier, multi-objective optimization algorithm is applied in the choose of parameters. Simulation results show that performance tests in load change and coal quality change achieve better dynamic responses and larger scales of rejecting coal quality disturbances. The study provides an alternative to choose parameters for other control schemes of the ALSTOM gasifier. 展开更多
关键词 GASIFICATION multi-objective optimization Non-Dominated SORTING algorithm II (NSGA-II) Active disturbance REJECTION Control (ADRC)
下载PDF
Handling Multiple Objectives with Biogeography-based Optimization 被引量:3
2
作者 Hai-Ping Ma Xie-Yong Ruan Zhang-Xin Pan 《International Journal of Automation and computing》 EI 2012年第1期30-36,共7页
Biogeography-based optimization (BBO) is a new evolutionary optimization method inspired by biogeography. In this paper, BBO is extended to a multi-objective optimization, and a biogeography-based multi-objective op... Biogeography-based optimization (BBO) is a new evolutionary optimization method inspired by biogeography. In this paper, BBO is extended to a multi-objective optimization, and a biogeography-based multi-objective optimization (BBMO) is introduced, which uses the cluster attribute of islands to naturally decompose the problem. The proposed algorithm makes use of nondominated sorting approach to improve the convergence ability efficiently. It also combines the crowding distance to guarantee the diversity of Pareto optimal solutions. We compare the BBMO with two representative state-of-the-art evolutionary multi-objective optimization methods, non-dominated sorting genetic algorithm-II (NSGA-II) and archive-based micro genetic algorithm (AMGA) in terms of three metrics. Simulation results indicate that in most cases, the proposed BBMO is able to find much better spread of solutions and converge faster to true Pareto optimal fronts than NSGA-II and AMGA do. 展开更多
关键词 multi-objective optimization biogeography-based optimization (BBO) evolutionary algorithms Pareto optimal nondominated sorting.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部