期刊文献+
共找到765篇文章
< 1 2 39 >
每页显示 20 50 100
Energy-Saving Distributed Flexible Job Shop Scheduling Optimization with Dual Resource Constraints Based on Integrated Q-Learning Multi-Objective Grey Wolf Optimizer
1
作者 Hongliang Zhang Yi Chen +1 位作者 Yuteng Zhang Gongjie Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1459-1483,共25页
The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worke... The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality. 展开更多
关键词 Distributed flexible job shop scheduling problem dual resource constraints energy-saving scheduling multi-objective grey wolf optimizer Q-LEARNING
下载PDF
Q-Learning-Assisted Meta-Heuristics for Scheduling Distributed Hybrid Flow Shop Problems
2
作者 Qianyao Zhu Kaizhou Gao +2 位作者 Wuze Huang Zhenfang Ma Adam Slowik 《Computers, Materials & Continua》 SCIE EI 2024年第9期3573-3589,共17页
The flow shop scheduling problem is important for the manufacturing industry.Effective flow shop scheduling can bring great benefits to the industry.However,there are few types of research on Distributed Hybrid Flow S... The flow shop scheduling problem is important for the manufacturing industry.Effective flow shop scheduling can bring great benefits to the industry.However,there are few types of research on Distributed Hybrid Flow Shop Problems(DHFSP)by learning assisted meta-heuristics.This work addresses a DHFSP with minimizing the maximum completion time(Makespan).First,a mathematical model is developed for the concerned DHFSP.Second,four Q-learning-assisted meta-heuristics,e.g.,genetic algorithm(GA),artificial bee colony algorithm(ABC),particle swarm optimization(PSO),and differential evolution(DE),are proposed.According to the nature of DHFSP,six local search operations are designed for finding high-quality solutions in local space.Instead of randomselection,Q-learning assists meta-heuristics in choosing the appropriate local search operations during iterations.Finally,based on 60 cases,comprehensive numerical experiments are conducted to assess the effectiveness of the proposed algorithms.The experimental results and discussions prove that using Q-learning to select appropriate local search operations is more effective than the random strategy.To verify the competitiveness of the Q-learning assistedmeta-heuristics,they are compared with the improved iterated greedy algorithm(IIG),which is also for solving DHFSP.The Friedman test is executed on the results by five algorithms.It is concluded that the performance of four Q-learning-assisted meta-heuristics are better than IIG,and the Q-learning-assisted PSO shows the best competitiveness. 展开更多
关键词 Distributed scheduling hybrid flow shop META-HEURISTICS local search Q-LEARNING
下载PDF
An Elite-Class Teaching-Learning-Based Optimization for Reentrant Hybrid Flow Shop Scheduling with Bottleneck Stage
3
作者 Deming Lei Surui Duan +1 位作者 Mingbo Li Jing Wang 《Computers, Materials & Continua》 SCIE EI 2024年第4期47-63,共17页
Bottleneck stage and reentrance often exist in real-life manufacturing processes;however,the previous research rarely addresses these two processing conditions in a scheduling problem.In this study,a reentrant hybrid ... Bottleneck stage and reentrance often exist in real-life manufacturing processes;however,the previous research rarely addresses these two processing conditions in a scheduling problem.In this study,a reentrant hybrid flow shop scheduling problem(RHFSP)with a bottleneck stage is considered,and an elite-class teaching-learning-based optimization(ETLBO)algorithm is proposed to minimize maximum completion time.To produce high-quality solutions,teachers are divided into formal ones and substitute ones,and multiple classes are formed.The teacher phase is composed of teacher competition and teacher teaching.The learner phase is replaced with a reinforcement search of the elite class.Adaptive adjustment on teachers and classes is established based on class quality,which is determined by the number of elite solutions in class.Numerous experimental results demonstrate the effectiveness of new strategies,and ETLBO has a significant advantage in solving the considered RHFSP. 展开更多
关键词 Hybrid flow shop scheduling REENTRANT bottleneck stage teaching-learning-based optimization
下载PDF
A Novel Collaborative Evolutionary Algorithm with Two-Population for Multi-Objective Flexible Job Shop Scheduling 被引量:2
4
作者 CuiyuWang Xinyu Li Yiping Gao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1849-1870,共22页
Job shop scheduling(JS)is an important technology for modern manufacturing.Flexible job shop scheduling(FJS)is critical in JS,and it has been widely employed in many industries,including aerospace and energy.FJS enabl... Job shop scheduling(JS)is an important technology for modern manufacturing.Flexible job shop scheduling(FJS)is critical in JS,and it has been widely employed in many industries,including aerospace and energy.FJS enables any machine from a certain set to handle an operation,and this is an NP-hard problem.Furthermore,due to the requirements in real-world cases,multi-objective FJS is increasingly widespread,thus increasing the challenge of solving the FJS problems.As a result,it is necessary to develop a novel method to address this challenge.To achieve this goal,a novel collaborative evolutionary algorithmwith two-population based on Pareto optimality is proposed for FJS,which improves the solutions of FJS by interacting in each generation.In addition,several experimental results have demonstrated that the proposed method is promising and effective for multi-objective FJS,which has discovered some new Pareto solutions in the well-known benchmark problems,and some solutions can dominate the solutions of some other methods. 展开更多
关键词 multi-objective flexible job shop scheduling Pareto archive set collaborative evolutionary crowd similarity
下载PDF
Strengthened Dominance Relation NSGA-Ⅲ Algorithm Based on Differential Evolution to Solve Job Shop Scheduling Problem
5
作者 Liang Zeng Junyang Shi +2 位作者 Yanyan Li Shanshan Wang Weigang Li 《Computers, Materials & Continua》 SCIE EI 2024年第1期375-392,共18页
The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various ... The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem. 展开更多
关键词 multi-objective job shop scheduling non-dominated sorting genetic algorithm differential evolution simulated binary crossover
下载PDF
An Improved Hyperplane Assisted Multiobjective Optimization for Distributed Hybrid Flow Shop Scheduling Problem in Glass Manufacturing Systems
6
作者 Yadian Geng Junqing Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第1期241-266,共26页
To solve the distributed hybrid flow shop scheduling problem(DHFS)in raw glass manufacturing systems,we investigated an improved hyperplane assisted evolutionary algorithm(IhpaEA).Two objectives are simultaneously con... To solve the distributed hybrid flow shop scheduling problem(DHFS)in raw glass manufacturing systems,we investigated an improved hyperplane assisted evolutionary algorithm(IhpaEA).Two objectives are simultaneously considered,namely,the maximum completion time and the total energy consumptions.Firstly,each solution is encoded by a three-dimensional vector,i.e.,factory assignment,scheduling,and machine assignment.Subsequently,an efficient initialization strategy embeds two heuristics are developed,which can increase the diversity of the population.Then,to improve the global search abilities,a Pareto-based crossover operator is designed to take more advantage of non-dominated solutions.Furthermore,a local search heuristic based on three parts encoding is embedded to enhance the searching performance.To enhance the local search abilities,the cooperation of the search operator is designed to obtain better non-dominated solutions.Finally,the experimental results demonstrate that the proposed algorithm is more efficient than the other three state-of-the-art algorithms.The results show that the Pareto optimal solution set obtained by the improved algorithm is superior to that of the traditional multiobjective algorithm in terms of diversity and convergence of the solution. 展开更多
关键词 Distributed hybrid flow shop energy consumption hyperplane-assisted multi-objective algorithm glass manufacturing system
下载PDF
Competitive and Cooperative-Based Strength Pareto Evolutionary Algorithm for Green Distributed Heterogeneous Flow Shop Scheduling
7
作者 Kuihua Huang Rui Li +2 位作者 Wenyin Gong Weiwei Bian Rui Wang 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期2077-2101,共25页
This work aims to resolve the distributed heterogeneous permutation flow shop scheduling problem(DHPFSP)with minimizing makespan and total energy consumption(TEC).To solve this NP-hard problem,this work proposed a com... This work aims to resolve the distributed heterogeneous permutation flow shop scheduling problem(DHPFSP)with minimizing makespan and total energy consumption(TEC).To solve this NP-hard problem,this work proposed a competitive and cooperative-based strength Pareto evolutionary algorithm(CCSPEA)which contains the following features:1)An initialization based on three heuristic rules is developed to generate a population with great diversity and convergence.2)A comprehensive metric combining convergence and diversity metrics is used to better represent the heuristic information of a solution.3)A competitive selection is designed which divides the population into a winner and a loser swarms based on the comprehensive metric.4)A cooperative evolutionary schema is proposed for winner and loser swarms to accelerate the convergence of global search.5)Five local search strategies based on problem knowledge are designed to improve convergence.6)Aproblem-based energy-saving strategy is presented to reduce TEC.Finally,to evaluate the performance of CCSPEA,it is compared to four state-of-art and run on 22 instances based on the Taillard benchmark.The numerical experiment results demonstrate that 1)the proposed comprehensive metric can efficiently represent the heuristic information of each solution to help the later step divide the population.2)The global search based on the competitive and cooperative schema can accelerate loser solutions convergence and further improve the winner’s exploration.3)The problembased initialization,local search,and energy-saving strategies can efficiently reduce the makespan and TEC.4)The proposed CCSPEA is superior to the state-of-art for solving DHPFSP. 展开更多
关键词 Distributed heterogeneous flow shop scheduling green scheduling SPEA2 competitive and cooperative
下载PDF
An improved multi-objective optimization algorithm for solving flexible job shop scheduling problem with variable batches 被引量:2
8
作者 WU Xiuli PENG Junjian +2 位作者 XIE Zirun ZHAO Ning WU Shaomin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期272-285,共14页
In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop pro... In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop problem with the variable batches scheduling model is formulated.Second,we propose a batch optimization algorithm with inverse scheduling in which the batch size is adjusted by the dynamic feedback batch adjusting method.Moreover,in order to increase the diversity of the population,two methods are developed.One is the threshold to control the neighborhood updating,and the other is the dynamic clustering algorithm to update the population.Finally,a group of experiments are carried out.The results show that the improved multi-objective optimization algorithm can ensure the diversity of Pareto solutions effectively,and has effective performance in solving the flexible job shop scheduling problem with variable batches. 展开更多
关键词 flexible job shop variable batch inverse scheduling multi-objective evolutionary algorithm based on decomposition a batch optimization algorithm with inverse scheduling
下载PDF
Job-shop Scheduling with Multi-objectives Based on Genetic Algorithms
9
作者 周亚勤 李蓓智 陈革 《Journal of Donghua University(English Edition)》 EI CAS 2003年第3期57-62,共6页
The technology of production planning and scheduling is one of the critical technologies that decide whether the automated manufacturing systems can get the expected economy. Job shop scheduling belongs to the special... The technology of production planning and scheduling is one of the critical technologies that decide whether the automated manufacturing systems can get the expected economy. Job shop scheduling belongs to the special class of NP-hard problems. Most of the algorithms used to optimize this class of problems have an exponential time; that is, the computation time increases exponentially with problem size. In scheduling study, makespan is often considered as the main objective. In this paper, makespan, the due date request of the key jobs, the availability of the key machine, the average wait-time of the jobs, and the similarities between the jobs and so on are taken into account based on the application of mechanical engineering. The job shop scheduling problem with multi-objectives is analyzed and studied by using genetic algorithms based on the mechanics of genetics and natural selection. In this research, the tactics of the coding and decoding and the design of the genetic operators, along with the description of the mathematic model of the multi-objective functions, are presented. Finally an illu-strative example is given to testify the validity of this algorithm. 展开更多
关键词 job shop scheduling multi-objective optimization genetic algorithms
下载PDF
A Discrete Artificial Bee Colony Algorithm for Minimizing the Total Flow Time in the Blocking Flow Shop Scheduling 被引量:10
10
作者 邓冠龙 徐震浩 顾幸生 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第6期1067-1073,共7页
A discrete artificial bee colony algorithm is proposed for solving the blocking flow shop scheduling problem with total flow time criterion. Firstly, the solution in the algorithm is represented as job permutation. Se... A discrete artificial bee colony algorithm is proposed for solving the blocking flow shop scheduling problem with total flow time criterion. Firstly, the solution in the algorithm is represented as job permutation. Secondly, an initialization scheme based on a variant of the NEH (Nawaz-Enscore-Ham) heuristic and a local search is designed to construct the initial population with both quality and diversity. Thirdly, based on the idea of iterated greedy algorithm, some newly designed schemes for employed bee, onlooker bee and scout bee are presented. The performance of the proposed algorithm is tested on the well-known Taillard benchmark set, and the computational results demonstrate the effectiveness of the discrete artificial bee colony algorithm. In addition, the best known solutions of the benchmark set are provided for the blocking flow shop scheduling problem with total flow time criterion. 展开更多
关键词 blocking flow shop scheduling artificial bee colony algorithm total flow time
下载PDF
A Decomposition and Coordination Scheduling Method for Flow-shop Problem Based on TOC 被引量:7
11
作者 张宏远 席裕庚 谷寒雨 《自动化学报》 EI CSCD 北大核心 2005年第2期182-187,共6页
There are many flow shop problems of throughput (denoted by FSPT) with constraints of due date in real production planning and scheduling. In this paper, a decomposition and coordination algorithm is proposed based on... There are many flow shop problems of throughput (denoted by FSPT) with constraints of due date in real production planning and scheduling. In this paper, a decomposition and coordination algorithm is proposed based on the analysis of FSPT and under the support of TOC (theory of constraint). A flow shop is at first decomposed into two subsystems named PULL and PUSH by means of bottleneck. Then the subsystem is decomposed into single machine scheduling problems,so the original NP-HARD problem can be transferred into a serial of single machine optimization problems finally. This method reduces the computational complexity, and has been used in a real project successfully. 展开更多
关键词 约束理论 flow-shop分解协调算法 TOC 瓶颈
下载PDF
Anomalies in Special Permutation Flow Shop Scheduling Problems 被引量:2
12
作者 Lin Gui Liang Gao Xinyu Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第3期53-59,共7页
Recent researches show that there are some anomalies,which are not satisfied with common sense,appearing in some special permutation flow shop scheduling problems(PFSPs).These anomalies can be divided into three diffe... Recent researches show that there are some anomalies,which are not satisfied with common sense,appearing in some special permutation flow shop scheduling problems(PFSPs).These anomalies can be divided into three different types,such as changing the processing time of some operations,changing the number of total jobs and changing the number of total machines.This paper summarizes these three types of anomalies showing in the special PFSPs and gives some examples to make them better understood.The extended critical path is proposed and the reason why these anomalies happen in special PFSPs is given:anomalies will occur in these special PFSPs when the time of the operations on the reverse critical path changes.After that,the further reason for these anomalies is presented that when any one of these three types of anomalies happens,the original constraint in the special PFSPs is destroyed,which makes the anomalies appear.Finally,the application of these anomalies in production practice is given through examples and also with the possible research directions.The main contribution of this research is analyzing the intial reason why the anomalies appear in special PFSPs and pointing out the application and the possible research directions of all these three types of anomalies. 展开更多
关键词 scheduling Permutation flow shop ANOMALY
下载PDF
Flow shop rescheduling problem under rush orders 被引量:2
13
作者 胡燕海 严隽琪 +1 位作者 叶飞帆 于军合 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第10期1040-1046,共7页
In the environment of customization, disturbances such as rush orders and material shortages often occur in the manufacturing system, so rescheduling is necessary for the manufacturing system. The rescheduling methodo... In the environment of customization, disturbances such as rush orders and material shortages often occur in the manufacturing system, so rescheduling is necessary for the manufacturing system. The rescheduling methodology should be able to dispose of the disturbance efficiently so as to keep production going smoothly. This aims researching flow shop rescheduling problem (FSRP) necessitated by rush orders. Disjunctive graph is employed to demonstrate the FSRP. For a flow shop processing n jobs, after the original schedule has been made, and z out of n jobs have been processed in the flow shop, x rush orders come, so the original n jobs together with x rush orders should be rescheduled immediately so that the rush orders would be processed in the shortest time and the original jobs could be processed subject to some optimized criteria. The weighted mean flow time of both original jobs and rush orders is used as objective function. The weight for rush orders is much bigger than that of the original jobs, so the rush orders should be processed early in the new schedule. The ant colony optimization (ACO) algorithm used to solve the rescheduling problem has a weakness in that the search may fall into a local optimum. Mutation operation is employed to enhance the ACO performance. Numerical experiments demonstrated that the proposed algorithm has high computation repeatability and efficiency. 展开更多
关键词 flow shop rescheduling Dynamic scheduling Rush order Ant colony optimization Mutation operation
下载PDF
An effective discrete artificial bee colony algorithm for flow shop scheduling problem with intermediate buffers 被引量:3
14
作者 张素君 顾幸生 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第9期3471-3484,共14页
An effective discrete artificial bee colony(DABC) algorithm is proposed for the flow shop scheduling problem with intermediate buffers(IBFSP) in order to minimize the maximum completion time(i.e makespan). The effecti... An effective discrete artificial bee colony(DABC) algorithm is proposed for the flow shop scheduling problem with intermediate buffers(IBFSP) in order to minimize the maximum completion time(i.e makespan). The effective combination of the insertion and swap operator is applied to producing neighborhood individual at the employed bee phase. The tournament selection is adopted to avoid falling into local optima, while, the optimized insert operator embeds in onlooker bee phase for further searching the neighborhood solution to enhance the local search ability of algorithm. The tournament selection with size 2 is again applied and a better selected solution will be performed destruction and construction of iterated greedy(IG) algorithm, and then the result replaces the worse one. Simulation results show that our algorithm has a better performance compared with the HDDE and CHS which were proposed recently. It provides the better known solutions for the makespan criterion to flow shop scheduling problem with limited buffers for the Car benchmark by Carlier and Rec benchmark by Reeves. The convergence curves show that the algorithm not only has faster convergence speed but also has better convergence value. 展开更多
关键词 discrete artificial bee colony algorithm flow shop scheduling problem with intermediate buffers destruction and construction tournament selection
下载PDF
Differential evolution algorithm for hybrid flow-shop scheduling problems 被引量:9
15
作者 Ye Xu Ling Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第5期794-798,共5页
Aiming at the hybrid flow-shop (HFS) scheduling that is a complex NP-hard combinatorial problem with wide engineering background, an effective algorithm based on differential evolution (DE) is proposed. By using a... Aiming at the hybrid flow-shop (HFS) scheduling that is a complex NP-hard combinatorial problem with wide engineering background, an effective algorithm based on differential evolution (DE) is proposed. By using a special encoding scheme and combining DE based evolutionary search and local search, the exploration and exploitation abilities are enhanced and well balanced for solving the HFS problems. Simulation results based on some typical problems and comparisons with some existing genetic algorithms demonstrate the proposed algorithm is effective, efficient and robust for solving the HFS problems. 展开更多
关键词 hybrid flow-shop (HFS) scheduling differential evolution (DE) local search.
下载PDF
A novel hybrid estimation of distribution algorithm for solving hybrid flowshop scheduling problem with unrelated parallel machine 被引量:9
16
作者 孙泽文 顾幸生 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1779-1788,共10页
The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this wor... The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms. 展开更多
关键词 hybrid estimation of distribution algorithm teaching learning based optimization strategy hybrid flow shop unrelated parallel machine scheduling
下载PDF
Integrated Production and Transportation Scheduling Method in Hybrid Flow Shop 被引量:1
17
作者 Wangming Li Dong Han +2 位作者 Liang Gao Xinyu Li Yang Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第1期112-131,共20页
The connection between production scheduling and transportation scheduling is getting closer in smart manufacturing system, and both of those problems are summarized as NP-hard problems. However, only a few studies ha... The connection between production scheduling and transportation scheduling is getting closer in smart manufacturing system, and both of those problems are summarized as NP-hard problems. However, only a few studies have considered them simultaneously. This paper solves the integrated production and transportation scheduling problem(IPTSP) in hybrid flow shops, which is an extension of the hybrid flow shop scheduling problem(HFSP). In addition to the production scheduling on machines, the transportation scheduling process on automated guided vehicles(AGVs)is considered as another optimization process. In this problem, the transfer tasks of jobs are performed by a certain number of AGVs. To solve it, we make some preparation(including the establishment of task pool, the new solution representation and the new solution evaluation), which can ensure that satisfactory solutions can be found efficiently while appropriately reducing the scale of search space. Then, an effective genetic tabu search algorithm is used to minimize the makespan. Finally, two groups of instances are designed and three types of experiments are conducted to evaluate the performance of the proposed method. The results show that the proposed method is effective to solve the integrated production and transportation scheduling problem. 展开更多
关键词 Hybrid flow shop Integrated scheduling Task pool Hybrid algorithm
下载PDF
A Novel Particle Swarm Optimization for Flow Shop Scheduling with Fuzzy Processing Time 被引量:1
18
作者 牛群 顾幸生 《Journal of Donghua University(English Edition)》 EI CAS 2008年第2期115-122,共8页
Since in most practical cases the processing time of scheduling is not deterministic, flow shop scheduling model with fuzzy processing time is established. It is assumed that the processing times of jobs on the machin... Since in most practical cases the processing time of scheduling is not deterministic, flow shop scheduling model with fuzzy processing time is established. It is assumed that the processing times of jobs on the machines are described by triangular fuzzy sets. In order to find a sequence that minimizes the mean makespan and the spread of the makespan, Lee and Li fuzzy ranking method is adopted and modified to solve the problem. Particle swarm optimization (PSO) is a population-based stochastic approximation algorithm that has been applied to a wide range of problems, but there is little reported in respect of application to scheduling problems because of its unsuitability for them. In the paper, PSO is redefined and modified by introducing genetic operations such as crossover and mutation to update the particles, which is called GPSO and successfully employed to solve the formulated problem. A series of benchmarks with fuzzy processing time are used to verify GPSO. Extensive experiments show the feasibility and effectiveness of the proposed method. 展开更多
关键词 flow shop scheduling FUZZY PSO
下载PDF
MODIFIED BOTTLENECK-BASED PROCEDURE FOR LARGE-SCALE FLOW-SHOP SCHEDULING PROBLEMS WITH BOTTLENECK
19
作者 ZUO Yan GU Hanyu XI Yugeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第3期356-361,共6页
A new bottleneck-based heuristic for large-scale flow-shop scheduling problems with a bottleneck is proposed, which is simpler but more tailored than the shifting bottleneck (SB) procedure. In this algorithm, a sche... A new bottleneck-based heuristic for large-scale flow-shop scheduling problems with a bottleneck is proposed, which is simpler but more tailored than the shifting bottleneck (SB) procedure. In this algorithm, a schedule for the bottleneck machine is first constructed optimally and then the non-bottleneck machines are scheduled around the bottleneck schedule by some effective dispatching rules. Computational results show that the modified bottleneck-based procedure can achieve a tradeoff between solution quality and computational time comparing with SB procedure for medium-size problems. Furthermore it can obtain a good solution in quite short time for large-scale scheduling problems. 展开更多
关键词 flow-shop scheduling problem Heuristic Bottleneck machine
下载PDF
Scheduling on 2-Machine Flow Shops Considering Disturbance on Job Processing Times
20
作者 Bo Guo Yasuo NonakaDepartment of Industrial Management and Engineering, Science University of Tokyo, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162, Japan 《International Journal of Plant Engineering and Management》 1998年第1期6-13,共8页
In this paper the scheduling problem to minimize the expected makespan is discussed on two-machine flow shops with random disturbance on job processing times. The problem is represented by a stochastic programming mod... In this paper the scheduling problem to minimize the expected makespan is discussed on two-machine flow shops with random disturbance on job processing times. The problem is represented by a stochastic programming model. We approximate the stochastic problem by a deterministic problem which can be solved by Johnson's rule. The estimation of approximation error is also discussed by analyzing the stochastic model and its approximate LP model. 展开更多
关键词 scheduling flow shops stochastic disturbance
下载PDF
上一页 1 2 39 下一页 到第
使用帮助 返回顶部