期刊文献+
共找到476篇文章
< 1 2 24 >
每页显示 20 50 100
Multi-Objective Optimization Algorithm for Grouping Decision Variables Based on Extreme Point Pareto Frontier
1
作者 JunWang Linxi Zhang +4 位作者 Hao Zhang Funan Peng Mohammed A.El-Meligy Mohamed Sharaf Qiang Fu 《Computers, Materials & Continua》 SCIE EI 2024年第4期1281-1299,共19页
The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly... The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly focus on objectives,treating decision variables as a total variable to solve the problem without consideringthe critical role of decision variables in objective optimization.As seen,a variety of decision variable groupingalgorithms have been proposed.However,these algorithms are relatively broad for the changes of most decisionvariables in the evolution process and are time-consuming in the process of finding the Pareto frontier.To solvethese problems,a multi-objective optimization algorithm for grouping decision variables based on extreme pointPareto frontier(MOEA-DV/EPF)is proposed.This algorithm adopts a preprocessing rule to solve the Paretooptimal solution set of extreme points generated by simultaneous evolution in various target directions,obtainsthe basic Pareto front surface to determine the convergence effect,and analyzes the convergence and distributioneffects of decision variables.In the later stages of algorithm optimization,different mutation strategies are adoptedaccording to the nature of the decision variables to speed up the rate of evolution to obtain excellent individuals,thusenhancing the performance of the algorithm.Evaluation validation of the test functions shows that this algorithmcan solve the multi-objective optimization problem more efficiently. 展开更多
关键词 multi-objective evolutionary optimization algorithm decision variables grouping extreme point pareto frontier
下载PDF
Large-Scale Multi-Objective Optimization Algorithm Based on Weighted Overlapping Grouping of Decision Variables
2
作者 Liang Chen Jingbo Zhang +2 位作者 Linjie Wu Xingjuan Cai Yubin Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期363-383,共21页
The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the intera... The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the interaction among decision variables is intricate,leading to large group sizes and suboptimal optimization effects;hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables(MOEAWOD)is proposed in this paper.Initially,the decision variables are perturbed and categorized into convergence and diversity variables;subsequently,the convergence variables are subdivided into groups based on the interactions among different decision variables.If the size of a group surpasses the set threshold,that group undergoes a process of weighting and overlapping grouping.Specifically,the interaction strength is evaluated based on the interaction frequency and number of objectives among various decision variables.The decision variable with the highest interaction in the group is identified and disregarded,and the remaining variables are then reclassified into subgroups.Finally,the decision variable with the strongest interaction is added to each subgroup.MOEAWOD minimizes the interactivity between different groups and maximizes the interactivity of decision variables within groups,which contributed to the optimized direction of convergence and diversity exploration with different groups.MOEAWOD was subjected to testing on 18 benchmark large-scale optimization problems,and the experimental results demonstrate the effectiveness of our methods.Compared with the other algorithms,our method is still at an advantage. 展开更多
关键词 decision variable grouping large-scale multi-objective optimization algorithms weighted overlapping grouping direction-guided evolution
下载PDF
A decision support system for satellite layout integrating multi-objective optimization and multi-attribute decision making 被引量:3
3
作者 LIANG Yan’gang QIN Zheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第3期535-544,共10页
A decision support system, including a multi-objective optimization framework and a multi-attribute decision making approach is proposed for satellite equipment layout. Firstly, given three objectives (to minimize the... A decision support system, including a multi-objective optimization framework and a multi-attribute decision making approach is proposed for satellite equipment layout. Firstly, given three objectives (to minimize the C.G. offset, the cross moments of inertia and the space debris impact risk), we develop a threedimensional layout optimization model. Unlike most of the previous works just focusing on mass characteristics of the system, a space debris impact risk index is developed. Secondly, we develop an efficient optimization framework for the integration of computer-aided design (CAD) software as well as the optimization algorithm to obtain the Pareto front of the layout optimization problem. Thirdly, after obtaining the candidate solutions, we present a multi-attribute decision making approach, which integrates the smart Pareto filter and the correlation coefficient and standard deviation (CCSD) method to select the best tradeoff solutions on the optimal Pareto fronts. Finally, the framework and the decision making approach are applied to a case study of a satellite platform. 展开更多
关键词 layout optimIZATION SATELLITE multi-objective optimIZATION PARETO FRONT MULTI-ATTRIBUTE decision making
下载PDF
A vague-set-based fuzzy multi-objective decision making model for bidding purchase 被引量:4
4
作者 WANG Zhou-jing QIAN Edward Y. 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第4期644-650,共7页
A vague-set-based fuzzy multi-objective decision making model is developed for evaluating bidding plans in a bid- ding purchase process. A group of decision-makers (DMs) first independently assess bidding plans accord... A vague-set-based fuzzy multi-objective decision making model is developed for evaluating bidding plans in a bid- ding purchase process. A group of decision-makers (DMs) first independently assess bidding plans according to their experience and preferences, and these assessments may be expressed as linguistic terms, which are then converted to fuzzy numbers. The resulting decision matrices are then transformed to objective membership grade matrices. The lower bound of satisfaction and upper bound of dissatisfaction are used to determine each bidding plan’s supporting, opposing, and neutral objective sets, which together determine the vague value of a bidding plan. Finally, a score function is employed to rank all bidding plans. A new score function based on vague sets is introduced in the model and a novel method is presented for calculating the lower bound of sat- isfaction and upper bound of dissatisfaction. In a vague-set-based fuzzy multi-objective decision making model, different valua- tions for upper and lower bounds of satisfaction usually lead to distinct ranking results. Therefore, it is crucial to effectively contain DMs’ arbitrariness and subjectivity when these values are determined. 展开更多
关键词 fuzzy multi-objective decision making model Vague set Score function Lower bound of satisfaction Upper bound of dissatisfaction
下载PDF
Optimal decision rules acquisition in incomplete and Fuzzy Decision Information System 被引量:2
5
作者 XIAO Hui-jun WEI Da-kuan 《通讯和计算机(中英文版)》 2008年第2期12-18,共7页
关键词 最优化原则 模糊决策 信息技术 矩阵
下载PDF
Multi-objective optimization in highway pavement maintenance and rehabilitation project selection and scheduling:A state-of-the-art review 被引量:1
6
作者 Mohammadhosein Pourgholamali Samuel Labi Kumares C.Sinha 《Journal of Road Engineering》 2023年第3期239-251,共13页
The motivation for cost-effective management of highway pavements is evidenced not only by the massive expenditures associated with these activities at a national level but also by the consequences of poor pavement co... The motivation for cost-effective management of highway pavements is evidenced not only by the massive expenditures associated with these activities at a national level but also by the consequences of poor pavement condition on road users.This paper presents a state-of-the-art review of multi-objective optimization(MOO)problems that have been formulated and solution techniques that have been used in selecting and scheduling highway pavement rehabilitation and maintenance activities.First,the paper presents a taxonomy and hierarchy for these activities,the role of funding sources,and levels of jurisdiction.The paper then describes how three different decision mechanisms have been used in past research and practice for project selection and scheduling(historical practices,expert opinion,and explicit mathematical optimization)and identifies the pros and cons of each mechanism.The paper then focuses on the optimization mechanism and presents the types of optimization problems,formulations,and objectives that have been used in the literature.Next,the paper examines various solution algorithms and discusses issues related to their implementation.Finally,the paper identifies some barriers to implementing multi-objective optimization in selecting and scheduling highway pavement rehabilitation and maintenance activities,and makes recommendations to overcome some of these barriers. 展开更多
关键词 multi-objective optimization Highway pavement REHABILITATION Maintenance Project selection Project scheduling decision mechanism Pavement management
下载PDF
Time-Variant Reliability-Based Multi-Objective Fuzzy Design Optimization for Anti-Roll Torsion Bar of EMU 被引量:7
7
作者 Pengpeng Zhi Zhonglai Wang +1 位作者 Bingzhi Chen Ziqiang Sheng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第5期1001-1022,共22页
Although various types of anti-roll torsion bars have been developed to inhibit excessive roll angle of the electric multiple unit(EMU)car body,it is critical to ensure the reliability of structural design due to the ... Although various types of anti-roll torsion bars have been developed to inhibit excessive roll angle of the electric multiple unit(EMU)car body,it is critical to ensure the reliability of structural design due to the complexity of the problems involving time and uncertainties.To address this issue,amulti-objective fuzzy design optimization model is constructed considering time-variant stiffness and strength reliability constraints for the anti-roll torsion bar.A hybrid optimization strategy combining the design of experiment(DoE)sampling and non-linear programming by quadratic lagrangian(NLPQL)is presented to deal with the design optimization model.To characterize the effect of time on the structural performance of the torsion bar,the continuous-time model combined with Ito lemma is proposed to establish the time-variant stiffness and strength reliability constraints.Fuzzy mathematics is employed to conduct uncertainty quantification for the design parameters of the torsion bar.A physical programming approach is used to improve the designer’s preference and to make the optimization results more consistent with engineering practices.Moreover,the effectiveness of the proposed method has been validated by comparing with current methods in a practical engineering case. 展开更多
关键词 Anti-roll torsion bar time-variant reliability fuzzy design optimization multi-objective
下载PDF
Multi-objective Fuzzy Optimization Algorithm for Separation-Recycle System 被引量:6
8
作者 孙力 樊希山 姚平经 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第2期221-226,共6页
Separation-recycle system is an important part in chemical process, and its optimization is a multiobjective problem. In this paper the process optimization procedure is proposed. The fuzzy optimization algorithm with... Separation-recycle system is an important part in chemical process, and its optimization is a multiobjective problem. In this paper the process optimization procedure is proposed. The fuzzy optimization algorithm with the concept of relative importance degree (RID) is utilized to transfer multi-objective optimization (MO-O) model into a single-objective optimization (SO-O) framework. The treatment of process condensate in synthesisa mmonia plant is taken as example to illustrate the optimization procedure, and the satisfactory result demonstrates feasibility and effectiveness of the suggested method. 展开更多
关键词 multi-objective fuzzy optimization relative importance degree
下载PDF
Group Decision Making Based Fuzzy Pattern Recognition Model for Lectotype Optimization of Offshore Platforms 1 被引量:4
9
作者 王建明 陈守煜 +1 位作者 伏广涛 侯召成 《海洋工程:英文版》 2003年第1期1-10,共10页
This paper develops a fuzzy pattern recognition model for group decision making to solve the problem of lectotype optimization of offshore platforms. The lack of data and the inexact or incomplete information for crit... This paper develops a fuzzy pattern recognition model for group decision making to solve the problem of lectotype optimization of offshore platforms. The lack of data and the inexact or incomplete information for criteria are the main cause of uncertainty in the evaluation process, therefore it is necessary to integrate the judgments from different decision makers with different experience, knowledge and preference. This paper first uses a complementary principle based pairwise comparison method to obtain the subjective weight of the criteria from each decision maker. A fuzzy pattern recognition model is then developed to integrate the judgments from all the decision makers and the information from the criteria, under the supervision of the subjective weights. Finally a case study is given to show the efficiency and robustness of the proposed model. 展开更多
关键词 offshore platform lectotype optimization group decision making fuzzy pattern recognition
下载PDF
Multi-objectives fuzzy optimization model for ship form demonstration based on information entropy 被引量:4
10
作者 ZHANG Wei-ying LIN Yan +1 位作者 JI Zhuo-shang DENG Lin-yi 《Journal of Marine Science and Application》 2006年第1期12-16,共5页
Selecting optimization ship form scheme is an important content in the process of concept design of ship. Multi-objective fuzzy decision-making model for ship form demonstration is set up according to the fuzzy patter... Selecting optimization ship form scheme is an important content in the process of concept design of ship. Multi-objective fuzzy decision-making model for ship form demonstration is set up according to the fuzzy pattern-recognition theory. Weight coefficients of each target of ship form scheme are determined by information entropy and individual subjective partiality. This model is used to select the optimal ship form scheme, the example shows that the model is exact and the resuh is credible. It can provide a reference for choosing the optimization scheme of ship form. 展开更多
关键词 ship form scheme information entropy multi-objective fuzzy optimization
下载PDF
Multi-objective fuzzy particle swarm optimization based on elite archiving and its convergence 被引量:1
11
作者 Wei Jingxuan Wang Yuping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期1035-1040,共6页
A fuzzy particle swarm optimization (PSO) on the basis of elite archiving is proposed for solving multi-objective optimization problems. First, a new perturbation operator is designed, and the concepts of fuzzy glob... A fuzzy particle swarm optimization (PSO) on the basis of elite archiving is proposed for solving multi-objective optimization problems. First, a new perturbation operator is designed, and the concepts of fuzzy global best and fuzzy personal best are given on basis of the new operator. After that, particle updating equations are revised on the basis of the two new concepts to discourage the premature convergence and enlarge the potential search space; second, the elite archiving technique is used during the process of evolution, namely, the elite particles are introduced into the swarm, whereas the inferior particles are deleted. Therefore, the quality of the swarm is ensured. Finally, the convergence of this swarm is proved. The experimental results show that the nondominated solutions found by the proposed algorithm are uniformly distributed and widely spread along the Pareto front. 展开更多
关键词 multi-objective optimization particle swarm optimization fuzzy personal best fuzzy global best elite archiving.
下载PDF
Multi-objective optimization based optimal setting control for industrial double-stream alumina digestion process
12
作者 WANG Xiao-li LU Mei-yu +1 位作者 WEI Si-mi XIE Yong-fang 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第1期173-185,共13页
The operation variables,including feed rate of ore slurry,caustic solution and live steams in the double-stream alumina digestion process,determine the product quality,process costs and the environment pollution.Previ... The operation variables,including feed rate of ore slurry,caustic solution and live steams in the double-stream alumina digestion process,determine the product quality,process costs and the environment pollution.Previously,they were set by the technical workers according to the offline analysis results and an empirical formula,which leads to unstable process indices and high consumption frequently.So,a multi-objective optimization model is built to maintain the balance between resource consumptions and process indices by taking technical indices and energy efficiency as objectives,where the key technical indices are predicted based on the digestion kinetics of diaspore.A multi-objective state transition algorithm(MOSTA)is improved to solve the problem,in which a self-adaptive strategy is applied to dynamically adjust the operator factors of the MOSTA and dynamic infeasible threshold is used to handle constraints to enhance searching efficiency and ability of the algorithm.Then a rule based strategy is designed to make the final decision from the Pareto frontiers.The method is integrated into an optimal control system for the industrial digestion process and tested in the actual production.Results show that the proposed method can achieve the technical target while reducing the energy consumption. 展开更多
关键词 double-stream digestion process optimal setting control multi-objective optimization state transition algorithm rule based decision making
下载PDF
Exploring a Promising Region and Enhancing Decision Space Diversity for Multimodal Multi-Objective Optimization
13
作者 Fei Ming Wenyin Gong 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第2期325-342,共18页
During the past decade,research efforts have been gradually directed to the widely existing yet less noticed multimodal multi-objective optimization problems(MMOPs)in the multi-objective optimization community.Recentl... During the past decade,research efforts have been gradually directed to the widely existing yet less noticed multimodal multi-objective optimization problems(MMOPs)in the multi-objective optimization community.Recently,researchers have begun to investigate enhancing the decision space diversity and preserving valuable dominated solutions to overcome the shortage caused by a preference for objective space convergence.However,many existing methods still have limitations,such as giving unduly high priorities to convergence and insufficient ability to enhance decision space diversity.To overcome these shortcomings,this article aims to explore a promising region(PR)and enhance the decision space diversity for handling MMOPs.Unlike traditional methods,we propose the use of non-dominated solutions to determine a limited region in the PR in the decision space,where the Pareto sets(PSs)are included,and explore this region to assist in solving MMOPs.Furthermore,we develop a novel neighbor distance measure that is more suitable for the complex geometry of PSs in the decision space than the crowding distance.Based on the above methods,we propose a novel dual-population-based coevolutionary algorithm.Experimental studies on three benchmark test suites demonstrates that our proposed methods can achieve promising performance and versatility on different MMOPs.The effectiveness of the proposed neighbor distance has also been justified through comparisons with crowding distance methods. 展开更多
关键词 multimodal multi-objective optimization evolutionary algorithms promising region neighbor distance decision space coevolution
原文传递
Autonomous air combat maneuver decision using Bayesian inference and moving horizon optimization 被引量:58
14
作者 HUANG Changqiang DONG Kangsheng +2 位作者 HUANG Hanqiao TANG Shangqin ZHANG Zhuoran 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第1期86-97,共12页
To reach a higher level of autonomy for unmanned combat aerial vehicle(UCAV) in air combat games, this paper builds an autonomous maneuver decision system. In this system,the air combat game is regarded as a Markov pr... To reach a higher level of autonomy for unmanned combat aerial vehicle(UCAV) in air combat games, this paper builds an autonomous maneuver decision system. In this system,the air combat game is regarded as a Markov process, so that the air combat situation can be effectively calculated via Bayesian inference theory. According to the situation assessment result,adaptively adjusts the weights of maneuver decision factors, which makes the objective function more reasonable and ensures the superiority situation for UCAV. As the air combat game is characterized by highly dynamic and a significant amount of uncertainty,to enhance the robustness and effectiveness of maneuver decision results, fuzzy logic is used to build the functions of four maneuver decision factors. Accuracy prediction of opponent aircraft is also essential to ensure making a good decision; therefore, a prediction model of opponent aircraft is designed based on the elementary maneuver method. Finally, the moving horizon optimization strategy is used to effectively model the whole air combat maneuver decision process. Various simulations are performed on typical scenario test and close-in dogfight, the results sufficiently demonstrate the superiority of the designed maneuver decision method. 展开更多
关键词 autonomous air combat maneuver decision Bayesian inference moving horizon optimization situation assessment fuzzy logic
下载PDF
Co-optimization of carbon dioxide storage and enhanced oil recovery in oil reservoirs using a multi-objective genetic algorithm(NSGA-Ⅱ) 被引量:6
15
作者 SAFARZADEH Mohammad Amin MOTAHHARI Seyyed Mahdia 《Petroleum Science》 SCIE CAS CSCD 2014年第3期460-468,共9页
Climate researchers have observed that the carbon dioxide (CO2) concentration in the atmosphere have been growing significantly over the past century. CO2 from energy represents about 75% of the greenhouse gas (GHG... Climate researchers have observed that the carbon dioxide (CO2) concentration in the atmosphere have been growing significantly over the past century. CO2 from energy represents about 75% of the greenhouse gas (GHG) emissions for Annex B (Developed) countries, and over 60% of global emissions. Because of impermeable cap rocks hydrocarbon reservoirs are able to sequester CO〉 In addition, due to high-demand for oil worldwide, injection of CO2 is a useful way to enhance oil production. Hence, applying an efficient method to co-optimize CO2 storage and oil production is vital. Lack of suitable optimization techniques in the past led most multi-objective optimization problems to be tackled in the same way as a single objective optimization issue. However, there are some basic differences between the multi and single objective optimization methods. In this study, by using a non- dominated sorting genetic algorithm (NSGA-II) for an oil reservoir, some appropriate scenarios are proposed based on simultaneous gas storage and enhanced oil recovery optimization. The advantages of this method allow us to amend production scenarios after implementing the optimization process, by regarding the variation of economic parameters such as oil price and CO2 tax. This leads to reduced risks and time duration of making new decisions based on upcoming situations. 展开更多
关键词 Greenhouse gas emission carbon dioxide enhanced oil recovery multi-objective optimization decision making
下载PDF
Zoning Search With Adaptive Resource Allocating Method for Balanced and Imbalanced Multimodal Multi-Objective Optimization 被引量:5
16
作者 Qinqin Fan Okan K.Ersoy 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第6期1163-1176,共14页
Maintaining population diversity is an important task in the multimodal multi-objective optimization.Although the zoning search(ZS)can improve the diversity in the decision space,assigning the same computational costs... Maintaining population diversity is an important task in the multimodal multi-objective optimization.Although the zoning search(ZS)can improve the diversity in the decision space,assigning the same computational costs to each search subspace may be wasteful when computational resources are limited,especially on imbalanced problems.To alleviate the above-mentioned issue,a zoning search with adaptive resource allocating(ZS-ARA)method is proposed in the current study.In the proposed ZS-ARA,the entire search space is divided into many subspaces to preserve the diversity in the decision space and to reduce the problem complexity.Moreover,the computational resources can be automatically allocated among all the subspaces.The ZS-ARA is compared with seven algorithms on two different types of multimodal multi-objective problems(MMOPs),namely,balanced and imbalanced MMOPs.The results indicate that,similarly to the ZS,the ZS-ARA achieves high performance with the balanced MMOPs.Also,it can greatly assist a“regular”algorithm in improving its performance on the imbalanced MMOPs,and is capable of allocating the limited computational resources dynamically. 展开更多
关键词 Computational resource allocation decision space decomposition evolutionary computation multimodal multi-objective optimization
下载PDF
Overview of multi-objective optimization methods 被引量:2
17
作者 LeiXiujuan ShiZhongke 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2004年第2期142-146,共5页
To assist readers to have a comprehensive understanding, the classical and intelligent methods roundly based on precursory research achievements are summarized in this paper. First, basic conception and description ab... To assist readers to have a comprehensive understanding, the classical and intelligent methods roundly based on precursory research achievements are summarized in this paper. First, basic conception and description about multi-objective (MO) optimization are introduced. Then some definitions and related terminologies are given. Furthermore several MO optimization methods including classical and current intelligent methods are discussed one by one succinctly. Finally evaluations on advantages and disadvantages about these methods are made at the end of the paper. 展开更多
关键词 multi-objective optimization objective function Pareto optimality genetic algorithms simulated annealing fuzzy logical.
下载PDF
Hybrid Multi-Object Optimization Method for Tapping Center Machines
18
作者 Ping-Yueh Chang Fu-I Chou +1 位作者 Po-Yuan Yang Shao-Hsien Chen 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期23-38,共16页
This paper proposes a hybrid multi-object optimization method integrating a uniform design,an adaptive network-based fuzzy inference system(ANFIS),and a multi-objective particle swarm optimizer(MOPSO)to optimize the r... This paper proposes a hybrid multi-object optimization method integrating a uniform design,an adaptive network-based fuzzy inference system(ANFIS),and a multi-objective particle swarm optimizer(MOPSO)to optimize the rigid tapping parameters and minimize the synchronization errors and cycle times of computer numerical control(CNC)machines.First,rigid tapping parameters and uniform(including 41-level and 19-level)layouts were adopted to collect representative data for modeling.Next,ANFIS was used to build the model for the collected 41-level and 19-level uniform layout experiment data.In tapping center machines,the synchronization errors and cycle times are important consid-erations,so these two objects were used to build the ANFIS models.Then,a MOPSO algorithm was used to search for the optimal parameter combinations for the two ANFIS models simultaneously.The experimental results showed that the proposed method obtains suitable parameter values and optimal parameter combinations compared with the nonsystematic method.Additionally,the optimal parameter combination was used to optimize existing CNC tools during the commissioning process.Adjusting the proportional and integral gains of the spindle could improve resistance to deformation during rigid tapping.The posi-tion gain and prefeedback coefficient can reduce the synchronization errors significantly,and the acceleration and deceleration times of the spindle affect both the machining time and synchronization errors.The proposed method can quickly and accurately minimize synchronization errors from 107 to 19.5 pulses as well as the processing time from 3,600 to 3,248 ms;it can also shorten the machining time significantly and reduce simultaneous errors to improve tapping yield,there-by helping factories achieve carbon reduction. 展开更多
关键词 Tapping center machine uniform design adaptive network-based fuzzy inference system(ANFIS) multi-objective particle swarm optimizer
下载PDF
Stability of Nonlinear Systems Using Optimal Fuzzy Controllers and Its Simulation by Java Programming 被引量:1
19
作者 Mohammad Javad Mahmoodabadi Saideh Arabani Mostaghim 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第6期1519-1527,共9页
In this paper, at first, the single input rule modules(SIRMs) dynamically connected fuzzy inference model is used to stabilize a double inverted pendulum system. Then, a multiobjective particle swarm optimization(MOPS... In this paper, at first, the single input rule modules(SIRMs) dynamically connected fuzzy inference model is used to stabilize a double inverted pendulum system. Then, a multiobjective particle swarm optimization(MOPSO) is implemented to optimize the fuzzy controller parameters in order to decrease the distance error of the cart and summation of the angle errors of the pendulums, simultaneously. The feasibility and efficiency of the proposed Pareto front is assessed in comparison with results reported in literature and obtained from other algorithms.Finally, the Java programming with applets is utilized to simulate the stability of the nonlinear system and explain the internetbased control. 展开更多
关键词 Double INVERTED PENDULUM system fuzzy control Java PROGRAMMING multi-objective algorithm particle SWARM optimization(PSO)
下载PDF
Kind of Fuzzy Method Determining Index Weight on Multi-Objctive Decision Making
20
作者 程国明 黄侃 《International Journal of Mining Science and Technology》 SCIE EI 1999年第2期211-214,共4页
Based on fuzzy characteristic of dicision-making thought, matrix of priority relation has been introduced and blurrized. A kind of fuzzy method, which is to determine the index weight on multi-objective decision makin... Based on fuzzy characteristic of dicision-making thought, matrix of priority relation has been introduced and blurrized. A kind of fuzzy method, which is to determine the index weight on multi-objective decision making, has been put forward by means of the sequence root method for analysis of hierarchical process (AHP). Using this method an example which is to define the index weigbt on multi-objective decision making in thc scheme optimization of mine design has been given. 展开更多
关键词 fuzzy method index weight multi-objective decision making CONSISTENCY MINE design
下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部