Based on “One Belt and One Road”, this paper studies the path selection of multimodal transport by using the method of multi-objective mixed integer programming. Therefore, this paper studies the factors of transpor...Based on “One Belt and One Road”, this paper studies the path selection of multimodal transport by using the method of multi-objective mixed integer programming. Therefore, this paper studies the factors of transportation time, transportation cost and transportation safety performance, and establishes a mathematical model. In addition, the method of multi-objective mixed integer programming is used to comprehensively consider the different emphasis and differences of customers on cargo transportation. Then we use planning tools of Microsoft Excel to solve path selection and to determine whether the chosen path is economical and reliable. Finally, a relatively complex road network is built as an example to verify the accuracy of this planning method.展开更多
The demand of hydrogen in oil refinery is increasing as market forces and environmental legislation, so hydrogen network management is becoming increasingly important in refineries. Most studies focused on single-obje...The demand of hydrogen in oil refinery is increasing as market forces and environmental legislation, so hydrogen network management is becoming increasingly important in refineries. Most studies focused on single-objective optimization problem for the hydrogen network, but few account for the multi-objective optimization problem. This paper presents a novel approach for modeling and multi-objective optimization for hydrogen network in refineries. An improved multi-objective optimization model is proposed based on the concept of superstructure. The optimization includes minimization of operating cost and minimization of investment cost of equipment. The proposed methodology for the multi-objective optimization of hydrogen network takes into account flow rate constraints, pressure constraints, purity constraints, impurity constraints, payback period, etc. The method considers all the feasible connections and subjects this to mixed-integer nonlinear programming (MINLP). A deterministic optimization method is applied to solve this multi-objective optimization problem. Finally, a real case study is intro-duced to illustrate the applicability of the approach.展开更多
Cracking furnace is the core device for ethylene production. In practice, multiple ethylene furnaces are usually run in parallel. The scheduling of the entire cracking furnace system has great significance when multip...Cracking furnace is the core device for ethylene production. In practice, multiple ethylene furnaces are usually run in parallel. The scheduling of the entire cracking furnace system has great significance when multiple feeds are simultaneously processed in multiple cracking furnaces with the changing of operating cost and yield of product. In this paper, given the requirements of both profit and energy saving in actual production process, a multi-objective optimization model contains two objectives, maximizing the average benefits and minimizing the average coking amount was proposed. The model can be abstracted as a multi-objective mixed integer non- linear programming problem. Considering the mixed integer decision variables of this multi-objective problem, an improved hybrid encoding non-dominated sorting genetic algorithm with mixed discrete variables (MDNSGA-II) is used to solve the Pareto optimal front of this model, the algorithm adopted crossover and muta- tion strategy with multi-operators, which overcomes the deficiency that normal genetic algorithm cannot handle the optimization problem with mixed variables. Finally, using an ethylene plant with multiple cracking furnaces as an example to illustrate the effectiveness of the scheduling results by comparing the optimization results of multi-objective and single objective model.展开更多
In developing countries like South Africa,users experienced more than 1030 hours of load shedding outages in just the first half of 2023 due to inadequate power supply from the national grid.Residential homes that can...In developing countries like South Africa,users experienced more than 1030 hours of load shedding outages in just the first half of 2023 due to inadequate power supply from the national grid.Residential homes that cannot afford to take actions to mitigate the challenges of load shedding are severely inconvenienced as they have to reschedule their demand involuntarily.This study presents optimal strategies to guide households in determining suitable scheduling and sizing solutions for solar home systems to mitigate the inconvenience experienced by residents due to load shedding.To start with,we predict the load shedding stages that are used as input for the optimal strategies by using the K-Nearest Neighbour(KNN)algorithm.Based on an accurate forecast of the future load shedding patterns,we formulate the residents’inconvenience and the loss of power supply probability during load shedding as the objective function.When solving the multi-objective optimisation problem,four different strategies to fight against load shedding are identified,namely(1)optimal home appliance scheduling(HAS)under load shedding;(2)optimal HAS supported by solar panels;(3)optimal HAS supported by batteries,and(4)optimal HAS supported by the solar home system with both solar panels and batteries.Among these strategies,appliance scheduling with an optimally sized 9.6 kWh battery and a 2.74 kWp panel array of five 550 Wp panels,eliminates the loss of power supply probability and reduces the inconvenience by 92%when tested under the South African load shedding cases in 2023.展开更多
The mixed linear programming model is commonly recognized to be an effective means for searching optimal reservoir operation policy in water resources system. In this paper a multi-objective mixed integer linear progr...The mixed linear programming model is commonly recognized to be an effective means for searching optimal reservoir operation policy in water resources system. In this paper a multi-objective mixed integer linear programming model is set up to obtain the optimal operation policy of multi-reservoir water supply system during drought, which is able to consider the operation rule of reservoir-group system within longer-term successive drought periods, according to the basic connotation of indexes expressing the water-supply risk of reservoir during drought, that is, reliability, resilience and vulnerability of reservoir water supply, and mathematical programming principles. The model-solving procedures, particularly, the decomposition-adjustment algorithm, are proposed based on characteristics of the model structure. The principle of model-solving technique is to decompose the complex system into several smaller sub-systems on which some ease-solving mathematical models may be established. The objective of this optimization model aims at maximizing the reliability of water supply and minimizing the maximum water-shortage of single time-period within water- supply system during drought. The multi-objective mixed integer linear programming model and proposed solving procedures are applied to a case study of reservoir-group water-supply system in Huanghe-Huaihe River Basin, China. The desired water-shortage distribution within the system operation term and the maximum shortage of single time-period are achieved. The results of case study verifies that the lighter water-shortage distributed evenly among several time-periods can avoid the calamities resulted from severe water shortage concentrated on a few time-periods during drought.展开更多
In this paper, we propose a multi-criteria machine-schedules decision making method that can be applied to a produc-tion environment involving several unrelated parallel machines and we will focus on three objectives:...In this paper, we propose a multi-criteria machine-schedules decision making method that can be applied to a produc-tion environment involving several unrelated parallel machines and we will focus on three objectives: minimizing makespan, total flow time, and total number of tardy jobs. The decision making method consists of three phases. In the first phase, a mathematical model of a single machine scheduling problem, of which the objective is a weighted sum of the three objectives, is constructed. Such a model will be repeatedly solved by the CPLEX in the proposed Multi-Objective Simulated Annealing (MOSA) algorithm. In the second phase, the MOSA that integrates job clustering method, job group scheduling method, and job group – machine assignment method, is employed to obtain a set of non-dominated group schedules. During this phase, CPLEX software and the bipartite weighted matching algorithm are used repeatedly as parts of the MOSA algorithm. In the last phase, the technique of data envelopment analysis is applied to determine the most preferable schedule. A practical example is then presented in order to demonstrate the applicability of the proposed decision making method.展开更多
In order to cope with the disasters caused by the worst hurricane in Puerto Rico in 2017,it is necessary to build an emergency system to reduce the losses.An emergency system should include the location of ISO standar...In order to cope with the disasters caused by the worst hurricane in Puerto Rico in 2017,it is necessary to build an emergency system to reduce the losses.An emergency system should include the location of ISO standard dry cargo containers and the distribution of emergency medical packages.This paper discusses the distribution of emergency medical package.Based on the above location results of ISO standard dry cargo container,taking the demand of disaster areas not exceed its supply into consideration and considering the timeliness and weak economy,a multi-objective mixed integer programming model is constructed on the premise of minimum transportation time and cost.It is determined that the drone fleet consists of four B,one C and one F drones.Through the optimization model,the distribution plan of emergency medical packages is formulated.展开更多
This framework proposes a heuristic algorithm based on LP (linear programming) for optimizing the electricity cost in large residential buildings, in a smart grid environment. Our heuristic tackles large multi-objec...This framework proposes a heuristic algorithm based on LP (linear programming) for optimizing the electricity cost in large residential buildings, in a smart grid environment. Our heuristic tackles large multi-objective energy allocation problem (large number of appliances and high time resolution). The primary goal is to reduce the electricity bills, and discomfort factor. Also, increase the utilization of domestic renewable energy, and reduce the running time of the optimization algorithm. Our heuristic algorithm uses linear programming relaxation, and two rounding strategies. The first technique, called CR (cumulative rounding), is designed for thermostatic appliances such as air conditioners and electric heaters, and the second approach, called MCR (minimum cost rounding), is designed for other interruptible appliances. The results show that the proposed heuristic algorithm can be used to solve large MILP (mixed integer linear programming) problems and gives a decent suboptimal solution in polynomial time.展开更多
Coordinated partitioning and resource sharing have attracted considerable research interest in the field of real-time multiprocessor systems.However,finding an optimal partition is widely known as NP-hard,even for ind...Coordinated partitioning and resource sharing have attracted considerable research interest in the field of real-time multiprocessor systems.However,finding an optimal partition is widely known as NP-hard,even for independent tasks.A recently proposed resource-oriented partitioned(ROP)fixed-priority scheduling that partitions tasks and shared resources respectively has been shown to achieve a non-trivial speedup factor guarantee,which promotes the research of coordinated scheduling to a new level.Despite the theoretical elegance,the schedulability performance of ROP scheduling is restricted by the heuristic partitioning methods used in the original study.In this paper,we address the partitioning problem for tasks and shared resources under the ROP scheduling.A unified schedulability analysis framework for the ROP scheduling is proposed in the first place.A sophisticated partitioning approach based on integer linear programming(ILP)is then proposed based on the unified analysis.Empirical results show that the proposed methods improve the schedulability of ROP scheduling significantly,and the runtime complexity for searching a solution is reduced prominently compared with other ILP-based approaches as well.展开更多
Railway capacity has been extensively investigated for the purpose of utilizing rail infrastructure in a possible efficient strategy.Nevertheless,the estimation of high speed rail(HSR),which is different from common r...Railway capacity has been extensively investigated for the purpose of utilizing rail infrastructure in a possible efficient strategy.Nevertheless,the estimation of high speed rail(HSR),which is different from common railways in many aspects,is still a challenge work needed to be solved.Consequently,this work focuses on the capacity estimation of HSR corridor.The objectives and constraints are developed for the HSR with the consideration of passenger service level and buffer time uncertainty,and a two-stage optimization model is proposed.The first stage determines the optimal number of trains in terms of the passenger origin–destination demand,and the second stage is a multi-objective mixed integer programming(MO-MIP)aiming to estimate the optimal capacity usage.The branch-and-bound algorithm is extended and applied to the proposed model,and a case study is performed to Beijing–Shanghai HSR line.The optimal solution is obtained,and the sensitivity of the two objectives is analyzed.展开更多
文摘Based on “One Belt and One Road”, this paper studies the path selection of multimodal transport by using the method of multi-objective mixed integer programming. Therefore, this paper studies the factors of transportation time, transportation cost and transportation safety performance, and establishes a mathematical model. In addition, the method of multi-objective mixed integer programming is used to comprehensively consider the different emphasis and differences of customers on cargo transportation. Then we use planning tools of Microsoft Excel to solve path selection and to determine whether the chosen path is economical and reliable. Finally, a relatively complex road network is built as an example to verify the accuracy of this planning method.
基金Supported by the National High Technology Research and Development Program of China (2008AA042902, 2009AA04Z162), the Program of Introducing Talents of Discipline to University (B07031) and the National Natural Science Foundation of China (21106129).
文摘The demand of hydrogen in oil refinery is increasing as market forces and environmental legislation, so hydrogen network management is becoming increasingly important in refineries. Most studies focused on single-objective optimization problem for the hydrogen network, but few account for the multi-objective optimization problem. This paper presents a novel approach for modeling and multi-objective optimization for hydrogen network in refineries. An improved multi-objective optimization model is proposed based on the concept of superstructure. The optimization includes minimization of operating cost and minimization of investment cost of equipment. The proposed methodology for the multi-objective optimization of hydrogen network takes into account flow rate constraints, pressure constraints, purity constraints, impurity constraints, payback period, etc. The method considers all the feasible connections and subjects this to mixed-integer nonlinear programming (MINLP). A deterministic optimization method is applied to solve this multi-objective optimization problem. Finally, a real case study is intro-duced to illustrate the applicability of the approach.
基金Supported by the National Natural Science Foundation of China(21276078)"Shu Guang"project of Shanghai Municipal Education Commission,973 Program of China(2012CB720500)the Shanghai Science and Technology Program(13QH1401200)
文摘Cracking furnace is the core device for ethylene production. In practice, multiple ethylene furnaces are usually run in parallel. The scheduling of the entire cracking furnace system has great significance when multiple feeds are simultaneously processed in multiple cracking furnaces with the changing of operating cost and yield of product. In this paper, given the requirements of both profit and energy saving in actual production process, a multi-objective optimization model contains two objectives, maximizing the average benefits and minimizing the average coking amount was proposed. The model can be abstracted as a multi-objective mixed integer non- linear programming problem. Considering the mixed integer decision variables of this multi-objective problem, an improved hybrid encoding non-dominated sorting genetic algorithm with mixed discrete variables (MDNSGA-II) is used to solve the Pareto optimal front of this model, the algorithm adopted crossover and muta- tion strategy with multi-operators, which overcomes the deficiency that normal genetic algorithm cannot handle the optimization problem with mixed variables. Finally, using an ethylene plant with multiple cracking furnaces as an example to illustrate the effectiveness of the scheduling results by comparing the optimization results of multi-objective and single objective model.
基金supported by National Key R&D Program of China(Grant No.2021YFE0199000)National Natural Science Foundation of China(Grant No.62133015)+1 种基金National Research Foundation China/South Africa Research Cooperation Programme with Grant No.148762Royal Academy of Engineering Transforming Systems through Partnership grant scheme with reference No.TSP2021\100016.
文摘In developing countries like South Africa,users experienced more than 1030 hours of load shedding outages in just the first half of 2023 due to inadequate power supply from the national grid.Residential homes that cannot afford to take actions to mitigate the challenges of load shedding are severely inconvenienced as they have to reschedule their demand involuntarily.This study presents optimal strategies to guide households in determining suitable scheduling and sizing solutions for solar home systems to mitigate the inconvenience experienced by residents due to load shedding.To start with,we predict the load shedding stages that are used as input for the optimal strategies by using the K-Nearest Neighbour(KNN)algorithm.Based on an accurate forecast of the future load shedding patterns,we formulate the residents’inconvenience and the loss of power supply probability during load shedding as the objective function.When solving the multi-objective optimisation problem,four different strategies to fight against load shedding are identified,namely(1)optimal home appliance scheduling(HAS)under load shedding;(2)optimal HAS supported by solar panels;(3)optimal HAS supported by batteries,and(4)optimal HAS supported by the solar home system with both solar panels and batteries.Among these strategies,appliance scheduling with an optimally sized 9.6 kWh battery and a 2.74 kWp panel array of five 550 Wp panels,eliminates the loss of power supply probability and reduces the inconvenience by 92%when tested under the South African load shedding cases in 2023.
文摘The mixed linear programming model is commonly recognized to be an effective means for searching optimal reservoir operation policy in water resources system. In this paper a multi-objective mixed integer linear programming model is set up to obtain the optimal operation policy of multi-reservoir water supply system during drought, which is able to consider the operation rule of reservoir-group system within longer-term successive drought periods, according to the basic connotation of indexes expressing the water-supply risk of reservoir during drought, that is, reliability, resilience and vulnerability of reservoir water supply, and mathematical programming principles. The model-solving procedures, particularly, the decomposition-adjustment algorithm, are proposed based on characteristics of the model structure. The principle of model-solving technique is to decompose the complex system into several smaller sub-systems on which some ease-solving mathematical models may be established. The objective of this optimization model aims at maximizing the reliability of water supply and minimizing the maximum water-shortage of single time-period within water- supply system during drought. The multi-objective mixed integer linear programming model and proposed solving procedures are applied to a case study of reservoir-group water-supply system in Huanghe-Huaihe River Basin, China. The desired water-shortage distribution within the system operation term and the maximum shortage of single time-period are achieved. The results of case study verifies that the lighter water-shortage distributed evenly among several time-periods can avoid the calamities resulted from severe water shortage concentrated on a few time-periods during drought.
文摘In this paper, we propose a multi-criteria machine-schedules decision making method that can be applied to a produc-tion environment involving several unrelated parallel machines and we will focus on three objectives: minimizing makespan, total flow time, and total number of tardy jobs. The decision making method consists of three phases. In the first phase, a mathematical model of a single machine scheduling problem, of which the objective is a weighted sum of the three objectives, is constructed. Such a model will be repeatedly solved by the CPLEX in the proposed Multi-Objective Simulated Annealing (MOSA) algorithm. In the second phase, the MOSA that integrates job clustering method, job group scheduling method, and job group – machine assignment method, is employed to obtain a set of non-dominated group schedules. During this phase, CPLEX software and the bipartite weighted matching algorithm are used repeatedly as parts of the MOSA algorithm. In the last phase, the technique of data envelopment analysis is applied to determine the most preferable schedule. A practical example is then presented in order to demonstrate the applicability of the proposed decision making method.
文摘In order to cope with the disasters caused by the worst hurricane in Puerto Rico in 2017,it is necessary to build an emergency system to reduce the losses.An emergency system should include the location of ISO standard dry cargo containers and the distribution of emergency medical packages.This paper discusses the distribution of emergency medical package.Based on the above location results of ISO standard dry cargo container,taking the demand of disaster areas not exceed its supply into consideration and considering the timeliness and weak economy,a multi-objective mixed integer programming model is constructed on the premise of minimum transportation time and cost.It is determined that the drone fleet consists of four B,one C and one F drones.Through the optimization model,the distribution plan of emergency medical packages is formulated.
文摘This framework proposes a heuristic algorithm based on LP (linear programming) for optimizing the electricity cost in large residential buildings, in a smart grid environment. Our heuristic tackles large multi-objective energy allocation problem (large number of appliances and high time resolution). The primary goal is to reduce the electricity bills, and discomfort factor. Also, increase the utilization of domestic renewable energy, and reduce the running time of the optimization algorithm. Our heuristic algorithm uses linear programming relaxation, and two rounding strategies. The first technique, called CR (cumulative rounding), is designed for thermostatic appliances such as air conditioners and electric heaters, and the second approach, called MCR (minimum cost rounding), is designed for other interruptible appliances. The results show that the proposed heuristic algorithm can be used to solve large MILP (mixed integer linear programming) problems and gives a decent suboptimal solution in polynomial time.
基金the National Natural Science Foundation of China under Grant Nos.61572112 and 61802052the Applied Basic Research Programs of Science and Technology Department in Sichuan Province of China under Grant No.2019YJ0185.
文摘Coordinated partitioning and resource sharing have attracted considerable research interest in the field of real-time multiprocessor systems.However,finding an optimal partition is widely known as NP-hard,even for independent tasks.A recently proposed resource-oriented partitioned(ROP)fixed-priority scheduling that partitions tasks and shared resources respectively has been shown to achieve a non-trivial speedup factor guarantee,which promotes the research of coordinated scheduling to a new level.Despite the theoretical elegance,the schedulability performance of ROP scheduling is restricted by the heuristic partitioning methods used in the original study.In this paper,we address the partitioning problem for tasks and shared resources under the ROP scheduling.A unified schedulability analysis framework for the ROP scheduling is proposed in the first place.A sophisticated partitioning approach based on integer linear programming(ILP)is then proposed based on the unified analysis.Empirical results show that the proposed methods improve the schedulability of ROP scheduling significantly,and the runtime complexity for searching a solution is reduced prominently compared with other ILP-based approaches as well.
基金The Ministry of Transport Construction Projects in Science and Technology(No.2015318223010).
文摘Railway capacity has been extensively investigated for the purpose of utilizing rail infrastructure in a possible efficient strategy.Nevertheless,the estimation of high speed rail(HSR),which is different from common railways in many aspects,is still a challenge work needed to be solved.Consequently,this work focuses on the capacity estimation of HSR corridor.The objectives and constraints are developed for the HSR with the consideration of passenger service level and buffer time uncertainty,and a two-stage optimization model is proposed.The first stage determines the optimal number of trains in terms of the passenger origin–destination demand,and the second stage is a multi-objective mixed integer programming(MO-MIP)aiming to estimate the optimal capacity usage.The branch-and-bound algorithm is extended and applied to the proposed model,and a case study is performed to Beijing–Shanghai HSR line.The optimal solution is obtained,and the sensitivity of the two objectives is analyzed.