The principal-subordinate hierarchical multi-objective programming model of initial water rights allocation was developed based on the principle of coordinated and sustainable development of different regions and wate...The principal-subordinate hierarchical multi-objective programming model of initial water rights allocation was developed based on the principle of coordinated and sustainable development of different regions and water sectors within a basin. With the precondition of strictly controlling maximum emissions rights, initial water rights were allocated between the first and the second levels of the hierarchy in order to promote fair and coordinated development across different regions of the basin and coordinated and efficient water use across different water sectors, realize the maximum comprehensive benefits to the basin, promote the unity of quantity and quality of initial water rights allocation, and eliminate water conflict across different regions and water sectors. According to interactive decision-making theory, a principal-subordinate hierarchical interactive iterative algorithm based on the satisfaction degree was developed and used to solve the initial water rights allocation model. A case study verified the validity of the model.展开更多
A vague-set-based fuzzy multi-objective decision making model is developed for evaluating bidding plans in a bid- ding purchase process. A group of decision-makers (DMs) first independently assess bidding plans accord...A vague-set-based fuzzy multi-objective decision making model is developed for evaluating bidding plans in a bid- ding purchase process. A group of decision-makers (DMs) first independently assess bidding plans according to their experience and preferences, and these assessments may be expressed as linguistic terms, which are then converted to fuzzy numbers. The resulting decision matrices are then transformed to objective membership grade matrices. The lower bound of satisfaction and upper bound of dissatisfaction are used to determine each bidding plan’s supporting, opposing, and neutral objective sets, which together determine the vague value of a bidding plan. Finally, a score function is employed to rank all bidding plans. A new score function based on vague sets is introduced in the model and a novel method is presented for calculating the lower bound of sat- isfaction and upper bound of dissatisfaction. In a vague-set-based fuzzy multi-objective decision making model, different valua- tions for upper and lower bounds of satisfaction usually lead to distinct ranking results. Therefore, it is crucial to effectively contain DMs’ arbitrariness and subjectivity when these values are determined.展开更多
In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature sel...In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature selection aims to alleviate this issue by minimizing the number of features in the subset while simultaneously minimizing the classification error rate.Single-objective optimization approaches employ an evaluation function designed as an aggregate function with a parameter,but the results obtained depend on the value of the parameter.To eliminate this parameter’s influence,the problem can be reformulated as a multi-objective optimization problem.The Whale Optimization Algorithm(WOA)is widely used in optimization problems because of its simplicity and easy implementation.In this paper,we propose a multi-strategy assisted multi-objective WOA(MSMOWOA)to address feature selection.To enhance the algorithm’s search ability,we integrate multiple strategies such as Levy flight,Grey Wolf Optimizer,and adaptive mutation into it.Additionally,we utilize an external repository to store non-dominant solution sets and grid technology is used to maintain diversity.Results on fourteen University of California Irvine(UCI)datasets demonstrate that our proposed method effectively removes redundant features and improves classification performance.The source code can be accessed from the website:https://github.com/zc0315/MSMOWOA.展开更多
The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayto...The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayton cycle layouts are developed in this study for different reactors to reduce the cost and increase the thermohydraulic performance of nuclear power generation to promote the commercialization of nuclear energy.Parametric analysis,multi-objective optimizations,and four decision-making methods are applied to obtain each Brayton scheme’s optimal thermohydraulic and economic indexes.Results show that for the same design thermal power scale of reactors,the higher the core’s exit temperature,the better the Brayton cycle’s thermo-economic performance.Among the four-cycle layouts,the recompression cycle(RC)has the best overall performance,followed by the simple recuperation cycle(SR)and the intercooling cycle(IC),and the worst is the reheating cycle(RH).However,RH has the lowest total cost of investment(C_(tot))of$1619.85 million,and IC has the lowest levelized cost of energy(LCOE)of 0.012$/(kWh).The nuclear Brayton cycle system’s overall performance has been improved due to optimization.The performance of the molten salt reactor combined with the intercooling cycle(MSR-IC)scheme has the greatest improvement,with the net output power(W_(net)),thermal efficiencyη_(t),and exergy efficiency(η_(e))improved by 8.58%,8.58%,and 11.21%,respectively.The performance of the lead-cooled fast reactor combined with the simple recuperation cycle scheme was optimized to increase C_(tot) by 27.78%.In comparison,the internal rate of return(IRR)increased by only 7.8%,which is not friendly to investors with limited funds.For the nuclear Brayton cycle,the molten salt reactor combined with the recompression cycle scheme should receive priority,and the gas-cooled fast reactor combined with the reheating cycle scheme should be considered carefully.展开更多
This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously a...This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.展开更多
Evolutionary algorithm is time-consuming because of the large number of evolutions and much times of finite element analysis, when it is used to optimize the wing structure of a certain high altitude long endurance un...Evolutionary algorithm is time-consuming because of the large number of evolutions and much times of finite element analysis, when it is used to optimize the wing structure of a certain high altitude long endurance unmanned aviation vehicle(UAV). In order to improve efficiency it is proposed to construct a model management framework to perform the multi-objective optimization design of wing structure. The sufficient accurate approximation models of objective and constraint functions in the wing structure optimization model are built when using the model management framework, therefore in the evolutionary algorithm a number of finite element analyses can he avoided and the satisfactory multi-objective optimization results of the wing structure of the high altitude long endurance UAV are obtained.展开更多
Real-time prediction of excavation-induced displacement of retaining pile during the deep excavation process is crucial for construction safety.This paper proposes a modified back analysis method with multi-objective ...Real-time prediction of excavation-induced displacement of retaining pile during the deep excavation process is crucial for construction safety.This paper proposes a modified back analysis method with multi-objective optimization procedure,which enables a real-time prediction of horizontal displacement of retaining pile during construction.As opposed to the traditional stage-by-stage back analysis,time series monitoring data till the current excavation stage are utilized to form a multi-objective function.Then,the multi-objective particle swarm optimization (MOPSO) algorithm is applied for parameter identification.The optimized model parameters are immediately adopted to predict the excavation-induced pile deformation in the continuous construction stages.To achieve efficient parameter optimization and real-time prediction of system behavior,the back propagation neural network (BPNN) is established to substitute the finite element model,which is further implemented together with MOPSO for automatic operation.The proposed approach is applied in the Taihu tunnel excavation project,where the effectiveness of the method is demonstrated via the comparisons with the site monitoring data.The method is reliable with a prediction accuracy of more than 90%.Moreover,different optimization algorithms,including non-dominated sorting genetic algorithm (NSGA-II),Pareto Envelope-based Selection Algorithm II (PESA-II) and MOPSO,are compared,and their influences on the prediction accuracy at different excavation stages are studied.The results show that MOPSO has the best performance for high dimensional optimization task.展开更多
As two independent problems,scheduling for parts fabrication line and sequencing for mixed-model assembly line have been addressed respectively by many researchers.However,these two problems should be considered simul...As two independent problems,scheduling for parts fabrication line and sequencing for mixed-model assembly line have been addressed respectively by many researchers.However,these two problems should be considered simultaneously to improve the efficiency of the whole fabrication/assembly systems.By far,little research effort is devoted to sequencing problems for mixed-model fabrication/assembly systems.This paper is concerned about the sequencing problems in pull production systems which are composed of one mixed-model assembly line with limited intermediate buffers and two flexible parts fabrication flow lines with identical parallel machines and limited intermediate buffers.Two objectives are considered simultaneously:minimizing the total variation in parts consumption in the assembly line and minimizing the total makespan cost in the fabrication/assembly system.The integrated optimization framework,mathematical models and the method to construct the complete schedules for the fabrication lines according to the production sequences for the first stage in fabrication lines are presented.Since the above problems are non-deterministic polynomial-hard(NP-hard),a modified multi-objective genetic algorithm is proposed for solving the models,in which a method to generate the production sequences for the fabrication lines from the production sequences for the assembly line and a method to generate the initial population are put forward,new selection,crossover and mutation operators are designed,and Pareto ranking method and sharing function method are employed to evaluate the individuals' fitness.The feasibility and efficiency of the multi-objective genetic algorithm is shown by computational comparison with a multi-objective simulated annealing algorithm.The sequencing problems for mixed-model production systems can be solved effectively by the proposed modified multi-objective genetic algorithm.展开更多
A multi-objective optimization and analysis model of the sintering process based on BP neural network is presented. Genetic algorithms are combined to simplify the BP neural network, which can reduce the learning time...A multi-objective optimization and analysis model of the sintering process based on BP neural network is presented. Genetic algorithms are combined to simplify the BP neural network, which can reduce the learning time and increase the forecasting accuracy of the network model. This model has been experimented in the sintering process, and the production cost, the energy consumption, the quality (revolving intensity), and the output are considered at the same time. Moreover, the relation between some factors and the multi-objectives has been analyzed, and the results are consistent with the process. Different objectives are emphasized at different practical periods, and this can provide a theoretical basis for the manager.展开更多
The widespread adoption of aluminumalloy electric buses,known for their energy efficiency and eco-friendliness,faces a challenge due to the aluminum frame’s susceptibility to deformation compared to steel.This issue ...The widespread adoption of aluminumalloy electric buses,known for their energy efficiency and eco-friendliness,faces a challenge due to the aluminum frame’s susceptibility to deformation compared to steel.This issue is further exacerbated by the stringent requirements imposed by the flammability and explosiveness of batteries,necessitating robust frame protection.Our study aims to optimize the connectors of aluminum alloy bus frames,emphasizing durability,energy efficiency,and safety.This research delves into Multi-Objective Coordinated Optimization(MCO)techniques for lightweight design in aluminum alloy bus body connectors.Our goal is to enhance lightweighting,reinforce energy absorption,and improve deformation resistance in connector components.Three typical aluminum alloy connectors were selected and a design optimization platform was built for their MCO using a variety of software and methods.Firstly,through three-point bending experiments and finite element analysis on three types of connector components,we identified optimized design parameters based on deformation patterns.Then,employing Optimal Latin hypercube design(OLHD),parametric modeling,and neural network approximation,we developed high-precision approximate models for the design parameters of each connector component,targeting energy absorption,mass,and logarithmic strain.Lastly,utilizing the Archive-based Micro Genetic Algorithm(AMGA),Multi-Objective Particle Swarm Optimization(MOPSO),and Non-dominated SortingGenetic Algorithm(NSGA2),we explored optimized design solutions for these joint components.Subsequently,we simulated joint assembly buckling during bus rollover crash scenarios to verify and analyze the optimized solutions in three-point bending simulations.Each joint component showcased a remarkable 30%–40%mass reduction while boosting energy absorption.Our design optimization method exhibits high efficiency and costeffectiveness.Leveraging contemporary automation technology,the design optimization platform developed in this study is poised to facilitate intelligent optimization of lightweight metal components in future applications.展开更多
The demand of hydrogen in oil refinery is increasing as market forces and environmental legislation, so hydrogen network management is becoming increasingly important in refineries. Most studies focused on single-obje...The demand of hydrogen in oil refinery is increasing as market forces and environmental legislation, so hydrogen network management is becoming increasingly important in refineries. Most studies focused on single-objective optimization problem for the hydrogen network, but few account for the multi-objective optimization problem. This paper presents a novel approach for modeling and multi-objective optimization for hydrogen network in refineries. An improved multi-objective optimization model is proposed based on the concept of superstructure. The optimization includes minimization of operating cost and minimization of investment cost of equipment. The proposed methodology for the multi-objective optimization of hydrogen network takes into account flow rate constraints, pressure constraints, purity constraints, impurity constraints, payback period, etc. The method considers all the feasible connections and subjects this to mixed-integer nonlinear programming (MINLP). A deterministic optimization method is applied to solve this multi-objective optimization problem. Finally, a real case study is intro-duced to illustrate the applicability of the approach.展开更多
An application of multi-objective particle swarm optimization (MOPSO) algorithm for optimization of the hydrological model (HYMOD) is presented in this paper. MOPSO algorithm is used to find non-dominated solution...An application of multi-objective particle swarm optimization (MOPSO) algorithm for optimization of the hydrological model (HYMOD) is presented in this paper. MOPSO algorithm is used to find non-dominated solutions with two objectives: high flow Nash-Sutcliffe efficiency and low flow Nash- Sutcliffe efficiency. The two sets' coverage rate and Pareto front spacing metric are two criterions to analyze the performance of the algorithms. MOPSO algorithm surpasses multi-objective shuffled complex evolution metcopolis (MOSCEM_UA) algorithr~, in terms of the two sets' coverage rate. But when we come to Pareto front spacing rate, the non-dominated solutions of MOSCEM_ UA algorithm are better-distributed than that of MOPSO algorithm when the iteration is set to 40 000. In addition, there are obvious conflicts between the two objectives. But a compromise solution can be acquired by adopting the MOPSO algorithm.展开更多
The vehicle routing and scheduling (VRS) problem with multi-objective and multi-constraint is analyzed, considering the complexity of the modern logistics in city economy and daily life based on the system engineering...The vehicle routing and scheduling (VRS) problem with multi-objective and multi-constraint is analyzed, considering the complexity of the modern logistics in city economy and daily life based on the system engineering. The objective and constraint includes loading, the dispatch and arrival time, transportation conditions,total cost,etc. An information model and a mathematical model are built,and a method based on knowledge and biologic immunity is put forward for optimizing and evaluating the programs dimensions in vehicle routing and scheduling with multi-objective and multi-constraints. The proposed model and method are illustrated in a case study concerning a transport network, and the result shows that more optimization solutions can be easily obtained and the method is efficient and feasible. Comparing with the standard GA and the standard GA without time constraint,the computational time of the algorithm is less in this paper. And the probability of gaining optimal solution is bigger and the result is better under the condition of multi-constraint.展开更多
We present a new definition (Evolving Solutions) for Multi-objective Optimization Problem (MOP) to answer the basic question (what's multi-objective optimal solution?) and advance an asynchronous evolutionary mode...We present a new definition (Evolving Solutions) for Multi-objective Optimization Problem (MOP) to answer the basic question (what's multi-objective optimal solution?) and advance an asynchronous evolutionary model (MINT Model) to solve MOPs. The new theory is based on our understanding of the natural evolution and the analysis of the difference between natural evolution and MOP, thus it is not only different from the Converting Optimization but also different from Pareto Optimization. Some tests prove that our new theory may conquer disadvantages of the upper two methods to some extent.展开更多
Adjusting and optimizing land use structure is one of the essential approaches to solve the conflict between land supply and demand. In this study,an uncertain interval multi-objective linear programming model was est...Adjusting and optimizing land use structure is one of the essential approaches to solve the conflict between land supply and demand. In this study,an uncertain interval multi-objective linear programming model was established and applied to analyzing the suitability of land use structure in Pi County of Sichuan Province. An adjustment scheme for optimizing land use structure was proposed on the basis of development planning drawn up by the local government. The results are summarized as follows: 1) the optimal adjustment scope for cropland area ranges from 27 976.75 ha to 31 029.08 ha,and the current area is less than the lower limit of the scope; 2) the optimal adjustment scope for garden land area ranges from 4 736.49 ha to 12 967.11 ha,and the current area is less than the lower limit; 3) the optimal adjustment scope for construction land ranges from 7 761.95 ha to 10 393.18 ha,and the current area is greater than the upper limit; 4) the optimal adjustment scope for industry and mining land ranges from 557.29 ha to 693.54 ha,and the current area exceeds the upper limit; and 5) the areas of forest land,grassland and other agricultural land are within the optimal adjustment scope. In order to maximize comprehensive benefit with the limited resources and the demand of sustainable development,the areas of cropland and garden land are supposed to be expanded properly,while the construction land should be controlled and reduced gradually,and the forest land and other agricultural land can be maintained at the current level in short period.展开更多
For the deep understanding on combustion of ammonia/diesel,this study develops a reduced mechanism of ammonia/diesel with 227 species and 937 reactions.The sub-mechanism on ammonia/interactions of N-based and C-based ...For the deep understanding on combustion of ammonia/diesel,this study develops a reduced mechanism of ammonia/diesel with 227 species and 937 reactions.The sub-mechanism on ammonia/interactions of N-based and C-based species(N—C)/NOx is optimized using the Non-dominated Sorting Genetic Algorithm II(NSGA-II)with 200 generations.The optimized mechanism(named as 937b)is validated against combustion characteristics of ammonia/methane(which is used to examine the accuracy of N—C interactions)and ammonia/diesel blends.The ignition delay times(IDTs),the laminar flame speeds and most of key intermediate species during the combustion of ammonia/methane blends can be accurately simulated by 937b under a wide range of conditions.As for ammonia/diesel blends with various diesel energy fractions,reasonable predictions on the IDTs under pressures from 1.0 MPa to5.0 MPa as well as the laminar flame speeds are also achieved by 937b.In particular,with regard to the IDT simulations of ammonia/diesel blends,937b makes progress in both aspects of overall accuracy and computational efficiency,compared to a detailed ammonia/diesel mechanism.Further kinetic analysis reveals that the reaction pathway of ammonia during the combustion of ammonia/diesel blend mainly differs in the tendencies of oxygen additions to NH_2 and NH with different equivalence ratios.展开更多
This paper proposes a switching multi-objective model predictive control(MOMPC) algorithm for constrained nonlinear continuous-time process systems.Different cost functions to be minimized in MPC are switched to satis...This paper proposes a switching multi-objective model predictive control(MOMPC) algorithm for constrained nonlinear continuous-time process systems.Different cost functions to be minimized in MPC are switched to satisfy different performance criteria imposed at different sampling times.In order to ensure recursive feasibility of the switching MOMPC and stability of the resulted closed-loop system,the dual-mode control method is used to design the switching MOMPC controller.In this method,a local control law with some free-parameters is constructed using the control Lyapunov function technique to enlarge the terminal state set of MOMPC.The correction term is computed if the states are out of the terminal set and the free-parameters of the local control law are computed if the states are in the terminal set.The recursive feasibility of the MOMPC and stability of the resulted closed-loop system are established in the presence of constraints and arbitrary switches between cost functions.Finally,implementation of the switching MOMPC controller is demonstrated with a chemical process example for the continuous stirred tank reactor.展开更多
Selecting optimization ship form scheme is an important content in the process of concept design of ship. Multi-objective fuzzy decision-making model for ship form demonstration is set up according to the fuzzy patter...Selecting optimization ship form scheme is an important content in the process of concept design of ship. Multi-objective fuzzy decision-making model for ship form demonstration is set up according to the fuzzy pattern-recognition theory. Weight coefficients of each target of ship form scheme are determined by information entropy and individual subjective partiality. This model is used to select the optimal ship form scheme, the example shows that the model is exact and the resuh is credible. It can provide a reference for choosing the optimization scheme of ship form.展开更多
Titanium dioxide(TiO_(2))has attracted considerable research attentions for its promising applications in solar cells and photocatalytic devices.However,the intrinsic challenge lies in the relatively low energy conver...Titanium dioxide(TiO_(2))has attracted considerable research attentions for its promising applications in solar cells and photocatalytic devices.However,the intrinsic challenge lies in the relatively low energy conversion efficiency of TiO_(2),primarily attributed to the substantial band gaps(exceeding 3.0 eV)associated with its rutile and anatase phases.Leveraging multi-objective global optimization,we have identified two quasi-layered ternary Ti-O-S crystals,composed of titanium,oxygen,and sulfur.The calculations of formation energy,phonon dispersions,and thermal stability confirm the chemical,dynamical and thermal stability of these newly discovered phases.Employing the state-of-art hybrid density functional approach and many-body perturbation theory(quasiparticle GW approach and Bethe-Salpeter equation),we calculate the optical properties of both the TiOS phases.Significantly,both phases show favorable photocatalytic characteristics,featuring band gaps suitable for visible optical absorption and appropriate band alignments with water for effective charge carrier separation.Therefore,ternary compound TiOS holds the potential for achieving high-efficiency photochemical conversion,showing our multi-objective global optimization provides a new approach for novel environmental and energy materials design with multicomponent compounds.展开更多
Thin-walled structures are widely used in cars due to their lightweight construction and energy-absorbing properties.However,issues such as high initial stress and lowenergy-absorbing efficiency arise.This study propo...Thin-walled structures are widely used in cars due to their lightweight construction and energy-absorbing properties.However,issues such as high initial stress and lowenergy-absorbing efficiency arise.This study proposes a novel energy-absorbing structure inwhich a straight tube is combinedwith a conical tube and a bamboo-inspired bulkhead structure is introduced.This configuration allows the conical tube to flip outward first and then fold together with the straight tube.This deformation mode absorbs more energy and less peak force than the conical tube sinking and flipping inward.Through finite element numerical simulation,the specific energy absorption capacity of the structure is increased by 26%compared to that of a regular circular cross-section tube.Finally,the impact resistance of the bionic straight tapered tube structure is further improved through multi-objective optimization,promoting the engineering application and lightweight design of hybrid cross-section tubes.展开更多
基金supported by the Public Welfare Industry Special Fund Project of the Ministry of Water Resources of China (Grant No. 200701028)the Humanities and Social Science Foundation Program of Hohai University (Grant No. 2008421411)
文摘The principal-subordinate hierarchical multi-objective programming model of initial water rights allocation was developed based on the principle of coordinated and sustainable development of different regions and water sectors within a basin. With the precondition of strictly controlling maximum emissions rights, initial water rights were allocated between the first and the second levels of the hierarchy in order to promote fair and coordinated development across different regions of the basin and coordinated and efficient water use across different water sectors, realize the maximum comprehensive benefits to the basin, promote the unity of quantity and quality of initial water rights allocation, and eliminate water conflict across different regions and water sectors. According to interactive decision-making theory, a principal-subordinate hierarchical interactive iterative algorithm based on the satisfaction degree was developed and used to solve the initial water rights allocation model. A case study verified the validity of the model.
基金Project (No. K81077) supported by the Department of Automation, Xiamen University, China
文摘A vague-set-based fuzzy multi-objective decision making model is developed for evaluating bidding plans in a bid- ding purchase process. A group of decision-makers (DMs) first independently assess bidding plans according to their experience and preferences, and these assessments may be expressed as linguistic terms, which are then converted to fuzzy numbers. The resulting decision matrices are then transformed to objective membership grade matrices. The lower bound of satisfaction and upper bound of dissatisfaction are used to determine each bidding plan’s supporting, opposing, and neutral objective sets, which together determine the vague value of a bidding plan. Finally, a score function is employed to rank all bidding plans. A new score function based on vague sets is introduced in the model and a novel method is presented for calculating the lower bound of sat- isfaction and upper bound of dissatisfaction. In a vague-set-based fuzzy multi-objective decision making model, different valua- tions for upper and lower bounds of satisfaction usually lead to distinct ranking results. Therefore, it is crucial to effectively contain DMs’ arbitrariness and subjectivity when these values are determined.
基金supported in part by the Natural Science Youth Foundation of Hebei Province under Grant F2019403207in part by the PhD Research Startup Foundation of Hebei GEO University under Grant BQ2019055+3 种基金in part by the Open Research Project of the Hubei Key Laboratory of Intelligent Geo-Information Processing under Grant KLIGIP-2021A06in part by the Fundamental Research Funds for the Universities in Hebei Province under Grant QN202220in part by the Science and Technology Research Project for Universities of Hebei under Grant ZD2020344in part by the Guangxi Natural Science Fund General Project under Grant 2021GXNSFAA075029.
文摘In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature selection aims to alleviate this issue by minimizing the number of features in the subset while simultaneously minimizing the classification error rate.Single-objective optimization approaches employ an evaluation function designed as an aggregate function with a parameter,but the results obtained depend on the value of the parameter.To eliminate this parameter’s influence,the problem can be reformulated as a multi-objective optimization problem.The Whale Optimization Algorithm(WOA)is widely used in optimization problems because of its simplicity and easy implementation.In this paper,we propose a multi-strategy assisted multi-objective WOA(MSMOWOA)to address feature selection.To enhance the algorithm’s search ability,we integrate multiple strategies such as Levy flight,Grey Wolf Optimizer,and adaptive mutation into it.Additionally,we utilize an external repository to store non-dominant solution sets and grid technology is used to maintain diversity.Results on fourteen University of California Irvine(UCI)datasets demonstrate that our proposed method effectively removes redundant features and improves classification performance.The source code can be accessed from the website:https://github.com/zc0315/MSMOWOA.
基金This work was supported of National Natural Science Foundation of China Fund(No.52306033)State Key Laboratory of Engines Fund(No.SKLE-K2022-07)the Jiangxi Provincial Postgraduate Innovation Special Fund(No.YC2022-s513).
文摘The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayton cycle layouts are developed in this study for different reactors to reduce the cost and increase the thermohydraulic performance of nuclear power generation to promote the commercialization of nuclear energy.Parametric analysis,multi-objective optimizations,and four decision-making methods are applied to obtain each Brayton scheme’s optimal thermohydraulic and economic indexes.Results show that for the same design thermal power scale of reactors,the higher the core’s exit temperature,the better the Brayton cycle’s thermo-economic performance.Among the four-cycle layouts,the recompression cycle(RC)has the best overall performance,followed by the simple recuperation cycle(SR)and the intercooling cycle(IC),and the worst is the reheating cycle(RH).However,RH has the lowest total cost of investment(C_(tot))of$1619.85 million,and IC has the lowest levelized cost of energy(LCOE)of 0.012$/(kWh).The nuclear Brayton cycle system’s overall performance has been improved due to optimization.The performance of the molten salt reactor combined with the intercooling cycle(MSR-IC)scheme has the greatest improvement,with the net output power(W_(net)),thermal efficiencyη_(t),and exergy efficiency(η_(e))improved by 8.58%,8.58%,and 11.21%,respectively.The performance of the lead-cooled fast reactor combined with the simple recuperation cycle scheme was optimized to increase C_(tot) by 27.78%.In comparison,the internal rate of return(IRR)increased by only 7.8%,which is not friendly to investors with limited funds.For the nuclear Brayton cycle,the molten salt reactor combined with the recompression cycle scheme should receive priority,and the gas-cooled fast reactor combined with the reheating cycle scheme should be considered carefully.
文摘This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.
文摘Evolutionary algorithm is time-consuming because of the large number of evolutions and much times of finite element analysis, when it is used to optimize the wing structure of a certain high altitude long endurance unmanned aviation vehicle(UAV). In order to improve efficiency it is proposed to construct a model management framework to perform the multi-objective optimization design of wing structure. The sufficient accurate approximation models of objective and constraint functions in the wing structure optimization model are built when using the model management framework, therefore in the evolutionary algorithm a number of finite element analyses can he avoided and the satisfactory multi-objective optimization results of the wing structure of the high altitude long endurance UAV are obtained.
基金supported by the National Natural Science Foundation of China(Grant Nos.52208380 and 51979270)the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.SKLGME021022).
文摘Real-time prediction of excavation-induced displacement of retaining pile during the deep excavation process is crucial for construction safety.This paper proposes a modified back analysis method with multi-objective optimization procedure,which enables a real-time prediction of horizontal displacement of retaining pile during construction.As opposed to the traditional stage-by-stage back analysis,time series monitoring data till the current excavation stage are utilized to form a multi-objective function.Then,the multi-objective particle swarm optimization (MOPSO) algorithm is applied for parameter identification.The optimized model parameters are immediately adopted to predict the excavation-induced pile deformation in the continuous construction stages.To achieve efficient parameter optimization and real-time prediction of system behavior,the back propagation neural network (BPNN) is established to substitute the finite element model,which is further implemented together with MOPSO for automatic operation.The proposed approach is applied in the Taihu tunnel excavation project,where the effectiveness of the method is demonstrated via the comparisons with the site monitoring data.The method is reliable with a prediction accuracy of more than 90%.Moreover,different optimization algorithms,including non-dominated sorting genetic algorithm (NSGA-II),Pareto Envelope-based Selection Algorithm II (PESA-II) and MOPSO,are compared,and their influences on the prediction accuracy at different excavation stages are studied.The results show that MOPSO has the best performance for high dimensional optimization task.
基金supported by National Natural Science Foundation of China (Grant No.50875101)National Hi-tech Research and Development Program of China (863 Program,Grant No.2007AA04Z186)
文摘As two independent problems,scheduling for parts fabrication line and sequencing for mixed-model assembly line have been addressed respectively by many researchers.However,these two problems should be considered simultaneously to improve the efficiency of the whole fabrication/assembly systems.By far,little research effort is devoted to sequencing problems for mixed-model fabrication/assembly systems.This paper is concerned about the sequencing problems in pull production systems which are composed of one mixed-model assembly line with limited intermediate buffers and two flexible parts fabrication flow lines with identical parallel machines and limited intermediate buffers.Two objectives are considered simultaneously:minimizing the total variation in parts consumption in the assembly line and minimizing the total makespan cost in the fabrication/assembly system.The integrated optimization framework,mathematical models and the method to construct the complete schedules for the fabrication lines according to the production sequences for the first stage in fabrication lines are presented.Since the above problems are non-deterministic polynomial-hard(NP-hard),a modified multi-objective genetic algorithm is proposed for solving the models,in which a method to generate the production sequences for the fabrication lines from the production sequences for the assembly line and a method to generate the initial population are put forward,new selection,crossover and mutation operators are designed,and Pareto ranking method and sharing function method are employed to evaluate the individuals' fitness.The feasibility and efficiency of the multi-objective genetic algorithm is shown by computational comparison with a multi-objective simulated annealing algorithm.The sequencing problems for mixed-model production systems can be solved effectively by the proposed modified multi-objective genetic algorithm.
文摘A multi-objective optimization and analysis model of the sintering process based on BP neural network is presented. Genetic algorithms are combined to simplify the BP neural network, which can reduce the learning time and increase the forecasting accuracy of the network model. This model has been experimented in the sintering process, and the production cost, the energy consumption, the quality (revolving intensity), and the output are considered at the same time. Moreover, the relation between some factors and the multi-objectives has been analyzed, and the results are consistent with the process. Different objectives are emphasized at different practical periods, and this can provide a theoretical basis for the manager.
基金the National Natural Science Foundation of China(Grant Number 52075553)the Postgraduate Research and Innovation Project of Central South University(School-Enterprise Association)(Grant Number 2021XQLH014).
文摘The widespread adoption of aluminumalloy electric buses,known for their energy efficiency and eco-friendliness,faces a challenge due to the aluminum frame’s susceptibility to deformation compared to steel.This issue is further exacerbated by the stringent requirements imposed by the flammability and explosiveness of batteries,necessitating robust frame protection.Our study aims to optimize the connectors of aluminum alloy bus frames,emphasizing durability,energy efficiency,and safety.This research delves into Multi-Objective Coordinated Optimization(MCO)techniques for lightweight design in aluminum alloy bus body connectors.Our goal is to enhance lightweighting,reinforce energy absorption,and improve deformation resistance in connector components.Three typical aluminum alloy connectors were selected and a design optimization platform was built for their MCO using a variety of software and methods.Firstly,through three-point bending experiments and finite element analysis on three types of connector components,we identified optimized design parameters based on deformation patterns.Then,employing Optimal Latin hypercube design(OLHD),parametric modeling,and neural network approximation,we developed high-precision approximate models for the design parameters of each connector component,targeting energy absorption,mass,and logarithmic strain.Lastly,utilizing the Archive-based Micro Genetic Algorithm(AMGA),Multi-Objective Particle Swarm Optimization(MOPSO),and Non-dominated SortingGenetic Algorithm(NSGA2),we explored optimized design solutions for these joint components.Subsequently,we simulated joint assembly buckling during bus rollover crash scenarios to verify and analyze the optimized solutions in three-point bending simulations.Each joint component showcased a remarkable 30%–40%mass reduction while boosting energy absorption.Our design optimization method exhibits high efficiency and costeffectiveness.Leveraging contemporary automation technology,the design optimization platform developed in this study is poised to facilitate intelligent optimization of lightweight metal components in future applications.
基金Supported by the National High Technology Research and Development Program of China (2008AA042902, 2009AA04Z162), the Program of Introducing Talents of Discipline to University (B07031) and the National Natural Science Foundation of China (21106129).
文摘The demand of hydrogen in oil refinery is increasing as market forces and environmental legislation, so hydrogen network management is becoming increasingly important in refineries. Most studies focused on single-objective optimization problem for the hydrogen network, but few account for the multi-objective optimization problem. This paper presents a novel approach for modeling and multi-objective optimization for hydrogen network in refineries. An improved multi-objective optimization model is proposed based on the concept of superstructure. The optimization includes minimization of operating cost and minimization of investment cost of equipment. The proposed methodology for the multi-objective optimization of hydrogen network takes into account flow rate constraints, pressure constraints, purity constraints, impurity constraints, payback period, etc. The method considers all the feasible connections and subjects this to mixed-integer nonlinear programming (MINLP). A deterministic optimization method is applied to solve this multi-objective optimization problem. Finally, a real case study is intro-duced to illustrate the applicability of the approach.
基金NSFC Innovation Team Project,China(NO.50721006)National Key Technologies R&D Program of China during the llth Five-Year Plan Period(NO.2008BAB29B08)
文摘An application of multi-objective particle swarm optimization (MOPSO) algorithm for optimization of the hydrological model (HYMOD) is presented in this paper. MOPSO algorithm is used to find non-dominated solutions with two objectives: high flow Nash-Sutcliffe efficiency and low flow Nash- Sutcliffe efficiency. The two sets' coverage rate and Pareto front spacing metric are two criterions to analyze the performance of the algorithms. MOPSO algorithm surpasses multi-objective shuffled complex evolution metcopolis (MOSCEM_UA) algorithr~, in terms of the two sets' coverage rate. But when we come to Pareto front spacing rate, the non-dominated solutions of MOSCEM_ UA algorithm are better-distributed than that of MOPSO algorithm when the iteration is set to 40 000. In addition, there are obvious conflicts between the two objectives. But a compromise solution can be acquired by adopting the MOPSO algorithm.
基金National natural science foundation (No:70371040)
文摘The vehicle routing and scheduling (VRS) problem with multi-objective and multi-constraint is analyzed, considering the complexity of the modern logistics in city economy and daily life based on the system engineering. The objective and constraint includes loading, the dispatch and arrival time, transportation conditions,total cost,etc. An information model and a mathematical model are built,and a method based on knowledge and biologic immunity is put forward for optimizing and evaluating the programs dimensions in vehicle routing and scheduling with multi-objective and multi-constraints. The proposed model and method are illustrated in a case study concerning a transport network, and the result shows that more optimization solutions can be easily obtained and the method is efficient and feasible. Comparing with the standard GA and the standard GA without time constraint,the computational time of the algorithm is less in this paper. And the probability of gaining optimal solution is bigger and the result is better under the condition of multi-constraint.
基金Supported by the National Natural Science Foundation of China(70071042,60073043,60133010)
文摘We present a new definition (Evolving Solutions) for Multi-objective Optimization Problem (MOP) to answer the basic question (what's multi-objective optimal solution?) and advance an asynchronous evolutionary model (MINT Model) to solve MOPs. The new theory is based on our understanding of the natural evolution and the analysis of the difference between natural evolution and MOP, thus it is not only different from the Converting Optimization but also different from Pareto Optimization. Some tests prove that our new theory may conquer disadvantages of the upper two methods to some extent.
基金Under the auspices of National Key Technology R&D Program of China (No. 2006BAB04A08)
文摘Adjusting and optimizing land use structure is one of the essential approaches to solve the conflict between land supply and demand. In this study,an uncertain interval multi-objective linear programming model was established and applied to analyzing the suitability of land use structure in Pi County of Sichuan Province. An adjustment scheme for optimizing land use structure was proposed on the basis of development planning drawn up by the local government. The results are summarized as follows: 1) the optimal adjustment scope for cropland area ranges from 27 976.75 ha to 31 029.08 ha,and the current area is less than the lower limit of the scope; 2) the optimal adjustment scope for garden land area ranges from 4 736.49 ha to 12 967.11 ha,and the current area is less than the lower limit; 3) the optimal adjustment scope for construction land ranges from 7 761.95 ha to 10 393.18 ha,and the current area is greater than the upper limit; 4) the optimal adjustment scope for industry and mining land ranges from 557.29 ha to 693.54 ha,and the current area exceeds the upper limit; and 5) the areas of forest land,grassland and other agricultural land are within the optimal adjustment scope. In order to maximize comprehensive benefit with the limited resources and the demand of sustainable development,the areas of cropland and garden land are supposed to be expanded properly,while the construction land should be controlled and reduced gradually,and the forest land and other agricultural land can be maintained at the current level in short period.
基金the National Natural Science Foundation of China(project code:52202470)Jilin Province Natural Science Foundation(project codes:20220101205JC,20220101212JC)+2 种基金Jilin Province Specific Project of Industrial Technology Research&Development(project code:2020C025-2)2021 Interdisciplinary Integration and Innovation Project of Jilin University(project code:XJRCYB07)Free Exploration Project of Changsha Automotive Innovation Research Institute of Jilin University(project code:CAIRIZT20220202)。
文摘For the deep understanding on combustion of ammonia/diesel,this study develops a reduced mechanism of ammonia/diesel with 227 species and 937 reactions.The sub-mechanism on ammonia/interactions of N-based and C-based species(N—C)/NOx is optimized using the Non-dominated Sorting Genetic Algorithm II(NSGA-II)with 200 generations.The optimized mechanism(named as 937b)is validated against combustion characteristics of ammonia/methane(which is used to examine the accuracy of N—C interactions)and ammonia/diesel blends.The ignition delay times(IDTs),the laminar flame speeds and most of key intermediate species during the combustion of ammonia/methane blends can be accurately simulated by 937b under a wide range of conditions.As for ammonia/diesel blends with various diesel energy fractions,reasonable predictions on the IDTs under pressures from 1.0 MPa to5.0 MPa as well as the laminar flame speeds are also achieved by 937b.In particular,with regard to the IDT simulations of ammonia/diesel blends,937b makes progress in both aspects of overall accuracy and computational efficiency,compared to a detailed ammonia/diesel mechanism.Further kinetic analysis reveals that the reaction pathway of ammonia during the combustion of ammonia/diesel blend mainly differs in the tendencies of oxygen additions to NH_2 and NH with different equivalence ratios.
基金Supported by the National Natural Science Foundation of China(61374111)the Natural Science Foundation of Zhejiang Province(LY13F030006)Agricultural Key Program of Ningbo City(2014C10068)
文摘This paper proposes a switching multi-objective model predictive control(MOMPC) algorithm for constrained nonlinear continuous-time process systems.Different cost functions to be minimized in MPC are switched to satisfy different performance criteria imposed at different sampling times.In order to ensure recursive feasibility of the switching MOMPC and stability of the resulted closed-loop system,the dual-mode control method is used to design the switching MOMPC controller.In this method,a local control law with some free-parameters is constructed using the control Lyapunov function technique to enlarge the terminal state set of MOMPC.The correction term is computed if the states are out of the terminal set and the free-parameters of the local control law are computed if the states are in the terminal set.The recursive feasibility of the MOMPC and stability of the resulted closed-loop system are established in the presence of constraints and arbitrary switches between cost functions.Finally,implementation of the switching MOMPC controller is demonstrated with a chemical process example for the continuous stirred tank reactor.
文摘Selecting optimization ship form scheme is an important content in the process of concept design of ship. Multi-objective fuzzy decision-making model for ship form demonstration is set up according to the fuzzy pattern-recognition theory. Weight coefficients of each target of ship form scheme are determined by information entropy and individual subjective partiality. This model is used to select the optimal ship form scheme, the example shows that the model is exact and the resuh is credible. It can provide a reference for choosing the optimization scheme of ship form.
基金Project supported by the Natural Science Foundation of WIUCAS (Grant Nos.WIUCASQD2023004 and WIUCASQD2022025)the National Natural Science Foundation of China (Grant Nos.12304006,12104452,12022508,12074394,and 12374061)+1 种基金the Shanghai Science and Technology Innovation Action Plan (Grant No.23JC1401400)the Natural Science Foundation of Wenzhou (Grant No.L2023005)。
文摘Titanium dioxide(TiO_(2))has attracted considerable research attentions for its promising applications in solar cells and photocatalytic devices.However,the intrinsic challenge lies in the relatively low energy conversion efficiency of TiO_(2),primarily attributed to the substantial band gaps(exceeding 3.0 eV)associated with its rutile and anatase phases.Leveraging multi-objective global optimization,we have identified two quasi-layered ternary Ti-O-S crystals,composed of titanium,oxygen,and sulfur.The calculations of formation energy,phonon dispersions,and thermal stability confirm the chemical,dynamical and thermal stability of these newly discovered phases.Employing the state-of-art hybrid density functional approach and many-body perturbation theory(quasiparticle GW approach and Bethe-Salpeter equation),we calculate the optical properties of both the TiOS phases.Significantly,both phases show favorable photocatalytic characteristics,featuring band gaps suitable for visible optical absorption and appropriate band alignments with water for effective charge carrier separation.Therefore,ternary compound TiOS holds the potential for achieving high-efficiency photochemical conversion,showing our multi-objective global optimization provides a new approach for novel environmental and energy materials design with multicomponent compounds.
文摘Thin-walled structures are widely used in cars due to their lightweight construction and energy-absorbing properties.However,issues such as high initial stress and lowenergy-absorbing efficiency arise.This study proposes a novel energy-absorbing structure inwhich a straight tube is combinedwith a conical tube and a bamboo-inspired bulkhead structure is introduced.This configuration allows the conical tube to flip outward first and then fold together with the straight tube.This deformation mode absorbs more energy and less peak force than the conical tube sinking and flipping inward.Through finite element numerical simulation,the specific energy absorption capacity of the structure is increased by 26%compared to that of a regular circular cross-section tube.Finally,the impact resistance of the bionic straight tapered tube structure is further improved through multi-objective optimization,promoting the engineering application and lightweight design of hybrid cross-section tubes.