There exists large space to save energy of high-sulfur natural gas purification process.The multi-objective optimization problem has been investigated to effectively reduce the total comprehensive energy consumption a...There exists large space to save energy of high-sulfur natural gas purification process.The multi-objective optimization problem has been investigated to effectively reduce the total comprehensive energy consumption and further improve the production rate of purified gas.A steady-state simulation model of high-sulfur natural gas purification process has been set up by using ProMax.Seven key operating parameters of the purification process have been determined based on the analysis of comprehensive energy consumption distribution.To solve the problem that the process model does not converge in some conditions,back-propagation(BP)neural network has been applied to substitute the simulation model to predict the relative parameters in the optimization model.The uniform design method and the table U21(107)have been applied to design the experiment points for training and testing BP model.High prediction accuracy can be achieved by using the BP model.Nondominated sorting genetic algorithm-II has been developed to optimize the two objectives,and 100 Pareto optimal solutions have been obtained.Three optimal points have been selected and evaluated further.The results demonstrate that the total comprehensive energy consumption is reduced by 13.4%and the production rate of purified gas is improved by 0.2%under the optimized operating conditions.展开更多
An approach for the integrated optimization of the construction/expansion capacity of high-voltage/ medium-voltage (HV/MV) substations and the configuration of MV radial distribution network was presented using plant ...An approach for the integrated optimization of the construction/expansion capacity of high-voltage/ medium-voltage (HV/MV) substations and the configuration of MV radial distribution network was presented using plant growth simulation algorithm (PGSA). In the optimization process, fixed costs correspondent to the investment in lines and substations and the variable costs associated to the operation of the system were considered under the constraints of branch capacity, substation capacity and bus voltage. The optimization variables considerably reduce the dimension of variables and speed up the process of optimizing. The effectiveness of the proposed approach was tested by a distribution system planning.展开更多
基金Financial support from National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No.2016ZX05017-004)
文摘There exists large space to save energy of high-sulfur natural gas purification process.The multi-objective optimization problem has been investigated to effectively reduce the total comprehensive energy consumption and further improve the production rate of purified gas.A steady-state simulation model of high-sulfur natural gas purification process has been set up by using ProMax.Seven key operating parameters of the purification process have been determined based on the analysis of comprehensive energy consumption distribution.To solve the problem that the process model does not converge in some conditions,back-propagation(BP)neural network has been applied to substitute the simulation model to predict the relative parameters in the optimization model.The uniform design method and the table U21(107)have been applied to design the experiment points for training and testing BP model.High prediction accuracy can be achieved by using the BP model.Nondominated sorting genetic algorithm-II has been developed to optimize the two objectives,and 100 Pareto optimal solutions have been obtained.Three optimal points have been selected and evaluated further.The results demonstrate that the total comprehensive energy consumption is reduced by 13.4%and the production rate of purified gas is improved by 0.2%under the optimized operating conditions.
基金the National Natural Science Foundation of China (No. 50747025)the Postdoctoral Science Foundation of China (No. 20060400648)+1 种基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars (No. 2005383)the Shanghai Key Scienceand Technology Research Program (No. 041612012)
文摘An approach for the integrated optimization of the construction/expansion capacity of high-voltage/ medium-voltage (HV/MV) substations and the configuration of MV radial distribution network was presented using plant growth simulation algorithm (PGSA). In the optimization process, fixed costs correspondent to the investment in lines and substations and the variable costs associated to the operation of the system were considered under the constraints of branch capacity, substation capacity and bus voltage. The optimization variables considerably reduce the dimension of variables and speed up the process of optimizing. The effectiveness of the proposed approach was tested by a distribution system planning.