Coverage challenge for small considered to be a optlmlzation is a main cell clusters which are promising solution to provide seamless cellular coverage for large indoor or outdoor areas. This paper focuses on small ce...Coverage challenge for small considered to be a optlmlzation is a main cell clusters which are promising solution to provide seamless cellular coverage for large indoor or outdoor areas. This paper focuses on small cell cluster coverage problems and proposes both centralized and distributed self-optimization methods. Modified Particle swarm optimization (MPSO) is introduced to centralized optimization which employs particle swarm optimization (PSO) and introduces a heuristic power control scheme to accelerate the algorithm to search tbr the global optimum solution. Distributed coverage optimization is modeled as a non-cooperative game, with a utility function considering both throughput and interference. An iterative power control algorithm is then proposed using game theory (DGT) which converges to Nash Equilibrium (NE). Simulation results show that both MPSO and DGT have excellent performance in coverage optimization and outperform optimization using simulated annealing algorithm (SA), reaching higher coverage ratio and throughput while with less iterations.展开更多
Based on constructal theory and entransy theory,a generalized constructal optimization of a solidification heat transfer process of slab continuous casting for a specified total water flow rate in the secondary coolin...Based on constructal theory and entransy theory,a generalized constructal optimization of a solidification heat transfer process of slab continuous casting for a specified total water flow rate in the secondary cooling zone was carried out.A complex function was taken as the optimization objective to perform the casting.The complex function was composed of the functions of the entransy dissipation and surface temperature gradient of the slab.The optimal water distribution at the sections of the secondary cooling zone were obtained.The effects of the total water flow rate in the secondary cooling zone,casting speed,superheat and water distribution on the generalized constructal optimizations of the secondary cooling process were analyzed.The results show that on comparing the optimization results obtained based on the optimal water distributions of the 8 sections in the secondary cooling zone with those based on the initial ones,the complex function and the functions of the entransy dissipation and surface temperature gradient after optimization decreased by 43.25%,5.90%and 80.60%,respectively.The quality and energy storage of the slab had obviously improved in this case.The complex function,composed of the functions of the entransy dissipation and surface temperature gradient of the slab,was a compromise between the internal and surface temperature gradients of the slab.Essentially,it is also the compromise between energy storage and quality of the slab.The"generalized constructal optimization"based on the minimum complex function can provide an optimal alternative scheme from the point of view of improving energy storage and quality for the parameter design and dynamic operation of the solidification heat transfer process of slab continuous casting.展开更多
基金supported by the National High-Tech Development 863 Program of China (Grant DOS. 2012AA012801)National Natural Science Foundation of China(No.61331009)
文摘Coverage challenge for small considered to be a optlmlzation is a main cell clusters which are promising solution to provide seamless cellular coverage for large indoor or outdoor areas. This paper focuses on small cell cluster coverage problems and proposes both centralized and distributed self-optimization methods. Modified Particle swarm optimization (MPSO) is introduced to centralized optimization which employs particle swarm optimization (PSO) and introduces a heuristic power control scheme to accelerate the algorithm to search tbr the global optimum solution. Distributed coverage optimization is modeled as a non-cooperative game, with a utility function considering both throughput and interference. An iterative power control algorithm is then proposed using game theory (DGT) which converges to Nash Equilibrium (NE). Simulation results show that both MPSO and DGT have excellent performance in coverage optimization and outperform optimization using simulated annealing algorithm (SA), reaching higher coverage ratio and throughput while with less iterations.
基金supported by the National Key Basic Research and Devel-opment Program of China("973"Project)(Grant No.2012CB720405)the National Natural Science Foundation of China(Grant Nos.51176203 and 51206184)the Natural Science Foundation of Hubei Province(Grant No.2012FFB06905)
文摘Based on constructal theory and entransy theory,a generalized constructal optimization of a solidification heat transfer process of slab continuous casting for a specified total water flow rate in the secondary cooling zone was carried out.A complex function was taken as the optimization objective to perform the casting.The complex function was composed of the functions of the entransy dissipation and surface temperature gradient of the slab.The optimal water distribution at the sections of the secondary cooling zone were obtained.The effects of the total water flow rate in the secondary cooling zone,casting speed,superheat and water distribution on the generalized constructal optimizations of the secondary cooling process were analyzed.The results show that on comparing the optimization results obtained based on the optimal water distributions of the 8 sections in the secondary cooling zone with those based on the initial ones,the complex function and the functions of the entransy dissipation and surface temperature gradient after optimization decreased by 43.25%,5.90%and 80.60%,respectively.The quality and energy storage of the slab had obviously improved in this case.The complex function,composed of the functions of the entransy dissipation and surface temperature gradient of the slab,was a compromise between the internal and surface temperature gradients of the slab.Essentially,it is also the compromise between energy storage and quality of the slab.The"generalized constructal optimization"based on the minimum complex function can provide an optimal alternative scheme from the point of view of improving energy storage and quality for the parameter design and dynamic operation of the solidification heat transfer process of slab continuous casting.