The artificial bee colony(ABC) algorithm is improved to construct a hybrid multi-objective ABC algorithm, called HMOABC, for resolving optimal power flow(OPF) problem by simultaneously optimizing three conflicting obj...The artificial bee colony(ABC) algorithm is improved to construct a hybrid multi-objective ABC algorithm, called HMOABC, for resolving optimal power flow(OPF) problem by simultaneously optimizing three conflicting objectives of OPF, instead of transforming multi-objective functions into a single objective function. The main idea of HMOABC is to extend original ABC algorithm to multi-objective and cooperative mode by combining the Pareto dominance and divide-and-conquer approach. HMOABC is then used in the 30-bus IEEE test system for solving the OPF problem considering the cost, loss, and emission impacts. The simulation results show that the HMOABC is superior to other algorithms in terms of optimization accuracy and computation robustness.展开更多
The output uncertainty of high-proportion distributed power generation severely affects the system voltage and frequency.Simultaneously,controllable loads have also annually increased,which markedly improve the capabi...The output uncertainty of high-proportion distributed power generation severely affects the system voltage and frequency.Simultaneously,controllable loads have also annually increased,which markedly improve the capability for nodal-power control.To maintain the system frequency and voltage magnitude around rated values,a new multi-objective optimization model for both voltage and frequency control is proposed.Moreover,a great similarity between the multiobjective optimization and game problems appears.To reduce the strong subjectivity of the traditional methods,the idea and method of the game theory are introduced into the solution.According to the present situational data and analysis of the voltage and frequency sensitivities to nodal-power variations,the design variables involved in the voltage and frequency control are classified into two strategy spaces for players using hierarchical clustering.Finally,the effectiveness and rationality of the proposed control are verified in MATLAB.展开更多
This paper studies the economic environmental energy-saving day-ahead scheduling problem of power systems considering wind generation(WG)and demand response(DR)by means of multi-objective dynamic optimal power flow(MD...This paper studies the economic environmental energy-saving day-ahead scheduling problem of power systems considering wind generation(WG)and demand response(DR)by means of multi-objective dynamic optimal power flow(MDOPF).Within the model,fuel cost,carbon emission and active power losses are taken as objectives,and an integrated dispatch modeof conventional coal-fired generation,WG and DRis utilized.The corresponding solution process to the MDOPF is based on ahybrid of a non-dominated sorting genetic algorithm-II(NSGA-II)and fuwzy satisfaction-maximizing method,where NSGA-II obtains the Pareto frontier and the fuzzy satisfaction-maximizing method is the chosen strategy.Illustrative cases of different scenarios are performed based on an IEEE 6-units\,30-nodes system,to verify the proposed model and the solution process,as well as the benefits obtained by the DR into power system.展开更多
Power flow optimization control,which governs the energy flow among engine,battery,and motor,plays a very important role in plug-in hybrid electric vehicles(PHEVs).Its performance directly affects the fuel economy of ...Power flow optimization control,which governs the energy flow among engine,battery,and motor,plays a very important role in plug-in hybrid electric vehicles(PHEVs).Its performance directly affects the fuel economy of PHEVs.For the purpose of improving fuel economy,the electric system including battery and motor will be frequently scheduled,which would affect battery life.Therefore,a multi-objective optimization mechanism taking fuel economy and battery life into account is necessary,which is also a research focus in field of hybrid vehicles.Motivated by this issue,this paper proposes a multi-objective power flow optimization control strategy for a power split PHEV using game theory.Firstly,since the demand power of driver which is necessary for the power flow optimization control,cannot be known in advance,the demand power of driver can be modelled using a Markov chain to obtain predicted demand power.Secondly,based on the predicted demand power,the multi-objective optimization control problem is transformed into a game problem.A novel non-cooperative game model between engine and battery is established,and the benefit function with fuel economy and battery life as the optimization objective is proposed.Thirdly,under the premise of satisfying various constraints,the participants of the above game maximize their own benefit function to obtain the Nash equilibrium,which comprises of optimal power split scheme.Finally,the proposed strategy is verified compared with two baseline strategies,and results show that the proposed strategy can reduce equivalent fuel consumption by about 15%compared with baseline strategy 1,and achieve similar fuel economy while greatly extend battery life simultaneously compared with baseline strategy 2.展开更多
In this paper, a simple strategy based differential evolution was proposed for solving the problem of multi-objective environmental optimal power flow considering a hybrid model (Wind-Shunt-FACTS). The DE algorithm ...In this paper, a simple strategy based differential evolution was proposed for solving the problem of multi-objective environmental optimal power flow considering a hybrid model (Wind-Shunt-FACTS). The DE algorithm optimized simultaneously a combined vector control based active power of wind sources and reactive power of multi STATCOM exchanged with the electrical power system to minimize fuel cost and emissions. The proposed strategy was examined and applied to the standard IEEE 30-bus with smooth cost function to solve the problem of security environmental economic dispatch considering multi distributed hybrid model based wind and STATCOM controllers. In addition, the proposed approach was validated on a large practical electrical power system 40 generating units considering valve point effect. Simulation results demonstrate that choosing the installation of multi type of FACTS devices in coordination with many distributed wind sources is a vital research area.展开更多
This paper addresses the Energy-Aware Distributed Hybrid Flow Shop Scheduling Problem with Multiprocessor Tasks(EADHFSPMT)by considering two objectives simultaneously,i.e.,makespan and total energy consumption.It cons...This paper addresses the Energy-Aware Distributed Hybrid Flow Shop Scheduling Problem with Multiprocessor Tasks(EADHFSPMT)by considering two objectives simultaneously,i.e.,makespan and total energy consumption.It consists of three sub-problems,i.e.,job assignment between factories,job sequence in each factory,and machine allocation for each job.We present a mixed inter linear programming model and propose a Novel MultiObjective Evolutionary Algorithm based on Decomposition(NMOEA/D).We specially design a decoding scheme according to the characteristics of the EADHFSPMT.To initialize a population with certain diversity,four different rules are utilized.Moreover,a cooperative search is designed to produce new solutions based on different types of relationship between any solution and its neighbors.To enhance the quality of solutions,two local intensification operators are implemented according to the problem characteristics.In addition,a dynamic adjustment strategy for weight vectors is designed to balance the diversity and convergence,which can adaptively modify weight vectors according to the distribution of the non-dominated front.Extensive computational experiments are carried out by using a number of benchmark instances,which demonstrate the effectiveness of the above special designs.The statistical comparisons to the existing algorithms also verify the superior performances of the NMOEA/D.展开更多
A hierarchical control scheme is proposed for optimal power flow control to minimize loss in a hybrid multiterminal HVDC(hybrid-MTDC)transmission system.In this scheme,the lower level is the droop control,which enable...A hierarchical control scheme is proposed for optimal power flow control to minimize loss in a hybrid multiterminal HVDC(hybrid-MTDC)transmission system.In this scheme,the lower level is the droop control,which enables fast response to power fluctuation and ensures a stable DC voltage,and the upper level is power flow optimization control,which minimizes the losses during the operation of hybrid-MTDC and solves the contradiction between minimizing losses and preventing commutation failure.A 6-terminal hybrid-MTDC is also designed and simulated in PSCAD according to the potential demand of power transmission and wind farms integration in China to verify the proposed control strategy.First,the steady state analysis is conducted and then compared with simulation results.The analysis shows that the proposed control scheme achieves the desired minimum losses while at the same time satisfying system constraints.The proposed control scheme also guarantees that the hybrid-MTDC not only has a good dynamic response,but also remains stable during communication failure.展开更多
Various kinds of new engineering technologies have been studied to realize the low-carbon and sustainable power supply systems all over the world.In actual implementation of these technologies,mostly,there are multipl...Various kinds of new engineering technologies have been studied to realize the low-carbon and sustainable power supply systems all over the world.In actual implementation of these technologies,mostly,there are multiple objectives with trade off relationships among each other,and also various constraints in the achievement of these objectives.Therefore,it should be essential to solve multiobjective optimization problems effectively in the applications of these new technologies in power systems.This paper proposes an improved method to realize multiobjective optimization for critical challenges in advanced power systems.To realize that,in an optimal dispersed generation installation problem,that is,one of effective measures for low-carbon power systems,various optimization methods and their combination methods are evaluated and a hybrid method for evolutionary algorithms was developed.The method can provide improved results compared with other state-of-the-art multi-objective optimization methods.展开更多
This paper employs an efficacious analytical tool,adaptive simplified human learning optimization(ASHLO)algorithm,to solve optimal power flow(OPF)problem in AC/DC hybrid power system,considering valve-point loading ef...This paper employs an efficacious analytical tool,adaptive simplified human learning optimization(ASHLO)algorithm,to solve optimal power flow(OPF)problem in AC/DC hybrid power system,considering valve-point loading effects of generators,carbon tax,and prohibited operating zones of generators,respectively.ASHLO algorithm,involves random learning operator,individual learning operator,social learning operator and adaptive strategies.To compare and analyze the computation performance of the ASHLO method,the proposed ASHLO method and other heuristic intelligent optimization methods are employed to solve OPF problem on the modified IEEE 30-bus and 118-bus AC/DC hybrid test system.Numerical results indicate that the ASHLO method has good convergent property and robustness.Meanwhile,the impacts of wind speeds and locations of HVDC transmission line integrated into the AC network on the OPF results are systematically analyzed.展开更多
Optimal power flow(OPF)is one of the key tools for optimal operation and planning of modern power systems.Due to the high complexity with continuous and discrete control variables,modern heuristic optimization algorit...Optimal power flow(OPF)is one of the key tools for optimal operation and planning of modern power systems.Due to the high complexity with continuous and discrete control variables,modern heuristic optimization algorithms(HOAs)have been widely employed for the solution of OPF.This paper provides an overview of the latest applications of advanced HOAs in OPF problems.The most frequently applied HOAs for solving the OPF problem in recent years are covered and briefly introduced,including genetic algorithm(GA),differential evolution(DE),particle swarm optimization(PSO),and evolutionary programming(EP),etc.展开更多
混合型潮流控制器(hybrid power flow controller,HPFC)可以有效解决风电并网系统中存在的支路潮流过载问题,且相较于统一潮流控制器成本更低。针对现有的HPFC潮流优化研究尚未计及支路潮流最大值约束和风电不确定性的问题,提出一种基...混合型潮流控制器(hybrid power flow controller,HPFC)可以有效解决风电并网系统中存在的支路潮流过载问题,且相较于统一潮流控制器成本更低。针对现有的HPFC潮流优化研究尚未计及支路潮流最大值约束和风电不确定性的问题,提出一种基于场景削减的含HPFC风电并网系统最优潮流模型。首先,建立HPFC的功率注入模型,并推导了注入功率表达式;其次,采用K均值算法削减风电、负荷概率场景,通过CH(+)指标选择最优场景集合;最后,建立兼顾发电机运行成本、系统网络损耗、正常运行及N-1故障下的支路负载率的多目标优化模型,采用多目标粒子群优化(multi-objective particle swarm optimization,MOPSO)算法进行求解,利用模糊满意度函数在Pareto解集中筛选出折衷解。在MATLAB中仿真验证所提方法的有效性,结果表明该方法可以计及风电不确定性,保证电网在不同场景下的安全经济运行。展开更多
As an important process during the cement production,grate cooler plays significance roles on clinker cooling and waste heat recovery.In this paper,we measured experimentally the heat balance of the grate cooler,which...As an important process during the cement production,grate cooler plays significance roles on clinker cooling and waste heat recovery.In this paper,we measured experimentally the heat balance of the grate cooler,which provided initial operating parameters for optimization.Then,the grate cooler was simplified into a series-connected heat exchanger network by power flow method.Constructing the equivalent thermal resistance network provided the global constraints by Kirchhoff’s law.On this basis,with the objectives of the minimum entropy generation numbers caused by heat transfer and viscous dissipation,solving a multi-objective optimization model achieved the Pareto Front by genetic algorithm.Then selecting the scheme of the lowest fan power consumption obtained the optimal operating parameters of the grate cooler.The results showed that the total mass flow of the optimized scheme did not change significantly compared with the original scheme,but the fan power consumption was 25.44%lower,and the heat recovery efficiency was 88.43%,which was improved by 11.35%.Furthermore,the analysis showed that the optimal operating parameters were affected by the local heat load.After optimizing the diameter of clinker particles within the allowable industrial range,the clinker with particle diameter of 0.02 m had the optimal performance.展开更多
进化类算法和内点法交替迭代的混合算法在求解含电压源换流器的高压直流输电(voltage source converter basedhigh voltage direct current,VSC-HVDC)的交直流系统最优潮流(optimal power flow,OPF)问题时由于截断误差的影响和VSC-HVDC...进化类算法和内点法交替迭代的混合算法在求解含电压源换流器的高压直流输电(voltage source converter basedhigh voltage direct current,VSC-HVDC)的交直流系统最优潮流(optimal power flow,OPF)问题时由于截断误差的影响和VSC-HVDC控制方式的限制,容易发生振荡,因此提出一种基于差分进化(differential evolution,DE)和原—对偶内点法(primal-dual interior point method,PDIPM)的统一混合迭代算法。算法的主要思想是以DE算法为框架,对离散变量进行优化,在DE算法的每一次迭代过程中,采用PDIPM对每个DE个体进行连续变量的优化和适应度评估。由于采用PDIPM进行DE种群适应度评估,无需设定VSC-HVDC的控制方式,因此提高了算法的全局寻优能力。多个算例结果表明,该混合算法数值稳定性高,寻优能力强,能很好地解决含两端、多端、多馈入VSC-HVDC的交直流系统最优潮流问题。展开更多
基金Projects(61105067,61174164)supported by the National Natural Science Foundation of China
文摘The artificial bee colony(ABC) algorithm is improved to construct a hybrid multi-objective ABC algorithm, called HMOABC, for resolving optimal power flow(OPF) problem by simultaneously optimizing three conflicting objectives of OPF, instead of transforming multi-objective functions into a single objective function. The main idea of HMOABC is to extend original ABC algorithm to multi-objective and cooperative mode by combining the Pareto dominance and divide-and-conquer approach. HMOABC is then used in the 30-bus IEEE test system for solving the OPF problem considering the cost, loss, and emission impacts. The simulation results show that the HMOABC is superior to other algorithms in terms of optimization accuracy and computation robustness.
基金the National Key Research and Development Program of China(Basic Research Class)(No.2017YFB0903000)the National Natural Science Foundation of China(No.U1909201).
文摘The output uncertainty of high-proportion distributed power generation severely affects the system voltage and frequency.Simultaneously,controllable loads have also annually increased,which markedly improve the capability for nodal-power control.To maintain the system frequency and voltage magnitude around rated values,a new multi-objective optimization model for both voltage and frequency control is proposed.Moreover,a great similarity between the multiobjective optimization and game problems appears.To reduce the strong subjectivity of the traditional methods,the idea and method of the game theory are introduced into the solution.According to the present situational data and analysis of the voltage and frequency sensitivities to nodal-power variations,the design variables involved in the voltage and frequency control are classified into two strategy spaces for players using hierarchical clustering.Finally,the effectiveness and rationality of the proposed control are verified in MATLAB.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 51277015,51677007 and 51977012.
文摘This paper studies the economic environmental energy-saving day-ahead scheduling problem of power systems considering wind generation(WG)and demand response(DR)by means of multi-objective dynamic optimal power flow(MDOPF).Within the model,fuel cost,carbon emission and active power losses are taken as objectives,and an integrated dispatch modeof conventional coal-fired generation,WG and DRis utilized.The corresponding solution process to the MDOPF is based on ahybrid of a non-dominated sorting genetic algorithm-II(NSGA-II)and fuwzy satisfaction-maximizing method,where NSGA-II obtains the Pareto frontier and the fuzzy satisfaction-maximizing method is the chosen strategy.Illustrative cases of different scenarios are performed based on an IEEE 6-units\,30-nodes system,to verify the proposed model and the solution process,as well as the benefits obtained by the DR into power system.
基金the National Natural Science Foundation of China(Grant Nos.51975048,U1764257 and 51705480)the Beijing Institute of Technology Research Fund Program for Young Scholars。
文摘Power flow optimization control,which governs the energy flow among engine,battery,and motor,plays a very important role in plug-in hybrid electric vehicles(PHEVs).Its performance directly affects the fuel economy of PHEVs.For the purpose of improving fuel economy,the electric system including battery and motor will be frequently scheduled,which would affect battery life.Therefore,a multi-objective optimization mechanism taking fuel economy and battery life into account is necessary,which is also a research focus in field of hybrid vehicles.Motivated by this issue,this paper proposes a multi-objective power flow optimization control strategy for a power split PHEV using game theory.Firstly,since the demand power of driver which is necessary for the power flow optimization control,cannot be known in advance,the demand power of driver can be modelled using a Markov chain to obtain predicted demand power.Secondly,based on the predicted demand power,the multi-objective optimization control problem is transformed into a game problem.A novel non-cooperative game model between engine and battery is established,and the benefit function with fuel economy and battery life as the optimization objective is proposed.Thirdly,under the premise of satisfying various constraints,the participants of the above game maximize their own benefit function to obtain the Nash equilibrium,which comprises of optimal power split scheme.Finally,the proposed strategy is verified compared with two baseline strategies,and results show that the proposed strategy can reduce equivalent fuel consumption by about 15%compared with baseline strategy 1,and achieve similar fuel economy while greatly extend battery life simultaneously compared with baseline strategy 2.
文摘In this paper, a simple strategy based differential evolution was proposed for solving the problem of multi-objective environmental optimal power flow considering a hybrid model (Wind-Shunt-FACTS). The DE algorithm optimized simultaneously a combined vector control based active power of wind sources and reactive power of multi STATCOM exchanged with the electrical power system to minimize fuel cost and emissions. The proposed strategy was examined and applied to the standard IEEE 30-bus with smooth cost function to solve the problem of security environmental economic dispatch considering multi distributed hybrid model based wind and STATCOM controllers. In addition, the proposed approach was validated on a large practical electrical power system 40 generating units considering valve point effect. Simulation results demonstrate that choosing the installation of multi type of FACTS devices in coordination with many distributed wind sources is a vital research area.
基金supported by the National Natural Science Fund for Distinguished Young Scholars of China(No.61525304)the National Natural Science Foundation of China(No.61873328)。
文摘This paper addresses the Energy-Aware Distributed Hybrid Flow Shop Scheduling Problem with Multiprocessor Tasks(EADHFSPMT)by considering two objectives simultaneously,i.e.,makespan and total energy consumption.It consists of three sub-problems,i.e.,job assignment between factories,job sequence in each factory,and machine allocation for each job.We present a mixed inter linear programming model and propose a Novel MultiObjective Evolutionary Algorithm based on Decomposition(NMOEA/D).We specially design a decoding scheme according to the characteristics of the EADHFSPMT.To initialize a population with certain diversity,four different rules are utilized.Moreover,a cooperative search is designed to produce new solutions based on different types of relationship between any solution and its neighbors.To enhance the quality of solutions,two local intensification operators are implemented according to the problem characteristics.In addition,a dynamic adjustment strategy for weight vectors is designed to balance the diversity and convergence,which can adaptively modify weight vectors according to the distribution of the non-dominated front.Extensive computational experiments are carried out by using a number of benchmark instances,which demonstrate the effectiveness of the above special designs.The statistical comparisons to the existing algorithms also verify the superior performances of the NMOEA/D.
基金supported in part by the 111 Project of China under Grant B08013State Grid Corporation of China under Grant XT71-14-042.
文摘A hierarchical control scheme is proposed for optimal power flow control to minimize loss in a hybrid multiterminal HVDC(hybrid-MTDC)transmission system.In this scheme,the lower level is the droop control,which enables fast response to power fluctuation and ensures a stable DC voltage,and the upper level is power flow optimization control,which minimizes the losses during the operation of hybrid-MTDC and solves the contradiction between minimizing losses and preventing commutation failure.A 6-terminal hybrid-MTDC is also designed and simulated in PSCAD according to the potential demand of power transmission and wind farms integration in China to verify the proposed control strategy.First,the steady state analysis is conducted and then compared with simulation results.The analysis shows that the proposed control scheme achieves the desired minimum losses while at the same time satisfying system constraints.The proposed control scheme also guarantees that the hybrid-MTDC not only has a good dynamic response,but also remains stable during communication failure.
文摘Various kinds of new engineering technologies have been studied to realize the low-carbon and sustainable power supply systems all over the world.In actual implementation of these technologies,mostly,there are multiple objectives with trade off relationships among each other,and also various constraints in the achievement of these objectives.Therefore,it should be essential to solve multiobjective optimization problems effectively in the applications of these new technologies in power systems.This paper proposes an improved method to realize multiobjective optimization for critical challenges in advanced power systems.To realize that,in an optimal dispersed generation installation problem,that is,one of effective measures for low-carbon power systems,various optimization methods and their combination methods are evaluated and a hybrid method for evolutionary algorithms was developed.The method can provide improved results compared with other state-of-the-art multi-objective optimization methods.
基金supported by National Natural Science Foundation of China(No.51377103)the technology project of State Grid Corporation of China:Research on Multi-Level Decomposition Coordination of the Pareto Set of Multi-Objective Optimization Problem in Bulk Power System(No.SGSXDKYDWKJ2015-001)the support from State Energy Smart Grid R&D Center(SHANGHAI)
文摘This paper employs an efficacious analytical tool,adaptive simplified human learning optimization(ASHLO)algorithm,to solve optimal power flow(OPF)problem in AC/DC hybrid power system,considering valve-point loading effects of generators,carbon tax,and prohibited operating zones of generators,respectively.ASHLO algorithm,involves random learning operator,individual learning operator,social learning operator and adaptive strategies.To compare and analyze the computation performance of the ASHLO method,the proposed ASHLO method and other heuristic intelligent optimization methods are employed to solve OPF problem on the modified IEEE 30-bus and 118-bus AC/DC hybrid test system.Numerical results indicate that the ASHLO method has good convergent property and robustness.Meanwhile,the impacts of wind speeds and locations of HVDC transmission line integrated into the AC network on the OPF results are systematically analyzed.
基金This work was partially supported by Hong Kong RGC Theme Based Research Scheme Grants No.T23-407/13 N and T23-701/14 N.
文摘Optimal power flow(OPF)is one of the key tools for optimal operation and planning of modern power systems.Due to the high complexity with continuous and discrete control variables,modern heuristic optimization algorithms(HOAs)have been widely employed for the solution of OPF.This paper provides an overview of the latest applications of advanced HOAs in OPF problems.The most frequently applied HOAs for solving the OPF problem in recent years are covered and briefly introduced,including genetic algorithm(GA),differential evolution(DE),particle swarm optimization(PSO),and evolutionary programming(EP),etc.
基金supported by the Shandong Provincial Natural Science Foundation(Grant No.ZR2019QEE016)。
文摘As an important process during the cement production,grate cooler plays significance roles on clinker cooling and waste heat recovery.In this paper,we measured experimentally the heat balance of the grate cooler,which provided initial operating parameters for optimization.Then,the grate cooler was simplified into a series-connected heat exchanger network by power flow method.Constructing the equivalent thermal resistance network provided the global constraints by Kirchhoff’s law.On this basis,with the objectives of the minimum entropy generation numbers caused by heat transfer and viscous dissipation,solving a multi-objective optimization model achieved the Pareto Front by genetic algorithm.Then selecting the scheme of the lowest fan power consumption obtained the optimal operating parameters of the grate cooler.The results showed that the total mass flow of the optimized scheme did not change significantly compared with the original scheme,but the fan power consumption was 25.44%lower,and the heat recovery efficiency was 88.43%,which was improved by 11.35%.Furthermore,the analysis showed that the optimal operating parameters were affected by the local heat load.After optimizing the diameter of clinker particles within the allowable industrial range,the clinker with particle diameter of 0.02 m had the optimal performance.
文摘进化类算法和内点法交替迭代的混合算法在求解含电压源换流器的高压直流输电(voltage source converter basedhigh voltage direct current,VSC-HVDC)的交直流系统最优潮流(optimal power flow,OPF)问题时由于截断误差的影响和VSC-HVDC控制方式的限制,容易发生振荡,因此提出一种基于差分进化(differential evolution,DE)和原—对偶内点法(primal-dual interior point method,PDIPM)的统一混合迭代算法。算法的主要思想是以DE算法为框架,对离散变量进行优化,在DE算法的每一次迭代过程中,采用PDIPM对每个DE个体进行连续变量的优化和适应度评估。由于采用PDIPM进行DE种群适应度评估,无需设定VSC-HVDC的控制方式,因此提高了算法的全局寻优能力。多个算例结果表明,该混合算法数值稳定性高,寻优能力强,能很好地解决含两端、多端、多馈入VSC-HVDC的交直流系统最优潮流问题。