期刊文献+
共找到71篇文章
< 1 2 4 >
每页显示 20 50 100
An Improved Multi-Objective Particle Swarm Optimization Routing on MANET
1
作者 G.Rajeshkumar M.Vinoth Kumar +3 位作者 K.Sailaja Kumar Surbhi Bhatia Arwa Mashat Pankaj Dadheech 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1187-1200,共14页
A Mobile Ad hoc Network(MANET)is a group of low-power con-sumption of wireless mobile nodes that configure a wireless network without the assistance of any existing infrastructure/centralized organization.The primary a... A Mobile Ad hoc Network(MANET)is a group of low-power con-sumption of wireless mobile nodes that configure a wireless network without the assistance of any existing infrastructure/centralized organization.The primary aim of MANETs is to extendflexibility into the self-directed,mobile,and wireless domain,in which a cluster of autonomous nodes forms a MANET routing system.An Intrusion Detection System(IDS)is a tool that examines a network for mal-icious behavior/policy violations.A network monitoring system is often used to report/gather any suspicious attacks/violations.An IDS is a software program or hardware system that monitors network/security traffic for malicious attacks,sending out alerts whenever it detects malicious nodes.The impact of Dynamic Source Routing(DSR)in MANETs challenging blackhole attack is investigated in this research article.The Cluster Trust Adaptive Acknowledgement(CTAA)method is used to identify unauthorised and malfunctioning nodes in a MANET environment.MANET system is active and provides successful delivery of a data packet,which implements Kalman Filters(KF)to anticipate node trustworthiness.Furthermore,KF is used to eliminate synchronisation errors that arise during the sending and receiving data.In order to provide an energy-efficient solution and to minimize network traffic,route optimization in MANET by using Multi-Objective Particle Swarm Optimization(MOPSO)technique to determine the optimal num-ber of clustered MANET along with energy dissipation in nodes.According to the researchfindings,the proposed CTAA-MPSO achieves a Packet Delivery Ratio(PDR)of 3.3%.In MANET,the PDR of CTAA-MPSO improves CTAA-PSO by 3.5%at 30%malware. 展开更多
关键词 MANET intrusion detection system CLUSTER kalmanfilter dynamic source routing multi-objective particle swarm optimization packet delivery ratio
下载PDF
Optimal Location and Sizing of Distributed Generator via Improved Multi-Objective Particle Swarm Optimization in Active Distribution Network Considering Multi-Resource
2
作者 Guobin He Rui Su +5 位作者 Jinxin Yang Yuanping Huang Huanlin Chen Donghui Zhang Cangtao Yang Wenwen Li 《Energy Engineering》 EI 2023年第9期2133-2154,共22页
In the framework of vigorous promotion of low-carbon power system growth as well as economic globalization,multi-resource penetration in active distribution networks has been advancing fiercely.In particular,distribut... In the framework of vigorous promotion of low-carbon power system growth as well as economic globalization,multi-resource penetration in active distribution networks has been advancing fiercely.In particular,distributed generation(DG)based on renewable energy is critical for active distribution network operation enhancement.To comprehensively analyze the accessing impact of DG in distribution networks from various parts,this paper establishes an optimal DG location and sizing planning model based on active power losses,voltage profile,pollution emissions,and the economics of DG costs as well as meteorological conditions.Subsequently,multiobjective particle swarm optimization(MOPSO)is applied to obtain the optimal Pareto front.Besides,for the sake of avoiding the influence of the subjective setting of the weight coefficient,the decisionmethod based on amodified ideal point is applied to execute a Pareto front decision.Finally,simulation tests based on IEEE33 and IEEE69 nodes are designed.The experimental results show thatMOPSO can achieve wider and more uniformPareto front distribution.In the IEEE33 node test system,power loss,and voltage deviation decreased by 52.23%,and 38.89%,respectively,while taking the economy into account.In the IEEE69 test system,the three indexes decreased by 19.67%,and 58.96%,respectively. 展开更多
关键词 Active distribution network multi-resource penetration operation enhancement particle swarm optimization multi-objective optimization
下载PDF
Multi-objective reservoir operation using particle swarm optimization with adaptive random inertia weights 被引量:9
3
作者 Hai-tao Chen Wen-chuan Wang +1 位作者 Xiao-nan Chen Lin Qiu 《Water Science and Engineering》 EI CAS CSCD 2020年第2期136-144,共9页
Based on conventional particle swarm optimization(PSO),this paper presents an efficient and reliable heuristic approach using PSO with an adaptive random inertia weight(ARIW)strategy,referred to as the ARIW-PSO algori... Based on conventional particle swarm optimization(PSO),this paper presents an efficient and reliable heuristic approach using PSO with an adaptive random inertia weight(ARIW)strategy,referred to as the ARIW-PSO algorithm,to build a multi-objective optimization model for reservoir operation.Using the triangular probability density function,the inertia weight is randomly generated,and the probability density function is automatically adjusted to make the inertia weight generally greater in the initial stage of evolution,which is suitable for global searches.In the evolution process,the inertia weight gradually decreases,which is beneficial to local searches.The performance of the ARIWPSO algorithm was investigated with some classical test functions,and the results were compared with those of the genetic algorithm(GA),the conventional PSO,and other improved PSO methods.Then,the ARIW-PSO algorithm was applied to multi-objective optimal dispatch of the Panjiakou Reservoir and multi-objective flood control operation of a reservoir group on the Luanhe River in China,including the Panjiakou Reservoir,Daheiting Reservoir,and Taolinkou Reservoir.The validity of the multi-objective optimization model for multi-reservoir systems based on the ARIW-PSO algorithm was verified. 展开更多
关键词 particle swarm optimization Genetic algorithm Random inertia weight multi-objective reservoir operation Reservoir group Panjiakou Reservoir
下载PDF
An Improved Unsupervised Image Segmentation Method Based on Multi-Objective Particle Swarm Optimization Clustering Algorithm 被引量:3
4
作者 Zhe Liu Bao Xiang +2 位作者 Yuqing Song Hu Lu Qingfeng Liu 《Computers, Materials & Continua》 SCIE EI 2019年第2期451-461,共11页
Most image segmentation methods based on clustering algorithms use singleobjective function to implement image segmentation.To avoid the defect,this paper proposes a new image segmentation method based on a multi-obje... Most image segmentation methods based on clustering algorithms use singleobjective function to implement image segmentation.To avoid the defect,this paper proposes a new image segmentation method based on a multi-objective particle swarm optimization(PSO)clustering algorithm.This unsupervised algorithm not only offers a new similarity computing approach based on electromagnetic forces,but also obtains the proper number of clusters which is determined by scale-space theory.It is experimentally demonstrated that the applicability and effectiveness of the proposed multi-objective PSO clustering algorithm. 展开更多
关键词 multi-objective optimization particle swarm optimization electromagnetic forces scale-space theory
下载PDF
Optimization of the Hydrological Model Using Multi-objective Particle Swarm Optimization Algorithm 被引量:2
5
作者 黄晓敏 雷晓辉 +1 位作者 王宇晖 朱连勇 《Journal of Donghua University(English Edition)》 EI CAS 2011年第5期519-522,共4页
An application of multi-objective particle swarm optimization (MOPSO) algorithm for optimization of the hydrological model (HYMOD) is presented in this paper. MOPSO algorithm is used to find non-dominated solution... An application of multi-objective particle swarm optimization (MOPSO) algorithm for optimization of the hydrological model (HYMOD) is presented in this paper. MOPSO algorithm is used to find non-dominated solutions with two objectives: high flow Nash-Sutcliffe efficiency and low flow Nash- Sutcliffe efficiency. The two sets' coverage rate and Pareto front spacing metric are two criterions to analyze the performance of the algorithms. MOPSO algorithm surpasses multi-objective shuffled complex evolution metcopolis (MOSCEM_UA) algorithr~, in terms of the two sets' coverage rate. But when we come to Pareto front spacing rate, the non-dominated solutions of MOSCEM_ UA algorithm are better-distributed than that of MOPSO algorithm when the iteration is set to 40 000. In addition, there are obvious conflicts between the two objectives. But a compromise solution can be acquired by adopting the MOPSO algorithm. 展开更多
关键词 multi-objective particle swarm optimization (MOPSO) hydrological model (HYMOD) multi-objective optimization
下载PDF
A modified multi-objective particle swarm optimization approach and its application to the design of a deepwater composite riser 被引量:1
6
作者 Y.Zheng J.Chen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第2期275-284,共10页
A modified multi-objective particle swarm optimization method is proposed for obtaining Pareto-optimal solutions effectively. Different from traditional multiobjective particle swarm optimization methods, Kriging meta... A modified multi-objective particle swarm optimization method is proposed for obtaining Pareto-optimal solutions effectively. Different from traditional multiobjective particle swarm optimization methods, Kriging meta-models and the trapezoid index are introduced and integrated with the traditional one. Kriging meta-models are built to match expensive or black-box functions. By applying Kriging meta-models, function evaluation numbers are decreased and the boundary Pareto-optimal solutions are identified rapidly. For bi-objective optimization problems, the trapezoid index is calculated as the sum of the trapezoid’s area formed by the Pareto-optimal solutions and one objective axis. It can serve as a measure whether the Pareto-optimal solutions converge to the Pareto front. Illustrative examples indicate that to obtain Paretooptimal solutions, the method proposed needs fewer function evaluations than the traditional multi-objective particle swarm optimization method and the non-dominated sorting genetic algorithm II method, and both the accuracy and the computational efficiency are improved. The proposed method is also applied to the design of a deepwater composite riser example in which the structural performances are calculated by numerical analysis. The design aim was to enhance the tension strength and minimize the cost. Under the buckling constraint, the optimal trade-off of tensile strength and material volume is obtained. The results demonstrated that the proposed method can effec tively deal with multi-objective optimizations with black-box functions. 展开更多
关键词 multi-objective particle swarm optimization Kriging meta-model Trapezoid index Deepwater composite riser
下载PDF
Multi-Objective Weather Routing Algorithm for Ships Based on Hybrid Particle Swarm Optimization 被引量:1
7
作者 ZHAO Wei WANG Hongbo +3 位作者 GENG Jianning HU Wenmei ZHANG Zhanshuo ZHANG Guangyu 《Journal of Ocean University of China》 SCIE CAS CSCD 2022年第1期28-38,共11页
Maritime transportation has become an important part of the international trade system.To promote its sustainable de-velopment,it is necessary to reduce the fuel consumption of ships,decrease navigation risks,and shor... Maritime transportation has become an important part of the international trade system.To promote its sustainable de-velopment,it is necessary to reduce the fuel consumption of ships,decrease navigation risks,and shorten the navigation time.Ac-cordingly,planning a multi-objective route for ships is an effective way to achieve these goals.In this paper,we propose a multi-ob-jective optimal ship weather routing system framework.Based on this framework,a ship route model,ship fuel consumption model,and navigation risk model are established,and a non-dominated sorting and multi-objective ship weather routing algorithm based on particle swarm optimization is proposed.To fasten the convergence of the algorithm and improve the diversity of route solutions,a mutation operation and an elite selection operation are introduced in the algorithm.Based on the Pareto optimal front and Pareto optimal solution set obtained by the algorithm,a recommended route selection criterion is designed.Finally,two sets of simulated navigation simulation experiments on a container ship are conducted.The experimental results show that the proposed multi-objective optimal weather routing system can be used to plan a ship route with low navigation risk,short navigation time,and low fuel consumption,fulfilling the safety,efficiency,and economic goals. 展开更多
关键词 weather routing particle swarm optimization route planning multi-objective optimization
下载PDF
Multi-objective fuzzy particle swarm optimization based on elite archiving and its convergence 被引量:1
8
作者 Wei Jingxuan Wang Yuping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期1035-1040,共6页
A fuzzy particle swarm optimization (PSO) on the basis of elite archiving is proposed for solving multi-objective optimization problems. First, a new perturbation operator is designed, and the concepts of fuzzy glob... A fuzzy particle swarm optimization (PSO) on the basis of elite archiving is proposed for solving multi-objective optimization problems. First, a new perturbation operator is designed, and the concepts of fuzzy global best and fuzzy personal best are given on basis of the new operator. After that, particle updating equations are revised on the basis of the two new concepts to discourage the premature convergence and enlarge the potential search space; second, the elite archiving technique is used during the process of evolution, namely, the elite particles are introduced into the swarm, whereas the inferior particles are deleted. Therefore, the quality of the swarm is ensured. Finally, the convergence of this swarm is proved. The experimental results show that the nondominated solutions found by the proposed algorithm are uniformly distributed and widely spread along the Pareto front. 展开更多
关键词 multi-objective optimization particle swarm optimization fuzzy personal best fuzzy global best elite archiving.
下载PDF
Research on Optimization of Freight Train ATO Based on Elite Competition Multi-Objective Particle Swarm Optimization 被引量:1
9
作者 Lingzhi Yi Renzhe Duan +3 位作者 Wang Li Yihao Wang Dake Zhang Bo Liu 《Energy and Power Engineering》 2021年第4期41-51,共11页
<div style="text-align:justify;"> In view of the complex problems that freight train ATO (automatic train operation) needs to comprehensively consider punctuality, energy saving and safety, a dynamics ... <div style="text-align:justify;"> In view of the complex problems that freight train ATO (automatic train operation) needs to comprehensively consider punctuality, energy saving and safety, a dynamics model of the freight train operation process is established based on the safety and the freight train dynamics model in the process of its operation. The algorithm of combining elite competition strategy with multi-objective particle swarm optimization technology is introduced, and the winning particles are obtained through the competition between two elite particles to guide the update of other particles, so as to balance the convergence and distribution of multi-objective particle swarm optimization. The performance comparison experimental results verify the superiority of the proposed algorithm. The simulation experiments of the actual line verify the feasibility of the model and the effectiveness of the proposed algorithm. </div> 展开更多
关键词 Freight Train Automatic Train Operation Dynamics Model Competitive multi-objective particle swarm Optimization Algorithm (CMOPSO) multi-objective Optimization
下载PDF
Operation Optimal Control of Urban Rail Train Based on Multi-Objective Particle Swarm Optimization
10
作者 Liang Jin Qinghui Meng Shuang Liang 《Computer Systems Science & Engineering》 SCIE EI 2022年第7期387-395,共9页
The energy consumption of train operation occupies a large proportion of the total consumption of railway transportation.In order to improve the oper-ating energy utilization rate of trains,a multi-objective particle ... The energy consumption of train operation occupies a large proportion of the total consumption of railway transportation.In order to improve the oper-ating energy utilization rate of trains,a multi-objective particle swarm optimiza-tion(MPSO)algorithm with energy consumption,punctuality and parking accuracy as the objective and safety as the constraint is built.To accelerate its the convergence process,the train operation progression is divided into several modes according to the train speed-distance curve.A human-computer interactive particle swarm optimization algorithm is proposed,which presents the optimized results after a certain number of iterations to the decision maker,and the satisfac-tory outcomes can be obtained after a limited number of adjustments.The multi-objective particle swarm optimization(MPSO)algorithm is used to optimize the train operation process.An algorithm based on the important relationship between the objective and the preference information of the given reference points is sug-gested to overcome the shortcomings of the existing algorithms.These methods significantly increase the computational complexity and convergence of the algo-rithm.An adaptive fuzzy logic system that can simultaneously utilize experience information andfield data information is proposed to adjust the consequences of off-line optimization in real time,thereby eliminating the influence of uncertainty on train operation.After optimization and adjustment,the whole running time has been increased by 0.5 s,the energy consumption has been reduced by 12%,the parking accuracy has been increased by 8%,and the comprehensive performance has been enhanced. 展开更多
关键词 particle swarm optimization multi-objective urban rail train optimal control
下载PDF
Multi-objective particle swarm optimization by fusing multiple strategies
11
作者 XU Zhenxing ZHU Shuiran 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第3期284-299,共16页
To improve the convergence and distributivity of multi-objective particle swarm optimization,we propose a method for multi-objective particle swarm optimization by fusing multiple strategies(MOPSO-MS),which includes t... To improve the convergence and distributivity of multi-objective particle swarm optimization,we propose a method for multi-objective particle swarm optimization by fusing multiple strategies(MOPSO-MS),which includes three strategies.Firstly,the average crowding distance method is proposed,which takes into account the influence of individuals on the crowding distance and reduces the algorithm’s time complexity and computational cost,ensuring efficient external archive maintenance and improving the algorithm’s distribution.Secondly,the algorithm utilizes particle difference to guide adaptive inertia weights.In this way,the degree of disparity between a particle’s historical optimum and the population’s global optimum is used to determine the value of w.With different degrees of disparity,the size of w is adjusted nonlinearly,improving the algorithm’s convergence.Finally,the algorithm is designed to control the search direction by hierarchically selecting the globally optimal policy,which can avoid a single search direction and eliminate the lack of a random search direction,making the selection of the global optimal position more objective and comprehensive,and further improving the convergence of the algorithm.The MOPSO-MS is tested against seven other algorithms on the ZDT and DTLZ test functions,and the results show that the MOPSO-MS has significant advantages in terms of convergence and distributivity. 展开更多
关键词 multi-objective particle swarm optimization(MOPSO) spatially crowding congestion distance differential guidance weight hierarchical selection of global optimum
下载PDF
Optimizing the Multi-Objective Discrete Particle Swarm Optimization Algorithm by Deep Deterministic Policy Gradient Algorithm
12
作者 Sun Yang-Yang Yao Jun-Ping +2 位作者 Li Xiao-Jun Fan Shou-Xiang Wang Zi-Wei 《Journal on Artificial Intelligence》 2022年第1期27-35,共9页
Deep deterministic policy gradient(DDPG)has been proved to be effective in optimizing particle swarm optimization(PSO),but whether DDPG can optimize multi-objective discrete particle swarm optimization(MODPSO)remains ... Deep deterministic policy gradient(DDPG)has been proved to be effective in optimizing particle swarm optimization(PSO),but whether DDPG can optimize multi-objective discrete particle swarm optimization(MODPSO)remains to be determined.The present work aims to probe into this topic.Experiments showed that the DDPG can not only quickly improve the convergence speed of MODPSO,but also overcome the problem of local optimal solution that MODPSO may suffer.The research findings are of great significance for the theoretical research and application of MODPSO. 展开更多
关键词 Deep deterministic policy gradient multi-objective discrete particle swarm optimization deep reinforcement learning machine learning
下载PDF
A modified back analysis method for deep excavation with multi-objective optimization procedure
13
作者 Chenyang Zhao Le Chen +2 位作者 Pengpeng Ni Wenjun Xia Bin Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1373-1387,共15页
Real-time prediction of excavation-induced displacement of retaining pile during the deep excavation process is crucial for construction safety.This paper proposes a modified back analysis method with multi-objective ... Real-time prediction of excavation-induced displacement of retaining pile during the deep excavation process is crucial for construction safety.This paper proposes a modified back analysis method with multi-objective optimization procedure,which enables a real-time prediction of horizontal displacement of retaining pile during construction.As opposed to the traditional stage-by-stage back analysis,time series monitoring data till the current excavation stage are utilized to form a multi-objective function.Then,the multi-objective particle swarm optimization (MOPSO) algorithm is applied for parameter identification.The optimized model parameters are immediately adopted to predict the excavation-induced pile deformation in the continuous construction stages.To achieve efficient parameter optimization and real-time prediction of system behavior,the back propagation neural network (BPNN) is established to substitute the finite element model,which is further implemented together with MOPSO for automatic operation.The proposed approach is applied in the Taihu tunnel excavation project,where the effectiveness of the method is demonstrated via the comparisons with the site monitoring data.The method is reliable with a prediction accuracy of more than 90%.Moreover,different optimization algorithms,including non-dominated sorting genetic algorithm (NSGA-II),Pareto Envelope-based Selection Algorithm II (PESA-II) and MOPSO,are compared,and their influences on the prediction accuracy at different excavation stages are studied.The results show that MOPSO has the best performance for high dimensional optimization task. 展开更多
关键词 multi-objective optimization Back analysis Surrogate model multi-objective particle swarm optimization(MOPSO) Deep excavation
下载PDF
A hybrid discrete particle swarm optimization-genetic algorithm for multi-task scheduling problem in service oriented manufacturing systems 被引量:4
14
作者 武善玉 张平 +2 位作者 李方 古锋 潘毅 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期421-429,共9页
To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was establis... To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was established, and then a hybrid discrete particle swarm optimization-genetic algorithm(HDPSOGA) was proposed. In SOMS, each resource involved in the whole life cycle of a product, whether it is provided by a piece of software or a hardware device, is encapsulated into a service. So, the transportation during production of a task should be taken into account because the hard-services selected are possibly provided by various providers in different areas. In the service allocation optimization mathematical model, multi-task and transportation were considered simultaneously. In the proposed HDPSOGA algorithm, integer coding method was applied to establish the mapping between the particle location matrix and the service allocation scheme. The position updating process was performed according to the cognition part, the social part, and the previous velocity and position while introducing the crossover and mutation idea of genetic algorithm to fit the discrete space. Finally, related simulation experiments were carried out to compare with other two previous algorithms. The results indicate the effectiveness and efficiency of the proposed hybrid algorithm. 展开更多
关键词 service-oriented architecture (SOA) cyber physical systems (CPS) multi-task scheduling service allocation multi-objective optimization particle swarm algorithm
下载PDF
Multi-objective workflow scheduling in cloud system based on cooperative multi-swarm optimization algorithm 被引量:2
15
作者 YAO Guang-shun DING Yong-sheng HAO Kuang-rong 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第5期1050-1062,共13页
In order to improve the performance of multi-objective workflow scheduling in cloud system, a multi-swarm multiobjective optimization algorithm(MSMOOA) is proposed to satisfy multiple conflicting objectives. Inspired ... In order to improve the performance of multi-objective workflow scheduling in cloud system, a multi-swarm multiobjective optimization algorithm(MSMOOA) is proposed to satisfy multiple conflicting objectives. Inspired by division of the same species into multiple swarms for different objectives and information sharing among these swarms in nature, each physical machine in the data center is considered a swarm and employs improved multi-objective particle swarm optimization to find out non-dominated solutions with one objective in MSMOOA. The particles in each swarm are divided into two classes and adopt different strategies to evolve cooperatively. One class of particles can communicate with several swarms simultaneously to promote the information sharing among swarms and the other class of particles can only exchange information with the particles located in the same swarm. Furthermore, in order to avoid the influence by the elastic available resources, a manager server is adopted in the cloud data center to collect the available resources for scheduling. The quality of the proposed method with other related approaches is evaluated by using hybrid and parallel workflow applications. The experiment results highlight the better performance of the MSMOOA than that of compared algorithms. 展开更多
关键词 multi-objective WORKFLOW scheduling multi-swarm OPTIMIZATION particle swarm OPTIMIZATION (PSO) CLOUD computing system
下载PDF
Immune particle swarm optimization of linear frequency modulation in acoustic communication 被引量:4
16
作者 Haipeng Ren Yang Zhao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第3期450-456,共7页
With the exploration of the ocean, underwater acoustic communication has attracted more and more attention in recent years. The underwater acoustic channel is considered to be one of the most complicated channels beca... With the exploration of the ocean, underwater acoustic communication has attracted more and more attention in recent years. The underwater acoustic channel is considered to be one of the most complicated channels because it suffers from more serious multipath effect, fewer available bandwidths and quite complex noise. Since the signals experience a serious distortion after being transmitted through the underwater acoustic channel, the underwater acoustic communication experiences a high bit error rate (BER). To solve this problem, carrier waveform inter- displacement (CWlD) modulation is proposed. It has been proved that CWlD modulation is an effective method to decrease BER. The linear frequency modulation (LFM) carrier-waves are used in CWlD modulation. The performance of the communication using CWID modulation is sensitive to the change of the frequency band of LFM carrier-waves. The immune particle swarm optimization (IPSO) is introduced to search for the optimal frequency band of the LFM carrier-waves, due to its excellent performance in solving complicated optimization problems. The multi-objective and multi- peak optimization nature of the IPSO gives a suitable description of the relationship between the upper band and the lower band of the LFM carrier-waves. Simulations verify the improved perfor- mance and effectiveness of the optimization method. 展开更多
关键词 underwater acoustic communication carrier waveform inter-displacement (CWlD) multi-objective optimization immune particle swarm optimization (IPSO).
下载PDF
Multiple objective particle swarm optimization technique for economic load dispatch 被引量:2
17
作者 赵波 曹一家 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第5期420-427,共8页
A multi-objective particle swarm optimization (MOPSO) approach for multi-objective economic load dispatch problem in power system is presented in this paper. The economic load dispatch problem is a non-linear constrai... A multi-objective particle swarm optimization (MOPSO) approach for multi-objective economic load dispatch problem in power system is presented in this paper. The economic load dispatch problem is a non-linear constrained multi-objective optimization problem. The proposed MOPSO approach handles the problem as a multi-objective problem with competing and non-commensurable fuel cost, emission and system loss objectives and has a diversity-preserving mechanism using an external memory (call “repository”) and a geographically-based approach to find widely different Pareto-optimal solutions. In addition, fuzzy set theory is employed to extract the best compromise solution. Several optimization runs of the proposed MOPSO approach were carried out on the standard IEEE 30-bus test system. The results revealed the capabilities of the proposed MOPSO approach to generate well-distributed Pareto-optimal non-dominated solutions of multi-objective economic load dispatch. Com- parison with Multi-objective Evolutionary Algorithm (MOEA) showed the superiority of the proposed MOPSO approach and confirmed its potential for solving multi-objective economic load dispatch. 展开更多
关键词 Economic load dispatch multi-objective optimization multi-objective particle swarm optimization
下载PDF
Milling Parameters Optimization of Al-Li Alloy Thin-Wall Workpieces Using Response Surface Methodology and Particle Swarm Optimization 被引量:2
18
作者 Haitao Yue Chenguang Guo +2 位作者 Qiang Li Lijuan Zhao Guangbo Hao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第9期937-952,共16页
To improve the milling surface quality of the Al-Li alloy thin-wall workpieces and reduce the cutting energy consumption.Experimental research on the milling processing of AA2195 Al-Li alloy thin-wall workpieces based... To improve the milling surface quality of the Al-Li alloy thin-wall workpieces and reduce the cutting energy consumption.Experimental research on the milling processing of AA2195 Al-Li alloy thin-wall workpieces based on Response Surface Methodology was carried out.The single factor and interaction of milling parameters on surface roughness and specific cutting energy were analyzed,and the multi-objective optimization model was constructed.The Multiobjective Particle Swarm Optimization algorithm introducing the Chaos Local Search algorithm and the adaptive inertial weight was applied to determine the optimal combination of milling parameters.It was observed that surface roughness was mainly influenced by feed per tooth,and specific cutting energy was negatively correlated with feed per tooth,radial cutting depth and axial cutting depth,while cutting speed has a non-significant influence on specific cutting energy.The optimal combination of milling parameters with different priorities was obtained.The experimental results showed that the maximum relative error of measured and predicted values was 8.05%,and the model had high reliability,which ensured the low surface roughness and cutting energy consumption.It was of great guiding significance for the success of Al-Li alloy thin-wall milling with a high precision and energy efficiency. 展开更多
关键词 Al-Li alloy thin-wall workpieces response surface methodology surface roughness specific cutting energy multi-objective particle swarm optimization algorithm
下载PDF
Particle swarm optimization algorithm for simultaneous optimal placement and sizing of shunt active power conditioner(APC)and shunt capacitor in harmonic distorted distribution system
19
作者 Mohammadi Mohammad 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第9期2035-2048,共14页
Due to development of distribution systems and increase in electricity demand,the use of capacitor banks increases.From the other point of view,nonlinear loads generate and inject considerable harmonic currents into p... Due to development of distribution systems and increase in electricity demand,the use of capacitor banks increases.From the other point of view,nonlinear loads generate and inject considerable harmonic currents into power system.Under this condition if capacitor banks are not properly selected and placed in the power system,they could amplify and propagate these harmonics and deteriorate power quality to unacceptable levels.With attention of disadvantages of passive filters,such as occurring resonance,nowadays the usage of this type of harmonic compensator is restricted.On the other side,one of parallel multi-function compensating devices which are recently used in distribution system to mitigate voltage sag and harmonic distortion,performs power factor correction,and improves the overall power quality as active power conditioner(APC).Therefore,the utilization of APC in harmonic distorted system can affect and change the optimal location and size of shunt capacitor bank under harmonic distortion condition.This paper presents an optimization algorithm for improvement of power quality using simultaneous optimal placement and sizing of APC and shunt capacitor banks in radial distribution networks in the presence of voltage and current harmonics.The algorithm is based on particle swarm optimization(PSO).The objective function includes the cost of power losses,energy losses and those of the capacitor banks and APCs. 展开更多
关键词 shunt capacitor banks active power conditioner multi-objective function particle swarm optimization (PSO) harmonic distorted distribution system
下载PDF
Particle Swarm Optimization Algorithm Based on Chaotic Sequences and Dynamic Self-Adaptive Strategy
20
作者 Mengshan Li Liang Liu +4 位作者 Genqin Sun Keming Su Huaijin Zhang Bingsheng Chen Yan Wu 《Journal of Computer and Communications》 2017年第12期13-23,共11页
To deal with the problems of premature convergence and tending to jump into the local optimum in the traditional particle swarm optimization, a novel improved particle swarm optimization algorithm was proposed. The se... To deal with the problems of premature convergence and tending to jump into the local optimum in the traditional particle swarm optimization, a novel improved particle swarm optimization algorithm was proposed. The self-adaptive inertia weight factor was used to accelerate the converging speed, and chaotic sequences were used to tune the acceleration coefficients for the balance between exploration and exploitation. The performance of the proposed algorithm was tested on four classical multi-objective optimization functions by comparing with the non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results verified the effectiveness of the algorithm, which improved the premature convergence problem with faster convergence rate and strong ability to jump out of local optimum. 展开更多
关键词 particle swarm Algorithm CHAOTIC SEQUENCES SELF-ADAPTIVE STRATEGY multi-objective Optimization
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部