This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus...This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus is placed on the scenario that the dynamical state of the half-vehicle active suspension system is transmitted over an in-vehicle controller area network that only permits the transmission of sampled data packets.For this purpose,a stochastic sampling mechanism is developed such that the sampling periods can randomly switch among different values with certain mathematical probabilities.Then,an asynchronous fuzzy sampled-data controller,featuring distinct premise variables from the active suspension system,is constructed to eliminate the stringent requirement that the sampled-data controller has to share the same grades of membership.Furthermore,novel criteria for both stability analysis and controller design are derived in order to guarantee that the resultant closed-loop active suspension system is stochastically stable with simultaneous𝐻2 and𝐻∞performance requirements.Finally,the effectiveness of the proposed stochastic sampled-data multi-objective control method is verified via several numerical cases studies in both time domain and frequency domain under various road disturbance profiles.展开更多
Multi-objective optimization for the optimum shape design is introduced in aerodynamics using the Game theory. Based on the control theory, the employed optimizer and the negative feedback are used to implement the co...Multi-objective optimization for the optimum shape design is introduced in aerodynamics using the Game theory. Based on the control theory, the employed optimizer and the negative feedback are used to implement the constraints. All the constraints are satisfied implicitly and automatically in the design. Furthermore,the above methodology is combined with a formulation derived from the Game theory to treat multi-point airfoil optimization. Airfoil shapes are optimized according to various aerodynamics criteria. In the symmetric Nash game, each “player” is responsible for one criterion, and the Nash equilibrium provides a solution to the multipoint optimization. Design results confirm the efficiency of the method.展开更多
A Lactobacillus buchneri GBS3 strain isolated from the traditional Chinese pickles was used for the production of 3-phenyllactic acid(PLA), an important compound with antimicrobial activities against a wide species of...A Lactobacillus buchneri GBS3 strain isolated from the traditional Chinese pickles was used for the production of 3-phenyllactic acid(PLA), an important compound with antimicrobial activities against a wide species of grampositive and gram-negative bacteria and some fungi. The growth performance of this strain in the de Man, Rogosa and Sharpe(MRS) medium, the production of metabolites of valuable organic acids, and the biosynthesis of PLA using this strain as the whole-cell biocatalyst and phenylpyruvic acid(PPA) as the precursor, were investigated experimentally. The uniform design method with overlay sampling was developed for the optimization of the biotransformation conditions. The results showed that although it produced naturally lactic acid with the maximum concentration of 1.84 g·L^(-1) and PLA with the concentration of 0.015 g·L^(-1) after 66 to 72 h cultivation in MRS broth by fermentation, the present strain displayed an effective utilization ability by transforming PPA to PLA. By the uniform design method with overlay sampling for the design and optimization of transformation conditions, a maximum yield of 10.93 g·L^(-1) PLA with the mole conversion ratio of 83.07% from PPA to PLA was achieved under the optimized condition, i.e., 20 g·L^(-1) glucose, 270 g·L^(-1) cells, 13 g·L^(-1) PPA, pH 8.0 and the reaction time of 15 h, indicating that Lactobacillus buchneri GBS3 was an interesting strain for the biosynthesis of PLA via the microbial transformation. The prediction of PLA yield under different conditions was achieved successfully based on the limited information of only a small number of experiments by the uniform design with overlay sampling. Therefore, the present methodology is effective and helpful for the optimization of the biosynthesis processes of PLA.展开更多
Typical multidisciplinary design optimization(MDO) has gradually been proposed to balance performances of lightweight, noise, vibration and harshness(NVH) and safety for instrument panel(IP) structure in the aut...Typical multidisciplinary design optimization(MDO) has gradually been proposed to balance performances of lightweight, noise, vibration and harshness(NVH) and safety for instrument panel(IP) structure in the automotive development. Nevertheless, plastic constitutive relation of Polypropylene(PP) under different strain rates, has not been taken into consideration in current reliability-based and collaborative IP MDO design. In this paper, based on tensile test under different strain rates, the constitutive relation of Polypropylene material is studied. Impact simulation tests for head and knee bolster are carried out to meet the regulation of FMVSS 201 and FMVSS 208, respectively. NVH analysis is performed to obtain mainly the natural frequencies and corresponding mode shapes, while the crashworthiness analysis is employed to examine the crash behavior of IP structure. With the consideration of lightweight, NVH, head and knee bolster impact performance, design of experiment(DOE), response surface model(RSM), and collaborative optimization(CO) are applied to realize the determined and reliability-based optimizations, respectively. Furthermore, based on multi-objective genetic algorithm(MOGA), the optimal Pareto sets are completed to solve the multi-objective optimization(MOO) problem. The proposed research ensures the smoothness of Pareto set, enhances the ability of engineers to make a comprehensive decision about multi-objectives and choose the optimal design, and improves the quality and efficiency of MDO.展开更多
It is a complicated problem for the bottom-to-top adaptive conceptual design of complicated products between structure and function. Reliable theories demand to be found in order to determine whether the structure acc...It is a complicated problem for the bottom-to-top adaptive conceptual design of complicated products between structure and function. Reliable theories demand to be found in order to determine whether the structure accords with the requirement of design. For the requirement generally is dynamic variety as time passes, new requirements will come, and some initial requirements can no longer be used. The number of product requirements, the gene length expressing requirements, the structure of the product, and the correlation matrix are varied with individuation of customer requirements of the product. By researching on the calculation mechanisms of dynamic variety, the approaches of gene expression and variable length gene expression are proposed. According to the diversity of structure selection in conceptual design and mutual relations between structure and function as well as structure and structure, the correlation matrixes between structure and function as well as structure and structure are defined. By the approach of making the sum of the elements of correlation matrix maximum, the mathematical models of multi-object optimization for structure design are provided based on variable requirements. An improved genetic algorithm called segment genetic algorithm is proposed based on optimization preservation simple genetic algorithm. The models of multi-object optimization are calculated by the segment genetic algorithm and hybrid genetic algorithm. An example for the conceptual design of a washing machine is given to show that the proposed method is able to realize the optimization structure design fitting for variable requirements. In addition, the proposed approach can provide good Pareto optimization solutions, and the individuation customer requirements for structures of products are able to be resolved effectively.展开更多
In the survey of fishery resources,the sampling design will directly impact the accuracy of the estimation of the abundance.Therefore,it is necessary to optimize the sampling design to increase the quality of fishery ...In the survey of fishery resources,the sampling design will directly impact the accuracy of the estimation of the abundance.Therefore,it is necessary to optimize the sampling design to increase the quality of fishery surveys.The distribution and abundance of fisheries resource estimated based on the bottom trawl survey data in the Changjiang River(Yangtze River)Estuary-Hangzhou Bay and its adjacent waters in 2007 were used to simulate the"true"situation.Then the abundance index of Portunus trituberculatus were calculated and compared with its true index to evaluate the impacts of different sampling designs on the abundance estimation.Four sampling methods(including fixed-station sampling,simple random sampling,stratified fixed-station sampling,and stratified random sampling)were simulated.Three numbers of stations(9,16 and 24)were assumed for the scenarios of fixed-station sampling and simple random sampling without stratification.While 16 stations were assumed for the scenarios with stratification.Three reaction distances(1.5 m,3 m and 5 m)of P.trituberculatus to the bottom line of trawl were also assumed to adapt to the movement ability of the P.trituberculatus for different ages,seasons and substrate conditions.Generally speaking,compared with unstratified sampling design,the stratified sampling design resulted in more accurate abundance estimation of P.trituberculatus,and simple random sampling design is better than fixed-station sampling design.The accuracy of the simulated results was improved with the increase of the station number.The maximum relative estimation error(REE)was 163.43%and the minimum was 49.40%for the fixed-station sampling scenario with 9 stations,while 38.62%and 4.15%for 24 stations.With the increase of reaction distance,the relative absolute bias(RAB)and REE gradually decreased.Resource-intensive area and the seasons with high density variances have significant impacts on simulation results.Thus,it will be helpful if there are prior information or pre-survey results about density distribution.The current study can provide reference for the future sampling design of bottom trawl of P.trituberculatus and other species.展开更多
Constellations design for regional terrestrial-satellite network can strengthen the coverage for incomplete terrestrial cellular network. In this paper, a regional satellite constellation design scheme with multiple f...Constellations design for regional terrestrial-satellite network can strengthen the coverage for incomplete terrestrial cellular network. In this paper, a regional satellite constellation design scheme with multiple feature points and multiple optimization indicators is proposed by comprehensively considering multi-objective optimization and genetic algorithm, and "the Belt and Road" model is presented in the way of dividing over 70 nations into three regular target areas. Following this, we formulate the optimization model and devise a multi-objective genetic algorithm suited for the regional area with the coverage rate under simulating, computing and determining. Meanwhile, the total number of satellites in the constellation is reduced by calculating the ratio of actual coverage of a single-orbit constellation and the area of targets. Moreover, the constellations' performances of the proposed scheme are investigated with the connection of C++ and Satellite Tool Kit(STK). Simulation results show that the designed satellite constellations can achieve a good coverage of the target areas.展开更多
Although various types of anti-roll torsion bars have been developed to inhibit excessive roll angle of the electric multiple unit(EMU)car body,it is critical to ensure the reliability of structural design due to the ...Although various types of anti-roll torsion bars have been developed to inhibit excessive roll angle of the electric multiple unit(EMU)car body,it is critical to ensure the reliability of structural design due to the complexity of the problems involving time and uncertainties.To address this issue,amulti-objective fuzzy design optimization model is constructed considering time-variant stiffness and strength reliability constraints for the anti-roll torsion bar.A hybrid optimization strategy combining the design of experiment(DoE)sampling and non-linear programming by quadratic lagrangian(NLPQL)is presented to deal with the design optimization model.To characterize the effect of time on the structural performance of the torsion bar,the continuous-time model combined with Ito lemma is proposed to establish the time-variant stiffness and strength reliability constraints.Fuzzy mathematics is employed to conduct uncertainty quantification for the design parameters of the torsion bar.A physical programming approach is used to improve the designer’s preference and to make the optimization results more consistent with engineering practices.Moreover,the effectiveness of the proposed method has been validated by comparing with current methods in a practical engineering case.展开更多
Thin-walled structures have been used in many fields due to their superior mechanical properties.In this paper,two types of hierarchical multi-cell tubes,inspired by the self-similarity of Pinus sylvestris,are propose...Thin-walled structures have been used in many fields due to their superior mechanical properties.In this paper,two types of hierarchical multi-cell tubes,inspired by the self-similarity of Pinus sylvestris,are proposed to enhance structural energy absorption performance.The finite element models of the hierarchical structures are established to validate the crashworthiness performance under axial dynamic load.The theoreticalmodel of themean crushing force is also derived based on the simplified super folded element theory.The finite element results demonstrate that the energy absorption characteristics and deformation mode of the bionic hierarchical thin-walled tubes are further improved with the increase of hierarchical sub-structures.It can be also obtained that the energy absorption performance of corner self-similar tubes is better than edge self-similar tubes.Furthermore,multiobjective optimization of the hierarchical tubes is constructed by employing the response surface method and genetic algorithm,and the corresponding Pareto front diagram is obtained.This research provides a new idea for the crashworthiness design of thin-walled structures.展开更多
In many circumstances, chemical process design can be formulated as a multi-objective optimization (MOO) problem. Examples include bi-objective optimization problems, where the economic objective is maximized and en...In many circumstances, chemical process design can be formulated as a multi-objective optimization (MOO) problem. Examples include bi-objective optimization problems, where the economic objective is maximized and environmental impact is minimized simultaneously. Moreover, the random behavior in the process,property, market fluctuation, errors in model prediction and so on would affect the performance of a process. Therefore, it is essential to develop a MOO methodology under uncertainty. In this article, the authors propose a generic and systematic optimization methodology for chemical process design under uncertainty. It aims at identifying the optimal design from a number of candidates. The utility of this methodology is demonstrated by a case study based on the design of a condensate treatment unit in an ammonia plant.展开更多
In order to compare two advanced multi-objective evolutionary algorithms,a multi-objective water distribution problem is formulated in this paper.The multi-objective optimization has received more attention in the wat...In order to compare two advanced multi-objective evolutionary algorithms,a multi-objective water distribution problem is formulated in this paper.The multi-objective optimization has received more attention in the water distribution system design.On the one hand the cost of water distribution system including capital,operational,and maintenance cost is mostly concerned issue by the utilities all the time;on the other hand improving the performance of water distribution systems is of equivalent importance,which is often conflicting with the previous goal.Many performance metrics of water networks are developed in recent years,including total or maximum pressure deficit,resilience,inequity,probabilistic robustness,and risk measure.In this paper,a new resilience metric based on the energy analysis of water distribution systems is proposed.Two optimization objectives are comprised of capital cost and the new resilience index.A heuristic algorithm,speedconstrained multi-objective particle swarm optimization( SMPSO) extended on the basis of the multi-objective particle swarm algorithm,is introduced to compare with another state-of-the-art heuristic algorithm,NSGA-II.The solutions are evaluated by two metrics,namely spread and hypervolume.To illustrate the capability of SMPSO to efficiently identify good designs,two benchmark problems( two-loop network and Hanoi network) are employed.From several aspects the results demonstrate that SMPSO is a competitive and potential tool to tackle with the optimization problem of complex systems.展开更多
Fishery-independent surveys can provide high-quality data and support fishery assessment and management.Optimization of sampling design is crucial to increase the quality of fishery surveys.Crab pots are important fis...Fishery-independent surveys can provide high-quality data and support fishery assessment and management.Optimization of sampling design is crucial to increase the quality of fishery surveys.Crab pots are important fishing gears used to catch crabs.We analyzed the impacts of sampling design of crab pots on the abundance of Portunus trituberculatus in the Changjiang(Yangtze)River estuary to the Hangzhou Bay and its adjacent waters in East China Sea.The crab pots were cylindrical,240 mm in height and 600 mm in diameter of the iron ring.Our sampling designs(including fixed-station sampling,simple random sampling,stratified fixed-station sampling,and stratified random sampling),three number of stations(9,16,and 24),and three numbers of crab pots(500,1000,and 3000)were simulated and compared with the“true”abundance that obtained from bottom trawl surveys in the study area in 2007.The scenarios with 16 stations were set in stratification as a control group for comparison with unstratified designs.Results show that simple random sampling can obtain more stable results than fixed-station sampling in the abundance estimation of P.trituberculatus.In addition,stratified sampling resulted in more accurate abundance than unstratified sampling.The accuracy of the simulated results improved with the increase of the number of stations.No remarkable differences in the results were found among the scenarios of different number of crab pots at each station.However,resource-intensive areas exerted great impacts on simulation results.Thus,prior information or pre-survey results about resource abundance and density distribution are necessary.This study may serve as a reference for future sampling designs of crab pots of P.trituberculatus and other species.展开更多
Ultrasonic scalpel design for minimally invasive surgical procedures is mainly focused on optimizing cutting performance.However,an important issue is the low fatigue life of traditional ultrasonic scalpels,which affe...Ultrasonic scalpel design for minimally invasive surgical procedures is mainly focused on optimizing cutting performance.However,an important issue is the low fatigue life of traditional ultrasonic scalpels,which affects their long-term reliability and effectiveness and creates hidden dangers for surgery.In this study,a multi-objective optimal design for the cutting performance and fatigue life of ultrasonic scalpels was proposed using finite element analysis and fatigue simulation.The optimal design parameters of resonance frequency and amplitude were determined.By setting the transition fillet and keeping the gain structure away from the node position to enable the scalpel to have a high service life with excellent cutting performance.The frequency modulation method of setting the vibration node bosses at the node position and setting the vibration antinode grooves at the antinode position was compared.Then,the mechanism of the influence of various design elements,such as tip,shank,node position,and antinode position,on the resonance frequency,amplitude,and fatigue life of the ultrasonic scalpel was analyzed,and the optimal design principles of the ultrasonic scalpel were obtained.The proposed ultrasonic scalpel design was confirmed by simulations,impedance measurements,and liver tissue cutting experiments,demonstrating its feasibility and enhanced performance.This research introduces innovative design strategies to improve the fatigue life and performance of ultrasonic scalpels to address an important issue in minimally invasive surgery.展开更多
The widespread adoption of aluminumalloy electric buses,known for their energy efficiency and eco-friendliness,faces a challenge due to the aluminum frame’s susceptibility to deformation compared to steel.This issue ...The widespread adoption of aluminumalloy electric buses,known for their energy efficiency and eco-friendliness,faces a challenge due to the aluminum frame’s susceptibility to deformation compared to steel.This issue is further exacerbated by the stringent requirements imposed by the flammability and explosiveness of batteries,necessitating robust frame protection.Our study aims to optimize the connectors of aluminum alloy bus frames,emphasizing durability,energy efficiency,and safety.This research delves into Multi-Objective Coordinated Optimization(MCO)techniques for lightweight design in aluminum alloy bus body connectors.Our goal is to enhance lightweighting,reinforce energy absorption,and improve deformation resistance in connector components.Three typical aluminum alloy connectors were selected and a design optimization platform was built for their MCO using a variety of software and methods.Firstly,through three-point bending experiments and finite element analysis on three types of connector components,we identified optimized design parameters based on deformation patterns.Then,employing Optimal Latin hypercube design(OLHD),parametric modeling,and neural network approximation,we developed high-precision approximate models for the design parameters of each connector component,targeting energy absorption,mass,and logarithmic strain.Lastly,utilizing the Archive-based Micro Genetic Algorithm(AMGA),Multi-Objective Particle Swarm Optimization(MOPSO),and Non-dominated SortingGenetic Algorithm(NSGA2),we explored optimized design solutions for these joint components.Subsequently,we simulated joint assembly buckling during bus rollover crash scenarios to verify and analyze the optimized solutions in three-point bending simulations.Each joint component showcased a remarkable 30%–40%mass reduction while boosting energy absorption.Our design optimization method exhibits high efficiency and costeffectiveness.Leveraging contemporary automation technology,the design optimization platform developed in this study is poised to facilitate intelligent optimization of lightweight metal components in future applications.展开更多
The type 2 modified augmented design(MAD2) is an efficient unreplicated experimental design used for evaluating large numbers of lines in plant breeding and for assessing genetic variation in a population. Statistical...The type 2 modified augmented design(MAD2) is an efficient unreplicated experimental design used for evaluating large numbers of lines in plant breeding and for assessing genetic variation in a population. Statistical methods and data adjustment for soil heterogeneity have been previously described for this design. In the absence of replicated test genotypes in MAD2, their total variance cannot be partitioned into genetic and error components as required to estimate heritability and genetic correlation of quantitative traits, the two conventional genetic parameters used for breeding selection. We propose a method of estimating the error variance of unreplicated genotypes that uses replicated controls, and then of estimating the genetic parameters. Using the Delta method, we also derived formulas for estimating the sampling variances of the genetic parameters.Computer simulations indicated that the proposed method for estimating genetic parameters and their sampling variances was feasible and the reliability of the estimates was positively associated with the level of heritability of the trait. A case study of estimating the genetic parameters of three quantitative traits, iodine value, oil content, and linolenic acid content, in a biparental recombinant inbred line population of flax with 243 individuals, was conducted using our statistical models. A joint analysis of data over multiple years and sites was suggested for genetic parameter estimation. A pipeline module using SAS and Perl was developed to facilitate data analysis and appended to the previously developed MAD data analysis pipeline(http://probes.pw.usda.gov/bioinformatics_ tools/MADPipeline/index.html).展开更多
For an optimal design of a surface-mounted permanent magnet synchronous motor(SPMSM),many objective functions should be considered.The classical optimization methods,which have been habitually designed based on magnet...For an optimal design of a surface-mounted permanent magnet synchronous motor(SPMSM),many objective functions should be considered.The classical optimization methods,which have been habitually designed based on magnetic circuit law or finite element analysis(FEA),have inaccuracy or calculation time problems when solving the multi-objective problems.To address these problems,the multi-independent-population genetic algorithm(MGA)combined with subdomain(SD)model are proposed to improve the performance of SPMSM such as magnetic field distribution,cost and efficiency.In order to analyze the flux density harmonics accurately,the accurate SD model is first established.Then,the MGA with time-saving SD model are employed to search for solutions which belong to the Pareto optimal set.Finally,for the purpose of validation,the electromagnetic performance of the new design motor are investigated by FEA,comparing with the initial design and conventional GA optimal design to demonstrate the advantage of MGA optimization method.展开更多
Purpose–The nose length is the key design parameter affecting the aerodynamic performance of high-speed maglev train,and the horizontal profile has a significant impact on the aerodynamic lift of the leading and trai...Purpose–The nose length is the key design parameter affecting the aerodynamic performance of high-speed maglev train,and the horizontal profile has a significant impact on the aerodynamic lift of the leading and trailing cars Hence,the study analyzes aerodynamic parameters with multi-objective optimization design.Design/methodology/approach–The nose of normal temperature and normal conduction high-speed maglev train is divided into streamlined part and equipment cabin according to its geometric characteristics.Then the modified vehicle modeling function(VMF)parameterization method and surface discretization method are adopted for the parametric design of the nose.For the 12 key design parameters extracted,combined with computational fluid dynamics(CFD),support vector machine(SVR)model and multi-objective particle swarm optimization(MPSO)algorithm,the multi-objective aerodynamic optimization design of highspeed maglev train nose and the sensitivity analysis of design parameters are carried out with aerodynamic drag coefficient of the whole vehicle and the aerodynamic lift coefficient of the trailing car as the optimization objectives and the aerodynamic lift coefficient of the leading car as the constraint.The engineering improvement and wind tunnel test verification of the optimized shape are done.Findings–Results show that the parametric design method can use less design parameters to describe the nose shape of high-speed maglev train.The prediction accuracy of the SVR model with the reduced amount of calculation and improved optimization efficiency meets the design requirements.Originality/value–Compared with the original shape,the aerodynamic drag coefficient of the whole vehicle is reduced by 19.2%,and the aerodynamic lift coefficients of the leading and trailing cars are reduced by 24.8 and 51.3%,respectively,after adopting the optimized shape modified according to engineering design requirements.展开更多
This paper develops a sampling method to estimate the integral of a function of the area with a strategy to cover the area with parallel lines of observation. This sampling strategy is special in that lines very close...This paper develops a sampling method to estimate the integral of a function of the area with a strategy to cover the area with parallel lines of observation. This sampling strategy is special in that lines very close to each other are selected much more seldom than under a uniformly random design for the positions of the parallel lines. It is also special in that the positions of some of the lines are deterministic. Two different variance estimators are derived and investigated by sampling different man made signal functions. They show different properties in that the estimator that estimate the biggest variance gives an error interval that, in some situations, may be more than ten times the error interval computed from the other estimator. It is also obvious that the second estimator underestimates the variance. The author has not succeeded to derive an expression for the expectation of this estimator. This work is motivated towards finding the variance of acoustic abundance estimates.展开更多
Uncertainties in engineering design may lead to low reliable solutions that also exhibit high sensitivity to uncontrollable variations. In addition, there often exist several conflicting objectives and constraints in ...Uncertainties in engineering design may lead to low reliable solutions that also exhibit high sensitivity to uncontrollable variations. In addition, there often exist several conflicting objectives and constraints in various design environments. In order to obtain solutions that are not only "multi-objectively" optimal, but also reliable and robust, a probabilistic optimization method was presented by integrating six sigma philosophy and multi-objective genetic algorithm. With this method, multi-objective genetic algorithm was adopted to obtain the global Pareto solutions, and six sigma method was used to improve the reliability and robustness of those optimal solutions. Two engineering design problems were provided as examples to illustrate the proposed method.展开更多
A method of designing robust controller based on genetic algorithm is presented in order to overcome the drawback of manual modification and trial in designing the control system of missile. Specification functions wh...A method of designing robust controller based on genetic algorithm is presented in order to overcome the drawback of manual modification and trial in designing the control system of missile. Specification functions which reflect the dynamic performance in time domain and robustness in frequency domain are presented, then dynamic/static performance, control cost and robust stability are incorporated into a multi-objective optimization problem. Genetic algorithm is used to solve the problem and achieve the optimal controller directly. Simulation results show that the controller provides a good stability and offers a good dynamic performance in a large flight envelope. The results also validate the effectiveness of the method.展开更多
文摘This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus is placed on the scenario that the dynamical state of the half-vehicle active suspension system is transmitted over an in-vehicle controller area network that only permits the transmission of sampled data packets.For this purpose,a stochastic sampling mechanism is developed such that the sampling periods can randomly switch among different values with certain mathematical probabilities.Then,an asynchronous fuzzy sampled-data controller,featuring distinct premise variables from the active suspension system,is constructed to eliminate the stringent requirement that the sampled-data controller has to share the same grades of membership.Furthermore,novel criteria for both stability analysis and controller design are derived in order to guarantee that the resultant closed-loop active suspension system is stochastically stable with simultaneous𝐻2 and𝐻∞performance requirements.Finally,the effectiveness of the proposed stochastic sampled-data multi-objective control method is verified via several numerical cases studies in both time domain and frequency domain under various road disturbance profiles.
文摘Multi-objective optimization for the optimum shape design is introduced in aerodynamics using the Game theory. Based on the control theory, the employed optimizer and the negative feedback are used to implement the constraints. All the constraints are satisfied implicitly and automatically in the design. Furthermore,the above methodology is combined with a formulation derived from the Game theory to treat multi-point airfoil optimization. Airfoil shapes are optimized according to various aerodynamics criteria. In the symmetric Nash game, each “player” is responsible for one criterion, and the Nash equilibrium provides a solution to the multipoint optimization. Design results confirm the efficiency of the method.
基金Supported partially by the National Natural Science Foundation of China(21576240)the Natural Science Foundation of Zhejiang Province(LZ14B060001,LY16B060011)
文摘A Lactobacillus buchneri GBS3 strain isolated from the traditional Chinese pickles was used for the production of 3-phenyllactic acid(PLA), an important compound with antimicrobial activities against a wide species of grampositive and gram-negative bacteria and some fungi. The growth performance of this strain in the de Man, Rogosa and Sharpe(MRS) medium, the production of metabolites of valuable organic acids, and the biosynthesis of PLA using this strain as the whole-cell biocatalyst and phenylpyruvic acid(PPA) as the precursor, were investigated experimentally. The uniform design method with overlay sampling was developed for the optimization of the biotransformation conditions. The results showed that although it produced naturally lactic acid with the maximum concentration of 1.84 g·L^(-1) and PLA with the concentration of 0.015 g·L^(-1) after 66 to 72 h cultivation in MRS broth by fermentation, the present strain displayed an effective utilization ability by transforming PPA to PLA. By the uniform design method with overlay sampling for the design and optimization of transformation conditions, a maximum yield of 10.93 g·L^(-1) PLA with the mole conversion ratio of 83.07% from PPA to PLA was achieved under the optimized condition, i.e., 20 g·L^(-1) glucose, 270 g·L^(-1) cells, 13 g·L^(-1) PPA, pH 8.0 and the reaction time of 15 h, indicating that Lactobacillus buchneri GBS3 was an interesting strain for the biosynthesis of PLA via the microbial transformation. The prediction of PLA yield under different conditions was achieved successfully based on the limited information of only a small number of experiments by the uniform design with overlay sampling. Therefore, the present methodology is effective and helpful for the optimization of the biosynthesis processes of PLA.
基金supported by National Hi-tech Research and Development Program of China(863 Program, Grant No. 2007AA04Z132)National Natural Science Foundation of China(Grant No. 51175379)
文摘Typical multidisciplinary design optimization(MDO) has gradually been proposed to balance performances of lightweight, noise, vibration and harshness(NVH) and safety for instrument panel(IP) structure in the automotive development. Nevertheless, plastic constitutive relation of Polypropylene(PP) under different strain rates, has not been taken into consideration in current reliability-based and collaborative IP MDO design. In this paper, based on tensile test under different strain rates, the constitutive relation of Polypropylene material is studied. Impact simulation tests for head and knee bolster are carried out to meet the regulation of FMVSS 201 and FMVSS 208, respectively. NVH analysis is performed to obtain mainly the natural frequencies and corresponding mode shapes, while the crashworthiness analysis is employed to examine the crash behavior of IP structure. With the consideration of lightweight, NVH, head and knee bolster impact performance, design of experiment(DOE), response surface model(RSM), and collaborative optimization(CO) are applied to realize the determined and reliability-based optimizations, respectively. Furthermore, based on multi-objective genetic algorithm(MOGA), the optimal Pareto sets are completed to solve the multi-objective optimization(MOO) problem. The proposed research ensures the smoothness of Pareto set, enhances the ability of engineers to make a comprehensive decision about multi-objectives and choose the optimal design, and improves the quality and efficiency of MDO.
基金supported by National Natural Science Foundation of China(Grant No.50975033,Grant No.60875046)Program of Education Office of Liaoning Province,China(Grant No.LT2010074)
文摘It is a complicated problem for the bottom-to-top adaptive conceptual design of complicated products between structure and function. Reliable theories demand to be found in order to determine whether the structure accords with the requirement of design. For the requirement generally is dynamic variety as time passes, new requirements will come, and some initial requirements can no longer be used. The number of product requirements, the gene length expressing requirements, the structure of the product, and the correlation matrix are varied with individuation of customer requirements of the product. By researching on the calculation mechanisms of dynamic variety, the approaches of gene expression and variable length gene expression are proposed. According to the diversity of structure selection in conceptual design and mutual relations between structure and function as well as structure and structure, the correlation matrixes between structure and function as well as structure and structure are defined. By the approach of making the sum of the elements of correlation matrix maximum, the mathematical models of multi-object optimization for structure design are provided based on variable requirements. An improved genetic algorithm called segment genetic algorithm is proposed based on optimization preservation simple genetic algorithm. The models of multi-object optimization are calculated by the segment genetic algorithm and hybrid genetic algorithm. An example for the conceptual design of a washing machine is given to show that the proposed method is able to realize the optimization structure design fitting for variable requirements. In addition, the proposed approach can provide good Pareto optimization solutions, and the individuation customer requirements for structures of products are able to be resolved effectively.
基金The National Key Research and Development Program of China under contract No.2017YFA0604902the Science and Technology Project of Zhoushan under contract No.2017C41012。
文摘In the survey of fishery resources,the sampling design will directly impact the accuracy of the estimation of the abundance.Therefore,it is necessary to optimize the sampling design to increase the quality of fishery surveys.The distribution and abundance of fisheries resource estimated based on the bottom trawl survey data in the Changjiang River(Yangtze River)Estuary-Hangzhou Bay and its adjacent waters in 2007 were used to simulate the"true"situation.Then the abundance index of Portunus trituberculatus were calculated and compared with its true index to evaluate the impacts of different sampling designs on the abundance estimation.Four sampling methods(including fixed-station sampling,simple random sampling,stratified fixed-station sampling,and stratified random sampling)were simulated.Three numbers of stations(9,16 and 24)were assumed for the scenarios of fixed-station sampling and simple random sampling without stratification.While 16 stations were assumed for the scenarios with stratification.Three reaction distances(1.5 m,3 m and 5 m)of P.trituberculatus to the bottom line of trawl were also assumed to adapt to the movement ability of the P.trituberculatus for different ages,seasons and substrate conditions.Generally speaking,compared with unstratified sampling design,the stratified sampling design resulted in more accurate abundance estimation of P.trituberculatus,and simple random sampling design is better than fixed-station sampling design.The accuracy of the simulated results was improved with the increase of the station number.The maximum relative estimation error(REE)was 163.43%and the minimum was 49.40%for the fixed-station sampling scenario with 9 stations,while 38.62%and 4.15%for 24 stations.With the increase of reaction distance,the relative absolute bias(RAB)and REE gradually decreased.Resource-intensive area and the seasons with high density variances have significant impacts on simulation results.Thus,it will be helpful if there are prior information or pre-survey results about density distribution.The current study can provide reference for the future sampling design of bottom trawl of P.trituberculatus and other species.
基金jointly supported by the National Natural Science Foundation in China (No.61601075)the Natural Science Foundation Project of CQ CSTC (No.cstc2016jcyj A0174)
文摘Constellations design for regional terrestrial-satellite network can strengthen the coverage for incomplete terrestrial cellular network. In this paper, a regional satellite constellation design scheme with multiple feature points and multiple optimization indicators is proposed by comprehensively considering multi-objective optimization and genetic algorithm, and "the Belt and Road" model is presented in the way of dividing over 70 nations into three regular target areas. Following this, we formulate the optimization model and devise a multi-objective genetic algorithm suited for the regional area with the coverage rate under simulating, computing and determining. Meanwhile, the total number of satellites in the constellation is reduced by calculating the ratio of actual coverage of a single-orbit constellation and the area of targets. Moreover, the constellations' performances of the proposed scheme are investigated with the connection of C++ and Satellite Tool Kit(STK). Simulation results show that the designed satellite constellations can achieve a good coverage of the target areas.
基金This work was supported by Sichuan Science and Technology Program under the Contract No.2020JDJQ0036.
文摘Although various types of anti-roll torsion bars have been developed to inhibit excessive roll angle of the electric multiple unit(EMU)car body,it is critical to ensure the reliability of structural design due to the complexity of the problems involving time and uncertainties.To address this issue,amulti-objective fuzzy design optimization model is constructed considering time-variant stiffness and strength reliability constraints for the anti-roll torsion bar.A hybrid optimization strategy combining the design of experiment(DoE)sampling and non-linear programming by quadratic lagrangian(NLPQL)is presented to deal with the design optimization model.To characterize the effect of time on the structural performance of the torsion bar,the continuous-time model combined with Ito lemma is proposed to establish the time-variant stiffness and strength reliability constraints.Fuzzy mathematics is employed to conduct uncertainty quantification for the design parameters of the torsion bar.A physical programming approach is used to improve the designer’s preference and to make the optimization results more consistent with engineering practices.Moreover,the effectiveness of the proposed method has been validated by comparing with current methods in a practical engineering case.
基金The authors are grateful to the National Natural Science Foundation of China(Grant No.11902183)the Doctoral Research Foundation of Shandong University of Technology(Grant No.4041/418017).
文摘Thin-walled structures have been used in many fields due to their superior mechanical properties.In this paper,two types of hierarchical multi-cell tubes,inspired by the self-similarity of Pinus sylvestris,are proposed to enhance structural energy absorption performance.The finite element models of the hierarchical structures are established to validate the crashworthiness performance under axial dynamic load.The theoreticalmodel of themean crushing force is also derived based on the simplified super folded element theory.The finite element results demonstrate that the energy absorption characteristics and deformation mode of the bionic hierarchical thin-walled tubes are further improved with the increase of hierarchical sub-structures.It can be also obtained that the energy absorption performance of corner self-similar tubes is better than edge self-similar tubes.Furthermore,multiobjective optimization of the hierarchical tubes is constructed by employing the response surface method and genetic algorithm,and the corresponding Pareto front diagram is obtained.This research provides a new idea for the crashworthiness design of thin-walled structures.
基金Supported by Dalian University of Technology, the US National Science Foundation (No.CTS-0407494) and the Texas Advanced Technology program (No.003581-0044-2003)
文摘In many circumstances, chemical process design can be formulated as a multi-objective optimization (MOO) problem. Examples include bi-objective optimization problems, where the economic objective is maximized and environmental impact is minimized simultaneously. Moreover, the random behavior in the process,property, market fluctuation, errors in model prediction and so on would affect the performance of a process. Therefore, it is essential to develop a MOO methodology under uncertainty. In this article, the authors propose a generic and systematic optimization methodology for chemical process design under uncertainty. It aims at identifying the optimal design from a number of candidates. The utility of this methodology is demonstrated by a case study based on the design of a condensate treatment unit in an ammonia plant.
基金Sponsored by the Project of Application Technology Research and Development Plan in Heilongjiang Province(Grant No.GA13C302)
文摘In order to compare two advanced multi-objective evolutionary algorithms,a multi-objective water distribution problem is formulated in this paper.The multi-objective optimization has received more attention in the water distribution system design.On the one hand the cost of water distribution system including capital,operational,and maintenance cost is mostly concerned issue by the utilities all the time;on the other hand improving the performance of water distribution systems is of equivalent importance,which is often conflicting with the previous goal.Many performance metrics of water networks are developed in recent years,including total or maximum pressure deficit,resilience,inequity,probabilistic robustness,and risk measure.In this paper,a new resilience metric based on the energy analysis of water distribution systems is proposed.Two optimization objectives are comprised of capital cost and the new resilience index.A heuristic algorithm,speedconstrained multi-objective particle swarm optimization( SMPSO) extended on the basis of the multi-objective particle swarm algorithm,is introduced to compare with another state-of-the-art heuristic algorithm,NSGA-II.The solutions are evaluated by two metrics,namely spread and hypervolume.To illustrate the capability of SMPSO to efficiently identify good designs,two benchmark problems( two-loop network and Hanoi network) are employed.From several aspects the results demonstrate that SMPSO is a competitive and potential tool to tackle with the optimization problem of complex systems.
基金Supported by the National Key Research and Development Program of China(No.2019YFD0901304)the Science and Technology Project of Zhoushan(No.2017C41012)。
文摘Fishery-independent surveys can provide high-quality data and support fishery assessment and management.Optimization of sampling design is crucial to increase the quality of fishery surveys.Crab pots are important fishing gears used to catch crabs.We analyzed the impacts of sampling design of crab pots on the abundance of Portunus trituberculatus in the Changjiang(Yangtze)River estuary to the Hangzhou Bay and its adjacent waters in East China Sea.The crab pots were cylindrical,240 mm in height and 600 mm in diameter of the iron ring.Our sampling designs(including fixed-station sampling,simple random sampling,stratified fixed-station sampling,and stratified random sampling),three number of stations(9,16,and 24),and three numbers of crab pots(500,1000,and 3000)were simulated and compared with the“true”abundance that obtained from bottom trawl surveys in the study area in 2007.The scenarios with 16 stations were set in stratification as a control group for comparison with unstratified designs.Results show that simple random sampling can obtain more stable results than fixed-station sampling in the abundance estimation of P.trituberculatus.In addition,stratified sampling resulted in more accurate abundance than unstratified sampling.The accuracy of the simulated results improved with the increase of the number of stations.No remarkable differences in the results were found among the scenarios of different number of crab pots at each station.However,resource-intensive areas exerted great impacts on simulation results.Thus,prior information or pre-survey results about resource abundance and density distribution are necessary.This study may serve as a reference for future sampling designs of crab pots of P.trituberculatus and other species.
基金Supported by National Natural Science Foundation of China (Grant Nos.52005199,42241149)Shenzhen Fundamental Research Program of China (Grant Nos.JCYJ20200109150425085,JCYJ20220818102601004)+1 种基金Knowledge Innovation Program of Wuhan-Basic Research of China (Grant No.2022010801010203)Shenzhen Science and Technology Program of China (Grant Nos.JSGG20201103100001004,JSGG20220831105800001)。
文摘Ultrasonic scalpel design for minimally invasive surgical procedures is mainly focused on optimizing cutting performance.However,an important issue is the low fatigue life of traditional ultrasonic scalpels,which affects their long-term reliability and effectiveness and creates hidden dangers for surgery.In this study,a multi-objective optimal design for the cutting performance and fatigue life of ultrasonic scalpels was proposed using finite element analysis and fatigue simulation.The optimal design parameters of resonance frequency and amplitude were determined.By setting the transition fillet and keeping the gain structure away from the node position to enable the scalpel to have a high service life with excellent cutting performance.The frequency modulation method of setting the vibration node bosses at the node position and setting the vibration antinode grooves at the antinode position was compared.Then,the mechanism of the influence of various design elements,such as tip,shank,node position,and antinode position,on the resonance frequency,amplitude,and fatigue life of the ultrasonic scalpel was analyzed,and the optimal design principles of the ultrasonic scalpel were obtained.The proposed ultrasonic scalpel design was confirmed by simulations,impedance measurements,and liver tissue cutting experiments,demonstrating its feasibility and enhanced performance.This research introduces innovative design strategies to improve the fatigue life and performance of ultrasonic scalpels to address an important issue in minimally invasive surgery.
基金the National Natural Science Foundation of China(Grant Number 52075553)the Postgraduate Research and Innovation Project of Central South University(School-Enterprise Association)(Grant Number 2021XQLH014).
文摘The widespread adoption of aluminumalloy electric buses,known for their energy efficiency and eco-friendliness,faces a challenge due to the aluminum frame’s susceptibility to deformation compared to steel.This issue is further exacerbated by the stringent requirements imposed by the flammability and explosiveness of batteries,necessitating robust frame protection.Our study aims to optimize the connectors of aluminum alloy bus frames,emphasizing durability,energy efficiency,and safety.This research delves into Multi-Objective Coordinated Optimization(MCO)techniques for lightweight design in aluminum alloy bus body connectors.Our goal is to enhance lightweighting,reinforce energy absorption,and improve deformation resistance in connector components.Three typical aluminum alloy connectors were selected and a design optimization platform was built for their MCO using a variety of software and methods.Firstly,through three-point bending experiments and finite element analysis on three types of connector components,we identified optimized design parameters based on deformation patterns.Then,employing Optimal Latin hypercube design(OLHD),parametric modeling,and neural network approximation,we developed high-precision approximate models for the design parameters of each connector component,targeting energy absorption,mass,and logarithmic strain.Lastly,utilizing the Archive-based Micro Genetic Algorithm(AMGA),Multi-Objective Particle Swarm Optimization(MOPSO),and Non-dominated SortingGenetic Algorithm(NSGA2),we explored optimized design solutions for these joint components.Subsequently,we simulated joint assembly buckling during bus rollover crash scenarios to verify and analyze the optimized solutions in three-point bending simulations.Each joint component showcased a remarkable 30%–40%mass reduction while boosting energy absorption.Our design optimization method exhibits high efficiency and costeffectiveness.Leveraging contemporary automation technology,the design optimization platform developed in this study is poised to facilitate intelligent optimization of lightweight metal components in future applications.
基金partly supported by an A-base project funded by Agriculture and Agri-Food Canadathe TUFGEN project funded by Genome Canada and other stakeholdersfunds from the Western Grains Research Foundation
文摘The type 2 modified augmented design(MAD2) is an efficient unreplicated experimental design used for evaluating large numbers of lines in plant breeding and for assessing genetic variation in a population. Statistical methods and data adjustment for soil heterogeneity have been previously described for this design. In the absence of replicated test genotypes in MAD2, their total variance cannot be partitioned into genetic and error components as required to estimate heritability and genetic correlation of quantitative traits, the two conventional genetic parameters used for breeding selection. We propose a method of estimating the error variance of unreplicated genotypes that uses replicated controls, and then of estimating the genetic parameters. Using the Delta method, we also derived formulas for estimating the sampling variances of the genetic parameters.Computer simulations indicated that the proposed method for estimating genetic parameters and their sampling variances was feasible and the reliability of the estimates was positively associated with the level of heritability of the trait. A case study of estimating the genetic parameters of three quantitative traits, iodine value, oil content, and linolenic acid content, in a biparental recombinant inbred line population of flax with 243 individuals, was conducted using our statistical models. A joint analysis of data over multiple years and sites was suggested for genetic parameter estimation. A pipeline module using SAS and Perl was developed to facilitate data analysis and appended to the previously developed MAD data analysis pipeline(http://probes.pw.usda.gov/bioinformatics_ tools/MADPipeline/index.html).
基金This work was supported in part by the National Natural Science Foundation of China under Grant51507016。
文摘For an optimal design of a surface-mounted permanent magnet synchronous motor(SPMSM),many objective functions should be considered.The classical optimization methods,which have been habitually designed based on magnetic circuit law or finite element analysis(FEA),have inaccuracy or calculation time problems when solving the multi-objective problems.To address these problems,the multi-independent-population genetic algorithm(MGA)combined with subdomain(SD)model are proposed to improve the performance of SPMSM such as magnetic field distribution,cost and efficiency.In order to analyze the flux density harmonics accurately,the accurate SD model is first established.Then,the MGA with time-saving SD model are employed to search for solutions which belong to the Pareto optimal set.Finally,for the purpose of validation,the electromagnetic performance of the new design motor are investigated by FEA,comparing with the initial design and conventional GA optimal design to demonstrate the advantage of MGA optimization method.
文摘Purpose–The nose length is the key design parameter affecting the aerodynamic performance of high-speed maglev train,and the horizontal profile has a significant impact on the aerodynamic lift of the leading and trailing cars Hence,the study analyzes aerodynamic parameters with multi-objective optimization design.Design/methodology/approach–The nose of normal temperature and normal conduction high-speed maglev train is divided into streamlined part and equipment cabin according to its geometric characteristics.Then the modified vehicle modeling function(VMF)parameterization method and surface discretization method are adopted for the parametric design of the nose.For the 12 key design parameters extracted,combined with computational fluid dynamics(CFD),support vector machine(SVR)model and multi-objective particle swarm optimization(MPSO)algorithm,the multi-objective aerodynamic optimization design of highspeed maglev train nose and the sensitivity analysis of design parameters are carried out with aerodynamic drag coefficient of the whole vehicle and the aerodynamic lift coefficient of the trailing car as the optimization objectives and the aerodynamic lift coefficient of the leading car as the constraint.The engineering improvement and wind tunnel test verification of the optimized shape are done.Findings–Results show that the parametric design method can use less design parameters to describe the nose shape of high-speed maglev train.The prediction accuracy of the SVR model with the reduced amount of calculation and improved optimization efficiency meets the design requirements.Originality/value–Compared with the original shape,the aerodynamic drag coefficient of the whole vehicle is reduced by 19.2%,and the aerodynamic lift coefficients of the leading and trailing cars are reduced by 24.8 and 51.3%,respectively,after adopting the optimized shape modified according to engineering design requirements.
文摘This paper develops a sampling method to estimate the integral of a function of the area with a strategy to cover the area with parallel lines of observation. This sampling strategy is special in that lines very close to each other are selected much more seldom than under a uniformly random design for the positions of the parallel lines. It is also special in that the positions of some of the lines are deterministic. Two different variance estimators are derived and investigated by sampling different man made signal functions. They show different properties in that the estimator that estimate the biggest variance gives an error interval that, in some situations, may be more than ten times the error interval computed from the other estimator. It is also obvious that the second estimator underestimates the variance. The author has not succeeded to derive an expression for the expectation of this estimator. This work is motivated towards finding the variance of acoustic abundance estimates.
基金The National Natural Science Foundation of China(No. 50475020)
文摘Uncertainties in engineering design may lead to low reliable solutions that also exhibit high sensitivity to uncontrollable variations. In addition, there often exist several conflicting objectives and constraints in various design environments. In order to obtain solutions that are not only "multi-objectively" optimal, but also reliable and robust, a probabilistic optimization method was presented by integrating six sigma philosophy and multi-objective genetic algorithm. With this method, multi-objective genetic algorithm was adopted to obtain the global Pareto solutions, and six sigma method was used to improve the reliability and robustness of those optimal solutions. Two engineering design problems were provided as examples to illustrate the proposed method.
基金Sponsored bythe Ministerial Level Advanced Research Foundation(320010401)
文摘A method of designing robust controller based on genetic algorithm is presented in order to overcome the drawback of manual modification and trial in designing the control system of missile. Specification functions which reflect the dynamic performance in time domain and robustness in frequency domain are presented, then dynamic/static performance, control cost and robust stability are incorporated into a multi-objective optimization problem. Genetic algorithm is used to solve the problem and achieve the optimal controller directly. Simulation results show that the controller provides a good stability and offers a good dynamic performance in a large flight envelope. The results also validate the effectiveness of the method.