The combination of electrospinning and hot pressing,namely the electrospinning-hot pressing technique(EHPT),is an efficient and convenient method for preparing nanofibrous composite materials with good energy storage ...The combination of electrospinning and hot pressing,namely the electrospinning-hot pressing technique(EHPT),is an efficient and convenient method for preparing nanofibrous composite materials with good energy storage performance.The emerging composite membrane prepared by EHPT,which exhibits the advantages of large surface area,controllable morphology,and compact structure,has attracted immense attention.In this paper,the conduction mechanism of composite membranes in thermal and electrical energy storage and the performance enhancement method based on the fabrication process of EHPT are systematically discussed.Moreover,the state-of-the-art applications of composite membranes in these two fields are introduced.In particular,in the field of thermal energy storage,EHPT-prepared membranes have longitudinal and transverse nanofibers,which generate unique thermal conductivity pathways;also,these nanofibers offer enough space for the filling of functional materials.Moreover,EHPT-prepared membranes are beneficial in thermal management systems,building energy conservation,and electrical energy storage,e.g.,improving the electrochemical properties of the separators as well as their mechanical and thermal stability.The application of electrospinning-hot pressing membranes on capacitors,lithium-ion batteries(LIBs),fuel cells,sodium-ion batteries(SIBs),and hydrogen bromine flow batteries(HBFBs)still requires examination.In the future,EHPT is expected to make the field more exciting through its own technological breakthroughs or be combined with other technologies to produce intelligent materials.展开更多
Molasses can serve as a natural adhesive for plywood and particleboard.However,several disadvantages remain,including lower dimensional stability and low bonding strength compared to other adhesives.Therefore,modifica...Molasses can serve as a natural adhesive for plywood and particleboard.However,several disadvantages remain,including lower dimensional stability and low bonding strength compared to other adhesives.Therefore,modifications are needed to use molasses as an adhesive for plywood.This research aims to improve bio-based molasses(MO)adhesive for plywood using citric acid(CA)adhesive.In addition,this research aims to analyze the effect of adding citric acid and to investigate the optimum hot-pressing temperature to produce the best quality plywood.In the first stage,the molasses and citric acid were combined in a ratio of 100:0,75:25,50:50,25:75,0:100 w/w%.Then,the second stage focuses on analyzing the influences of pressing temperature based on an optimum first stage.The research demonstrated that the addition of CA altered the gelation time,solid content,viscosity,and pH of the molasses adhesives.In addition,the thermal properties of molasses adhesives were changed after mixing with citric acid.These phenomena indicate changes in characteristics,such as the curing of adhesive.Overall,the characteristics of plywood showed a steady improvement as the CA ratio increased but revealed a significant decline for the 25:75 MO-CA ratio.By raising the pressing temperature from 180°C to 200°C,the quality of plywood was effectively improved.The plywood that was bonded using adhesives with a 50:50 MO-CA ratio exhibited superior mechanical properties and improved dimensional stability compared to the plywood bonded solely with MO.Furthermore,the optimal mechanical and physical properties resulted in plywood bonded with a 50:50 MO-CA ratio when subjected to a pressing temperature of 200°C.The Thermal and FTIR measurements revealed that CA established ester bonds with both the MO and wood veneers.In conclusion,the mechanical characteristics of plywood were improved,while maintaining its excellent dimensional stability.展开更多
In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and proper...In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and properties of the alloy were investigated in detail.The results showed that the samples deformed by the combination of cryogenic equal channel angular pressing(ECAP)and rolling had good comprehensive properties after aging at 400℃.The tensile strength of the peak-aged and over-aged samples was 1120 MPa and 940 MPa,with their corresponding electrical conductivity of 14.7%IACS and 22.1%IACS,respectively.ECAP and cryogenic rolling introduced high density dislocations,leading to the inhibition of the softening effects and refinement of the grains.After a long time aging at 400℃,the alloy exhibited ultra-high strength with obvious increasing electrical conductivity.The high strength was attributed to the synergistic effect of work hardening,grain refinement strengthening and precipitation strengthening.The precipitation of a large amount of Ti atoms from the matrix led to the high electrical conductivity of the over-aged sample.展开更多
Deformation can change the transition pathway of materials under high pressure,thus significantly affects physical and chemical properties of matters.However,accurate pressure calibration under deformation is challeng...Deformation can change the transition pathway of materials under high pressure,thus significantly affects physical and chemical properties of matters.However,accurate pressure calibration under deformation is challenging and thereby causes relatively large pressure uncertainties in deformation experiments,resulting in the synthesis of complex multiphase materials.Here,pressure generations of three types of deformation assemblies were well calibrated in a Walker-type largevolume press(LVP)by electrical resistance measurements combined with finite element simulations(FESs).Hard Al_(2)O_(3) or diamond pistons in shear and uniaxial deformation assemblies significantly increase the efficiency of pressure generation compared with the conventional quasi-hydrostatic assembly.The uniaxial deformation assembly using flat diamond pistons possesses the highest efficiency in these deformation assemblies.This finding is further confirmed by stress distribution analysis based on FESs.With this deformation assembly,we found shear can effectively promote the transformation of C60 into diamond under high pressure and realized the synthesis of phase-pure diamond at relatively moderate pressure and temperature conditions.The present developed techniques will help improve pressure efficiencies in LVP and explore the new physical and chemical properties of materials under deformation in both science and technology.展开更多
The microstructure characteristics and strengthening mechanism of Inconel738LC(IN-738LC) alloy prepared by using induction-assisted directed energy deposition(IDED) were elucidated through the investigation of samples...The microstructure characteristics and strengthening mechanism of Inconel738LC(IN-738LC) alloy prepared by using induction-assisted directed energy deposition(IDED) were elucidated through the investigation of samples subjected to IDED under 1050℃ preheating with and without hot isostatic pressing(HIP,1190℃,105 MPa,and 3 h).Results show that the as-deposited sample mainly consisted of epitaxial columnar crystals and inhomogeneously distributed γ’ phases in interdendritic and dendritic core regions.After HIP,grain morphology changed negligibly,whereas the size of the γ’ phase became increasingly even.After further heat treatment(HT,1070℃,2 h + 845℃,24 h),the γ’ phase in the as-deposited and HIPed samples presented a bimodal size distribution,whereas that in the as-deposited sample showed a size that remained uneven.The comparison of tensile properties revealed that the tensile strength and uniform elongation of the HIP + HTed sample increased by 5% and 46%,respectively,due to the synergistic deformation of bimodal γ’phases,especially large cubic γ’ phases.Finally,the relationship between phase transformations and plastic deformations in the IDEDed sample was discussed on the basis of generalized stability theory in terms of the trade-off between thermodynamics and kinetics.展开更多
This work investigated the effect of Cr and Si on the mechanical properties and oxidation resistance of press hardened steel.Results indicated that the microstructure of the Cr-Si micro-alloyed press hardened steel co...This work investigated the effect of Cr and Si on the mechanical properties and oxidation resistance of press hardened steel.Results indicated that the microstructure of the Cr-Si micro-alloyed press hardened steel consisted of lath martensite,M_(23)C_(6)carbides,and retained austenite.The retained austenite and carbides are responsible for the increase in elongation of the micro-alloyed steel.In addition,after oxidation at 930℃for 5 min,the thickness of the oxide scales on the Cr-Si micro-alloyed press hardened steel is less than 5μm,much thinner than 45.50μm-thick oxide scales on 22MnB5.The oxide scales of the Cr-Si micro-alloyed steel are composed of Fe_(2)O_(3),Fe_(3)O_(4),mixed spinel oxide(FeCr_(2)O_(4)and Fe_(2)SiO_(4)),and amorphous SiO_(2).Adding Cr and Si significantly reduces the thickness of the oxide scales and prevents the generation of the FeO phase.Due to the increase of spinel FeCr_(2)O_(4)and Fe_(2)SiO_(4)phase in the inner oxide scale and the amorphous SiO_(2)close to the substrate,the oxidation resistance of the Cr-Si micro-alloyed press hardened steel is improved.展开更多
Existing linkage-optimization methods are designed for mechanical presses; few can be directly used for servo presses, so development of the servo press is limited. Based on the complementarity of linkage opti- mizati...Existing linkage-optimization methods are designed for mechanical presses; few can be directly used for servo presses, so development of the servo press is limited. Based on the complementarity of linkage opti- mization and motion planning, a phase-division-based linkage-optimization model for a drawing servo press is established. Considering the motion-planning principles of a drawing servo press, and taking account of work rating and efficiency, the constraints of the optimization model are constructed. Linkage is optimized in two modes: use of either constant eccentric speed or constant slide speed in the work segments. The performances of optimized link- ages are compared with those of a mature linkage SL4- 2000A, which is optimized by a traditional method. The results show that the work rating of a drawing servo press equipped with linkages optimized by this new method improved and the root-mean-square torque of the servo motors is reduced by more than 10%. This research pro- vides a promising method for designing energy-saving drawing servo presses with high work ratings.展开更多
A new method to calculate and counterbalance the inertia force of slider-crank mechanisms in high-speed mechanical presses was put forward. By analyzing the kinematic characteristics of a center-located slider-crank m...A new method to calculate and counterbalance the inertia force of slider-crank mechanisms in high-speed mechanical presses was put forward. By analyzing the kinematic characteristics of a center-located slider-crank mechanism whose crank rotates at a constant angular velocity,the kinematic parameters of the slide,connecting rod and crank were formulated approximately. On the basis of the results above,three inertia forces and the input moment in the mechanism during its idle running were investigated and formulated by dynamic analysis. A verification experiment was performed on a slider-crank mechanism at a high-speed press machine. The forces derived from the established formulas were compared respectively with those obtained by the ADAMS software and the classical method of connecting rod mass substitution. It was experimentally found that the proposed formulas have an improved performance over related earlier techniques. By use of these results,a 1 000 kN 1 250 rpm four-point high-speed press machine was designed and manufactured. The slide of this press is driven by four sets of slider-crank mechanisms with symmetrical layout and opposite rotation directions to counterbalance the horizontal inertia forces. Four eccentric counterbalance blocks were designed to counterbalance the vertical force after their mass and equivalent eccentric radius were formulated. The high-speed press machine designed by the proposed counterbalance method has worked with satisfactory performance and good dynamic balance for more than four years in practical production.展开更多
Fast response and stable torque output are crucial to the performance of electric screw presses. This paper describes the design of a direct torque control (DTC) system for speeding up torque response and reducing t...Fast response and stable torque output are crucial to the performance of electric screw presses. This paper describes the design of a direct torque control (DTC) system for speeding up torque response and reducing the starting current of electric screw presses and its application to the J58K series of numerical control electric screw presses with a dual-motor drive. The DTC drive system encompasses speed control, torque reference control, and switching frequency control. Comparison of the DTC dual-AC induction motor drive with corresponding AC servo motor drive showed that for the J58K-315 electric screw press, the DTC drive system attains a higher maximum speed (786 r/min) within a shorter time (1.13 s) during a 250 nun stroke and undergoes smaller rise in temperature (42.0 ℃) in the motor after running for 2 h at a 12 min-1 strike frequency than the AC servo motor drive does (751 r/min within 1.19 s, and 50.6 ℃ rise). Moreover, the DTC AC induction motor drive, with no need for a tachometer or position encoder to feed back the speed or position of the motor shaft, enjoys increased reliability in a strong-shock work environment.展开更多
The Shima yield criterion used in finite element analysis for nickel-based superalloy powder compact during hot isostatic pressing(HIP) was modified through uniaxial compression experiments. The influence of cylindric...The Shima yield criterion used in finite element analysis for nickel-based superalloy powder compact during hot isostatic pressing(HIP) was modified through uniaxial compression experiments. The influence of cylindrical capsule characteristics on FGH4096M superalloy powder compact deformation and densification behavior during HIP was investigated through simulations and experiments. Results revealed the simulation shrinkage prediction fitted well with the experimental shrinkage including a maximum shrinkage error of 1.5%. It was shown that the axial shrinkage was 1.7% higher than radial shrinkage for a cylindrical capsule with the size of ∮50 mm × 100 mm due to the force arm difference along the axial and radial direction of the capsule. The stress deviated from the isostatic state in the capsule led to the uneven shrinkage and non-uniform densification of the powder compact. The ratio of the maximum radial displacement to axial displacement increased from0.47 to 0.75 with the capsule thickness increasing from 2 to 4 mm. The pressure transmission is related to the capsule thickness, the capsule material performance, and physical parameters in the HIP process.展开更多
Powder hot isostatic pressing(HIP) is an effective method to achieve near-net-shape manufacturing of high-quality complex thinwalled titanium alloy parts, and it has received extensive attention in recent years. Howev...Powder hot isostatic pressing(HIP) is an effective method to achieve near-net-shape manufacturing of high-quality complex thinwalled titanium alloy parts, and it has received extensive attention in recent years. However, there are few reports about the microstructure characteristics on the strengthening and toughening mechanisms of powder hot isostatic pressed(HIPed) titanium alloys. Therefore, TA15powder was prepared into alloy by HIP approach, which was used to explore the microstructure characteristics at different HIP temperatures and the corresponding tensile properties and fracture toughness. Results show that the fabricated alloy has a “basket-like structure” when the HIP temperature is below 950℃, consisting of lath clusters and surrounding small equiaxed grains belts. When the HIP temperature is higher than 950℃, the microstructure gradually transforms into the Widmanstatten structure, accompanied by a significant increase in grain size. The tensile strength and elongation are reduced from 948 MPa and 17.3% for the 910℃ specimen to 861 MPa and 10% for the 970℃ specimen.The corresponding tensile fracture mode changes from transcrystalline plastic fracture to mixed fracture including intercrystalline cleavage.The fracture toughness of the specimens increases from 82.64 MPa·m^(1/2)for the 910℃ specimen to 140.18 MPa·m^(1/2)for the 970℃ specimen.Specimens below 950℃ tend to form holes due to the prior particle boundaries(PPBs), which is not conducive to toughening. Specimens above 950℃ have high fracture toughness due to the crack deflection, crack branching, and shear plastic deformation of the Widmanstatten structure. This study provides a valid reference for the development of powder HIPed titanium alloy.展开更多
Hot isostatic pressing parameters are critical to Ti60 high temperature titanium alloy castings which have wide application perspective in aerospace.In order to obtain optimal processing parameters,the effects of hot ...Hot isostatic pressing parameters are critical to Ti60 high temperature titanium alloy castings which have wide application perspective in aerospace.In order to obtain optimal processing parameters,the effects of hot isostatic pressing parameters on defects,composition uniformity,microstructure and mechanical properties of Ti60 cast high temperature titanium alloy were investigated in detail.Results show that increasing temperature and pressure of hot isostatic pressing can reduce defects,especially,the internal defects are substantially eliminated when the temperature exceeds 920℃or the pressure exceeds 125 MPa.The higher temperature and pressure can improve the microstructure uniformity.Besides,the higher pressure can promote the composition uniformity.With the temperature increases from 880℃to 960℃,α-laths are coarsened.But with increasing pressure,the grain size of prior-βphase,the widths ofα-laths andα-colony are reduced.The tensile strength of Ti60 alloy is 949 MPa,yield strength is 827 MPa,and the elongation is 11%when the hot isostatic pressing parameters are 960℃/125 MPa/2 h,which exhibits the best match between the strength and plasticity.展开更多
Two severe plastic deformation(SPD)techniques of simple shear extrusion(SSE)and equal channel angular pressing(ECAP)were employed to process an extruded Mg-6Gd-3Y-1.5Ag(wt%)alloy at 553 K for 1,2,4 and 6 passes.The mi...Two severe plastic deformation(SPD)techniques of simple shear extrusion(SSE)and equal channel angular pressing(ECAP)were employed to process an extruded Mg-6Gd-3Y-1.5Ag(wt%)alloy at 553 K for 1,2,4 and 6 passes.The microstructural evolutions were studied by electron back scattered diffraction(EBSD)analysis and transmission electron microscopy(TEM).The initial grain size of 7.5μm in the extruded alloy was reduced to about 1.3μm after 6 SPD passes.Discontinuous dynamic recrystallization was suggested to be operative in both SSE and ECAP,with also a potential contribution of continuous dynamic recrystallization at the early stages of deformation.The difference in the shear strain paths of the two SPD techniques caused different progression rate of dynamic recrystallization(DRX),so that the alloys processed by ECAP exhibited higher fractions of recrystallization and high angle grain boundaries(HAGBs).It was revealed that crystallographic texture was also significantly influenced by the difference in the strain paths of the two SPD methods,where dissimilar basal plane texture components were obtained.The compression tests,performed along extrusion direction(ED),indicated that the compressive yield stress(CYS)and ultimate compressive strength(UCS)of the alloys after both SEE and ECAP augmented continuously by increasing the number of passes.ECAP-processed alloys had lower values of CYS and UCS compared to their counterparts processed by SSE.This difference in the mechanical responses was attributed to the different configurations of basal planes with respect to the loading direction(ED)of each SPD technique.展开更多
An extruded Mg-6Gd-3Y-1.5Ag(wt%) alloy was processed by 6 passes of equal channel angular pressing(ECAP) at 553 K using route Bc to refine the microstructure. Electron back-scattered diffraction(EBSD) analysis showed ...An extruded Mg-6Gd-3Y-1.5Ag(wt%) alloy was processed by 6 passes of equal channel angular pressing(ECAP) at 553 K using route Bc to refine the microstructure. Electron back-scattered diffraction(EBSD) analysis showed a fully recrystallized microstructure for the extruded alloy with a mean grain size of 8.6 μm. The microstructure of the ECAP-processed alloy was uniformly refined through dynamic recrystallization(DRX). This microstructure contained fine grains with an average size of 1.3 μm, a high fraction of high angle grain boundaries(HAGBs), and nano-sized Mg_(5)Gd-type particles at the boundaries of the DRXed grains, detected by transmission electron microscopy(TEM). High-temperature shear punch testing(SPT) was used to evaluate the superplastic behavior of both the extruded and ECAP-processed alloys by measuring the strain rate sensitivity(SRS) index(m-value). While the highest m-value for the extruded alloy was measured to be 0.24 at 673 K, the ECAP-processed alloy exhibited much higher m-values of 0.41 and 0.52 at 598 and 623 K, respectively,delineating the occurrence of superplastic flow. Based on the calculated average activation energy of 118 kJ mol^(-1) and m-values close to 0.5, the deformation mechanism for superplastic flow at the temperatures of 598 and 623 K for the ECAP-processed alloys was recognized to be grain boundary sliding(GBS) assisted by grain boundary diffusion.展开更多
A homogenous microstructure of ultrafine-grained (UFG) commercially pure (CP) Ti characterized by equiaxed grains/subgrains with an average grain size of about 150 nm and strong prismatic fiber texture were obtained a...A homogenous microstructure of ultrafine-grained (UFG) commercially pure (CP) Ti characterized by equiaxed grains/subgrains with an average grain size of about 150 nm and strong prismatic fiber texture were obtained after 4 passes of equal channel angular pressing (ECAP).Tension–compression asymmetry in yield and work hardening behavior of UFG CP Ti were investigated by uniaxial tension and compression tests.The experimental results reveal that UFG CP Ti exhibits a relatively obvious tensioncompression asymmetry in yielding and work hardening behavior.The basal and prismaticslip are suppressed either for tension or compression,which is the easiest to activate.The tension twin system{1012}<1011> easily activated in compression deformation due to the prismatic fiber texture based on the Schmidt factor,consequently resulting in a lower yield strength under compression than tension.ECAP can improve the tension-compression asymmetry of CP Ti due to grain refinement.The interaction among the dislocations,grain boundaries and deformation twins are the main work hardening mechanisms for compression deformation,while the interaction between the dislocations and grain boundaries for tension deformation.Deformation twins lead to the higher work hardening under compression than tension.展开更多
基金supported by the National Natural Science Foundation of China(No.52274252)the Key Science and Technology Project of Changsha City,China(No.kq2102005)+1 种基金the Special Fund for the Construction of Innovative Province in Hunan Province,China(Nos.2020RC3038 and 2022WK4004)the Changsha City Fund for Distinguished and Innovative Young Scholars,China(No.kq1802007).
文摘The combination of electrospinning and hot pressing,namely the electrospinning-hot pressing technique(EHPT),is an efficient and convenient method for preparing nanofibrous composite materials with good energy storage performance.The emerging composite membrane prepared by EHPT,which exhibits the advantages of large surface area,controllable morphology,and compact structure,has attracted immense attention.In this paper,the conduction mechanism of composite membranes in thermal and electrical energy storage and the performance enhancement method based on the fabrication process of EHPT are systematically discussed.Moreover,the state-of-the-art applications of composite membranes in these two fields are introduced.In particular,in the field of thermal energy storage,EHPT-prepared membranes have longitudinal and transverse nanofibers,which generate unique thermal conductivity pathways;also,these nanofibers offer enough space for the filling of functional materials.Moreover,EHPT-prepared membranes are beneficial in thermal management systems,building energy conservation,and electrical energy storage,e.g.,improving the electrochemical properties of the separators as well as their mechanical and thermal stability.The application of electrospinning-hot pressing membranes on capacitors,lithium-ion batteries(LIBs),fuel cells,sodium-ion batteries(SIBs),and hydrogen bromine flow batteries(HBFBs)still requires examination.In the future,EHPT is expected to make the field more exciting through its own technological breakthroughs or be combined with other technologies to produce intelligent materials.
基金funded by Riset dan Inovasi untuk Indonesia Maju(RIIM)National Riset and Innovation Agency(Grant Numbers:4/IV/KS/05/2023 and 13955/IT3/PT.01.03/P/B/2023)Research Program by Research Organization of Nanotechnology and Materials,National Research and Innovation Agency(Grant Number 20/III.10/HK/2024).
文摘Molasses can serve as a natural adhesive for plywood and particleboard.However,several disadvantages remain,including lower dimensional stability and low bonding strength compared to other adhesives.Therefore,modifications are needed to use molasses as an adhesive for plywood.This research aims to improve bio-based molasses(MO)adhesive for plywood using citric acid(CA)adhesive.In addition,this research aims to analyze the effect of adding citric acid and to investigate the optimum hot-pressing temperature to produce the best quality plywood.In the first stage,the molasses and citric acid were combined in a ratio of 100:0,75:25,50:50,25:75,0:100 w/w%.Then,the second stage focuses on analyzing the influences of pressing temperature based on an optimum first stage.The research demonstrated that the addition of CA altered the gelation time,solid content,viscosity,and pH of the molasses adhesives.In addition,the thermal properties of molasses adhesives were changed after mixing with citric acid.These phenomena indicate changes in characteristics,such as the curing of adhesive.Overall,the characteristics of plywood showed a steady improvement as the CA ratio increased but revealed a significant decline for the 25:75 MO-CA ratio.By raising the pressing temperature from 180°C to 200°C,the quality of plywood was effectively improved.The plywood that was bonded using adhesives with a 50:50 MO-CA ratio exhibited superior mechanical properties and improved dimensional stability compared to the plywood bonded solely with MO.Furthermore,the optimal mechanical and physical properties resulted in plywood bonded with a 50:50 MO-CA ratio when subjected to a pressing temperature of 200°C.The Thermal and FTIR measurements revealed that CA established ester bonds with both the MO and wood veneers.In conclusion,the mechanical characteristics of plywood were improved,while maintaining its excellent dimensional stability.
基金Project(U2202255)supported by the National Natural Science Foundation of ChinaProject(2024JJ2076)supported by the Hunan Provincial Natural Science Foundation of ChinaProject(2023Z092)supported by the Key Technology Research Program of Ningbo,China。
文摘In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and properties of the alloy were investigated in detail.The results showed that the samples deformed by the combination of cryogenic equal channel angular pressing(ECAP)and rolling had good comprehensive properties after aging at 400℃.The tensile strength of the peak-aged and over-aged samples was 1120 MPa and 940 MPa,with their corresponding electrical conductivity of 14.7%IACS and 22.1%IACS,respectively.ECAP and cryogenic rolling introduced high density dislocations,leading to the inhibition of the softening effects and refinement of the grains.After a long time aging at 400℃,the alloy exhibited ultra-high strength with obvious increasing electrical conductivity.The high strength was attributed to the synergistic effect of work hardening,grain refinement strengthening and precipitation strengthening.The precipitation of a large amount of Ti atoms from the matrix led to the high electrical conductivity of the over-aged sample.
基金the National Natural Science Foundation of China(Grant Nos.42272041,41902034,52302043,12304015,52302043,and 12011530063)the National Major Science Facility Synergetic Extreme Condition User Facility Achievement Transformation Platform Construction(Grant No.2021FGWCXNLJSKJ01)+2 种基金the China Postdoctoral Science Foundation(Grant Nos.2022M720054 and 2023T160257)the National Key Research and Development Program of China(Grant No.2022YFB3706602)the Jilin Univer-sity High-level Innovation Team Foundation,China(Grant No.2021TD-05).
文摘Deformation can change the transition pathway of materials under high pressure,thus significantly affects physical and chemical properties of matters.However,accurate pressure calibration under deformation is challenging and thereby causes relatively large pressure uncertainties in deformation experiments,resulting in the synthesis of complex multiphase materials.Here,pressure generations of three types of deformation assemblies were well calibrated in a Walker-type largevolume press(LVP)by electrical resistance measurements combined with finite element simulations(FESs).Hard Al_(2)O_(3) or diamond pistons in shear and uniaxial deformation assemblies significantly increase the efficiency of pressure generation compared with the conventional quasi-hydrostatic assembly.The uniaxial deformation assembly using flat diamond pistons possesses the highest efficiency in these deformation assemblies.This finding is further confirmed by stress distribution analysis based on FESs.With this deformation assembly,we found shear can effectively promote the transformation of C60 into diamond under high pressure and realized the synthesis of phase-pure diamond at relatively moderate pressure and temperature conditions.The present developed techniques will help improve pressure efficiencies in LVP and explore the new physical and chemical properties of materials under deformation in both science and technology.
基金financial support of the National Natural Science Foundation of China(Nos.52130110 and U22A20189)the Research Fund of the State Key Laboratory of Solidification Processing(No.2023-TS-10)。
文摘The microstructure characteristics and strengthening mechanism of Inconel738LC(IN-738LC) alloy prepared by using induction-assisted directed energy deposition(IDED) were elucidated through the investigation of samples subjected to IDED under 1050℃ preheating with and without hot isostatic pressing(HIP,1190℃,105 MPa,and 3 h).Results show that the as-deposited sample mainly consisted of epitaxial columnar crystals and inhomogeneously distributed γ’ phases in interdendritic and dendritic core regions.After HIP,grain morphology changed negligibly,whereas the size of the γ’ phase became increasingly even.After further heat treatment(HT,1070℃,2 h + 845℃,24 h),the γ’ phase in the as-deposited and HIPed samples presented a bimodal size distribution,whereas that in the as-deposited sample showed a size that remained uneven.The comparison of tensile properties revealed that the tensile strength and uniform elongation of the HIP + HTed sample increased by 5% and 46%,respectively,due to the synergistic deformation of bimodal γ’phases,especially large cubic γ’ phases.Finally,the relationship between phase transformations and plastic deformations in the IDEDed sample was discussed on the basis of generalized stability theory in terms of the trade-off between thermodynamics and kinetics.
基金The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China(Nos.52274372 and 52201101)the National Key R&D Program of China(No.2021YFB3702404)the Fundamental Research Funds for the Central Universities(No.FRF-TP-22-013A1).
文摘This work investigated the effect of Cr and Si on the mechanical properties and oxidation resistance of press hardened steel.Results indicated that the microstructure of the Cr-Si micro-alloyed press hardened steel consisted of lath martensite,M_(23)C_(6)carbides,and retained austenite.The retained austenite and carbides are responsible for the increase in elongation of the micro-alloyed steel.In addition,after oxidation at 930℃for 5 min,the thickness of the oxide scales on the Cr-Si micro-alloyed press hardened steel is less than 5μm,much thinner than 45.50μm-thick oxide scales on 22MnB5.The oxide scales of the Cr-Si micro-alloyed steel are composed of Fe_(2)O_(3),Fe_(3)O_(4),mixed spinel oxide(FeCr_(2)O_(4)and Fe_(2)SiO_(4)),and amorphous SiO_(2).Adding Cr and Si significantly reduces the thickness of the oxide scales and prevents the generation of the FeO phase.Due to the increase of spinel FeCr_(2)O_(4)and Fe_(2)SiO_(4)phase in the inner oxide scale and the amorphous SiO_(2)close to the substrate,the oxidation resistance of the Cr-Si micro-alloyed press hardened steel is improved.
基金Supported by National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No.2015ZX04003004)
文摘Existing linkage-optimization methods are designed for mechanical presses; few can be directly used for servo presses, so development of the servo press is limited. Based on the complementarity of linkage opti- mization and motion planning, a phase-division-based linkage-optimization model for a drawing servo press is established. Considering the motion-planning principles of a drawing servo press, and taking account of work rating and efficiency, the constraints of the optimization model are constructed. Linkage is optimized in two modes: use of either constant eccentric speed or constant slide speed in the work segments. The performances of optimized link- ages are compared with those of a mature linkage SL4- 2000A, which is optimized by a traditional method. The results show that the work rating of a drawing servo press equipped with linkages optimized by this new method improved and the root-mean-square torque of the servo motors is reduced by more than 10%. This research pro- vides a promising method for designing energy-saving drawing servo presses with high work ratings.
基金supported by the National Natural Science Foundation of China (No.50575175)
文摘A new method to calculate and counterbalance the inertia force of slider-crank mechanisms in high-speed mechanical presses was put forward. By analyzing the kinematic characteristics of a center-located slider-crank mechanism whose crank rotates at a constant angular velocity,the kinematic parameters of the slide,connecting rod and crank were formulated approximately. On the basis of the results above,three inertia forces and the input moment in the mechanism during its idle running were investigated and formulated by dynamic analysis. A verification experiment was performed on a slider-crank mechanism at a high-speed press machine. The forces derived from the established formulas were compared respectively with those obtained by the ADAMS software and the classical method of connecting rod mass substitution. It was experimentally found that the proposed formulas have an improved performance over related earlier techniques. By use of these results,a 1 000 kN 1 250 rpm four-point high-speed press machine was designed and manufactured. The slide of this press is driven by four sets of slider-crank mechanisms with symmetrical layout and opposite rotation directions to counterbalance the horizontal inertia forces. Four eccentric counterbalance blocks were designed to counterbalance the vertical force after their mass and equivalent eccentric radius were formulated. The high-speed press machine designed by the proposed counterbalance method has worked with satisfactory performance and good dynamic balance for more than four years in practical production.
基金Funded by the Natural Science Foundation of Hubei Province (No. 2004AA101E04)
文摘Fast response and stable torque output are crucial to the performance of electric screw presses. This paper describes the design of a direct torque control (DTC) system for speeding up torque response and reducing the starting current of electric screw presses and its application to the J58K series of numerical control electric screw presses with a dual-motor drive. The DTC drive system encompasses speed control, torque reference control, and switching frequency control. Comparison of the DTC dual-AC induction motor drive with corresponding AC servo motor drive showed that for the J58K-315 electric screw press, the DTC drive system attains a higher maximum speed (786 r/min) within a shorter time (1.13 s) during a 250 nun stroke and undergoes smaller rise in temperature (42.0 ℃) in the motor after running for 2 h at a 12 min-1 strike frequency than the AC servo motor drive does (751 r/min within 1.19 s, and 50.6 ℃ rise). Moreover, the DTC AC induction motor drive, with no need for a tachometer or position encoder to feed back the speed or position of the motor shaft, enjoys increased reliability in a strong-shock work environment.
基金financially supported by Guangdong Province Key Field R&D Program, China (No. 2019B01 0935001)the National Nature Science Foundation of China (No. 51905192)the Fundamental Research Funds for the Central Universities (No. FRT-TP-20-006A2)
文摘The Shima yield criterion used in finite element analysis for nickel-based superalloy powder compact during hot isostatic pressing(HIP) was modified through uniaxial compression experiments. The influence of cylindrical capsule characteristics on FGH4096M superalloy powder compact deformation and densification behavior during HIP was investigated through simulations and experiments. Results revealed the simulation shrinkage prediction fitted well with the experimental shrinkage including a maximum shrinkage error of 1.5%. It was shown that the axial shrinkage was 1.7% higher than radial shrinkage for a cylindrical capsule with the size of ∮50 mm × 100 mm due to the force arm difference along the axial and radial direction of the capsule. The stress deviated from the isostatic state in the capsule led to the uneven shrinkage and non-uniform densification of the powder compact. The ratio of the maximum radial displacement to axial displacement increased from0.47 to 0.75 with the capsule thickness increasing from 2 to 4 mm. The pressure transmission is related to the capsule thickness, the capsule material performance, and physical parameters in the HIP process.
基金financially supported by the National Natural Science Foundation of China (Nos. 51874037 and 51922004)the Beijing Natural Science Foundation (No. 2212035)+1 种基金the Fundamental Research Funds for the Central Universities (No. FRF-TP-19005C1Z)the National Defense Basic Research Project (No. JCKY2017213004)。
文摘Powder hot isostatic pressing(HIP) is an effective method to achieve near-net-shape manufacturing of high-quality complex thinwalled titanium alloy parts, and it has received extensive attention in recent years. However, there are few reports about the microstructure characteristics on the strengthening and toughening mechanisms of powder hot isostatic pressed(HIPed) titanium alloys. Therefore, TA15powder was prepared into alloy by HIP approach, which was used to explore the microstructure characteristics at different HIP temperatures and the corresponding tensile properties and fracture toughness. Results show that the fabricated alloy has a “basket-like structure” when the HIP temperature is below 950℃, consisting of lath clusters and surrounding small equiaxed grains belts. When the HIP temperature is higher than 950℃, the microstructure gradually transforms into the Widmanstatten structure, accompanied by a significant increase in grain size. The tensile strength and elongation are reduced from 948 MPa and 17.3% for the 910℃ specimen to 861 MPa and 10% for the 970℃ specimen.The corresponding tensile fracture mode changes from transcrystalline plastic fracture to mixed fracture including intercrystalline cleavage.The fracture toughness of the specimens increases from 82.64 MPa·m^(1/2)for the 910℃ specimen to 140.18 MPa·m^(1/2)for the 970℃ specimen.Specimens below 950℃ tend to form holes due to the prior particle boundaries(PPBs), which is not conducive to toughening. Specimens above 950℃ have high fracture toughness due to the crack deflection, crack branching, and shear plastic deformation of the Widmanstatten structure. This study provides a valid reference for the development of powder HIPed titanium alloy.
基金financially supported by the National Key Research and Development Program of China(Grant No.2020YFB2008300)。
文摘Hot isostatic pressing parameters are critical to Ti60 high temperature titanium alloy castings which have wide application perspective in aerospace.In order to obtain optimal processing parameters,the effects of hot isostatic pressing parameters on defects,composition uniformity,microstructure and mechanical properties of Ti60 cast high temperature titanium alloy were investigated in detail.Results show that increasing temperature and pressure of hot isostatic pressing can reduce defects,especially,the internal defects are substantially eliminated when the temperature exceeds 920℃or the pressure exceeds 125 MPa.The higher temperature and pressure can improve the microstructure uniformity.Besides,the higher pressure can promote the composition uniformity.With the temperature increases from 880℃to 960℃,α-laths are coarsened.But with increasing pressure,the grain size of prior-βphase,the widths ofα-laths andα-colony are reduced.The tensile strength of Ti60 alloy is 949 MPa,yield strength is 827 MPa,and the elongation is 11%when the hot isostatic pressing parameters are 960℃/125 MPa/2 h,which exhibits the best match between the strength and plasticity.
基金This research did not receive any specific grant from funding agencies in the public,commercial,or not-for-profit sectors.
文摘Two severe plastic deformation(SPD)techniques of simple shear extrusion(SSE)and equal channel angular pressing(ECAP)were employed to process an extruded Mg-6Gd-3Y-1.5Ag(wt%)alloy at 553 K for 1,2,4 and 6 passes.The microstructural evolutions were studied by electron back scattered diffraction(EBSD)analysis and transmission electron microscopy(TEM).The initial grain size of 7.5μm in the extruded alloy was reduced to about 1.3μm after 6 SPD passes.Discontinuous dynamic recrystallization was suggested to be operative in both SSE and ECAP,with also a potential contribution of continuous dynamic recrystallization at the early stages of deformation.The difference in the shear strain paths of the two SPD techniques caused different progression rate of dynamic recrystallization(DRX),so that the alloys processed by ECAP exhibited higher fractions of recrystallization and high angle grain boundaries(HAGBs).It was revealed that crystallographic texture was also significantly influenced by the difference in the strain paths of the two SPD methods,where dissimilar basal plane texture components were obtained.The compression tests,performed along extrusion direction(ED),indicated that the compressive yield stress(CYS)and ultimate compressive strength(UCS)of the alloys after both SEE and ECAP augmented continuously by increasing the number of passes.ECAP-processed alloys had lower values of CYS and UCS compared to their counterparts processed by SSE.This difference in the mechanical responses was attributed to the different configurations of basal planes with respect to the loading direction(ED)of each SPD technique.
文摘An extruded Mg-6Gd-3Y-1.5Ag(wt%) alloy was processed by 6 passes of equal channel angular pressing(ECAP) at 553 K using route Bc to refine the microstructure. Electron back-scattered diffraction(EBSD) analysis showed a fully recrystallized microstructure for the extruded alloy with a mean grain size of 8.6 μm. The microstructure of the ECAP-processed alloy was uniformly refined through dynamic recrystallization(DRX). This microstructure contained fine grains with an average size of 1.3 μm, a high fraction of high angle grain boundaries(HAGBs), and nano-sized Mg_(5)Gd-type particles at the boundaries of the DRXed grains, detected by transmission electron microscopy(TEM). High-temperature shear punch testing(SPT) was used to evaluate the superplastic behavior of both the extruded and ECAP-processed alloys by measuring the strain rate sensitivity(SRS) index(m-value). While the highest m-value for the extruded alloy was measured to be 0.24 at 673 K, the ECAP-processed alloy exhibited much higher m-values of 0.41 and 0.52 at 598 and 623 K, respectively,delineating the occurrence of superplastic flow. Based on the calculated average activation energy of 118 kJ mol^(-1) and m-values close to 0.5, the deformation mechanism for superplastic flow at the temperatures of 598 and 623 K for the ECAP-processed alloys was recognized to be grain boundary sliding(GBS) assisted by grain boundary diffusion.
基金National Natural Science Foundation of China (No.51474170)Natural Science Foundation of Shaanxi Province (No.2023-JC-YB-312)Key Laboratory Project of Shaanxi Province Educational Committee (No.20JS075)。
文摘A homogenous microstructure of ultrafine-grained (UFG) commercially pure (CP) Ti characterized by equiaxed grains/subgrains with an average grain size of about 150 nm and strong prismatic fiber texture were obtained after 4 passes of equal channel angular pressing (ECAP).Tension–compression asymmetry in yield and work hardening behavior of UFG CP Ti were investigated by uniaxial tension and compression tests.The experimental results reveal that UFG CP Ti exhibits a relatively obvious tensioncompression asymmetry in yielding and work hardening behavior.The basal and prismaticslip are suppressed either for tension or compression,which is the easiest to activate.The tension twin system{1012}<1011> easily activated in compression deformation due to the prismatic fiber texture based on the Schmidt factor,consequently resulting in a lower yield strength under compression than tension.ECAP can improve the tension-compression asymmetry of CP Ti due to grain refinement.The interaction among the dislocations,grain boundaries and deformation twins are the main work hardening mechanisms for compression deformation,while the interaction between the dislocations and grain boundaries for tension deformation.Deformation twins lead to the higher work hardening under compression than tension.