期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Improved multi-orientation dispersion of short carbon fibers in aluminum matrix composites prepared with square crucible by mechanical stirring 被引量:5
1
作者 Guanglong Li Yingdong Qu +3 位作者 Yaohua Yang Qiwen Zhou Xishi Liu Rongde Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第5期81-87,共7页
In order to improve the strength of short carbon fibers reinforced aluminum matrix(Csf/Al)composite,the dispersion of short carbon fibers with multi-orientation was controlled with a square crucible by mechanical stir... In order to improve the strength of short carbon fibers reinforced aluminum matrix(Csf/Al)composite,the dispersion of short carbon fibers with multi-orientation was controlled with a square crucible by mechanical stirring.The three-dimensional flow field models of liquid aluminum melt in the square/round crucibles were established and calculated,and the results were compared.The calculated results show that turbulent flow could be induced both in the square and round crucible,while the non-axisymmetric structure of the square crucible results in higher turbulent kinetic energy in the melt.Therefore,the uniformity and multi-orientation dispersion of the short fibers can be improved by the intensive turbulent flow in the square crucible,which will be increased by increasing the rotational velocity.The distribution of the short carbon fibers in the aluminum matrix prepared under different rotation velocities in square crucible was experimentally investigated.With the increase of stirring velocity,the multi-orientation dispersion of the short fibers in the composites increased gradually.The experimental results are consistent with the calculation results.The tensile testing results show that the strength of the Csf/Al composite can reach 172 MPa when the rotational velocity is 1000 rpm,and it is 48.3%higher than that prepared by the round crucible under the same conditions,which results from the improved multi-orientation dispersion of short carbon fibers in aluminum matrix. 展开更多
关键词 SQUARE CRUCIBLE Short carbon fibers Aluminum matrix composite Mechanical STIRRING multi-orientation DISPERSION
原文传递
Gradient structure induced simultaneous enhancement of strength and ductility in AZ31 Mg alloy with twin-twin interactions 被引量:1
2
作者 Qinghui Zhang Jianguo Li +4 位作者 Kun Jiang Pu Li Yusheng Li Yong Zhang Tao Suo 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第8期2872-2882,共11页
Gradient nanostructure was introduced to enhance the strength and ductility via deformation incompatibility accommodated by geometrical necessary dislocations for most metallic materials recently.However,few intensive... Gradient nanostructure was introduced to enhance the strength and ductility via deformation incompatibility accommodated by geometrical necessary dislocations for most metallic materials recently.However,few intensive researches were carried out to investigate the effect of gradient structure on the deformation twin evolution and resulting performance improvements.In the present paper,we produced gradient-structured AZ31 Mg alloy with fine-grain layers,parallel twin laminates and a coarse-grain core from two upmost surfaces to the center of plate.Surprisingly,this architected Mg alloy exhibited simultaneous enhancement of strength and ductility.Subsequent microstructural observations demonstrated that abundant twin-twin interactions resulting from higher strength and multi-axial stress state could make great contributions to the increase of work-hardening capability.This was further proved by the measurement of full-field strain evolution during the plastic deformation.Such a design strategy may provide a new path for producing advanced structure materials in which the deformation twinning works as one of the dominant plasticity mechanisms. 展开更多
关键词 Mg alloy Gradient structure Strength-ductility synergy multi-orientational twins Twin-twin interactions
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部