Efficiency of calculating a dynamic response is an important point of the compliant mechanism for posture adjustment.Dynamic modeling with low orders of a 2R1T compliant parallel mechanism is studied in the paper.The ...Efficiency of calculating a dynamic response is an important point of the compliant mechanism for posture adjustment.Dynamic modeling with low orders of a 2R1T compliant parallel mechanism is studied in the paper.The mechanism with two out-of-plane rotational and one lifting degrees of freedom(DoFs)plays an important role in posture adjustment.Based on elastic beam theory,the stiffness matrix and mass matrix of the beam element are established where the moment of inertia is considered.To improve solving efficiency,a dynamic model with low orders of the mechanism is established based on a modified modal synthesis method.Firstly,each branch of the RPR type mechanism is divided into a substructure.Subsequently,a set of hypothetical modes of each substructure is obtained based on the C-B method.Finally,dynamic equation of the whole mechanism is established by the substructure assembly.A dynamic experiment is conducted to verify the dynamic characteristics of the compliant mechanism.展开更多
The experimental modal analysis of the selected self-propelled gun was completed to obtain its modal frequency distribution and modes by using an operational modal analysis experimental technique.The result obtained b...The experimental modal analysis of the selected self-propelled gun was completed to obtain its modal frequency distribution and modes by using an operational modal analysis experimental technique.The result obtained by the method was compared with that obtained by the traditional method.It indicates that the two results are in good agreement.展开更多
Because of the limited space of the launch rockets, deployable mechanisms are always used to solve the phenomenon. One dimensional deployable mast can deploy and support antenna, solar sail and space optical camera. T...Because of the limited space of the launch rockets, deployable mechanisms are always used to solve the phenomenon. One dimensional deployable mast can deploy and support antenna, solar sail and space optical camera. Tape-spring hyperelastic hinges can be folded and extended into a rod like configuration. It utilizes the strain energy to realize self-deploying and drive the other structures. One kind of triangular prism mast with tape-spring hyperelastic hinges is proposed and developed. Stretching and compression stiffness theoretical model are established with considering the tape-spring hyperelastic hinges based on static theory. The finite element model of ten-module triangular prism mast is set up by ABAQUS with the tape-spring hyperelastic hinge and parameter study is performed to investigate the influence of thickness, section angle and radius. Two-module TPM is processed and tested the compression stiffness by the laser displacement sensor, deploying repeat accuracy by the high speed camera, modal shape and fundamental frequency at cantilever position by LMS multi-channel vibration test and analysis system, which are used to verify precision of the theoretical and finite element models of ten-module triangular prism mast with the tape-spring hyperelastic hinges. This research proposes an innovative one dimensional triangular prism with tape-spring hyperelastic hinge which has great application value to the space deployable mechanisms.展开更多
A dynamic load identification model of structural system based on the gener-alized orthogonal polynomial theory is provided, and the least Square discrete algorithm foridentifying the dynamic load is supplied. The mai...A dynamic load identification model of structural system based on the gener-alized orthogonal polynomial theory is provided, and the least Square discrete algorithm foridentifying the dynamic load is supplied. The main key is that the convolution relationsbetween the input and output of the system in time domain are transformed into linear oP-erators in generalized orthogonal domain. The new theory is fully tested and verified bythe dynamic analysis l 'modal test and dynamic load identification teSt of a simulation speci-men- It is shown that the method has some advantages, such as the simple dynamic cali-bration test, the high identification accuracy, especially for the transient load with shortsampling. These are very useful in engineering applications.展开更多
The chassis frame of a heavy lectra haul is analysed by both modal experiment method and finite element method (FEM ) . The first ten order modal parameters of the chassis frame have been obtained satisfactorily. Thes...The chassis frame of a heavy lectra haul is analysed by both modal experiment method and finite element method (FEM ) . The first ten order modal parameters of the chassis frame have been obtained satisfactorily. These parameters have important reference value in designing the chassis frame properly and provide a necessary basis for the fault diagnostics of the truck.展开更多
The vibration problem during the operation of rice transplanters is the most common phenomenon.In order that the static and dynamic characteristics of the rice transplanter chassis can meet the requirements of more st...The vibration problem during the operation of rice transplanters is the most common phenomenon.In order that the static and dynamic characteristics of the rice transplanter chassis can meet the requirements of more stable operation,the research took the 2ZG-6DK rice transplanter as the research object to carry out a vibration reduction optimization study.In the research,the Pro/Engineer 5.0 software was first used to model the chassis of the rice transplanter.The constructed finite element model was revised by using the structural parameter revision method and the mixed penalty function method.The model was imported into ANSYS Workbench to solve the modal frequency and vibration shape of the rice transplanter chassis.Based on the MAC(modal assurance criterion)criterion,modal tests were carried out to verify the accuracy of the finite element theoretical analysis.Through the analysis of the characteristics of the external excitation frequency,the chassis is structurally optimized to avoid resonance caused by the natural frequency of the chassis falling within the road excitation frequency range.The final optimization results showed that the first four orders of modal frequencies of the chassis were adjusted to 32.083 Hz,33.751 Hz,42.517 Hz,and 50.362 Hz,respectively,in the case that the chassis mass was increased by 6.714 kg(8.8%).They all avoid the range of road excitation frequency(10-30 Hz)so that the rice transplanter can effectively avoid the resonance phenomenon during operation.This study can provide a reference for the design and optimization of the chassis structure of transplanter.展开更多
基金Supported by National Natural Science Foundation of China (Grant No.51975007)。
文摘Efficiency of calculating a dynamic response is an important point of the compliant mechanism for posture adjustment.Dynamic modeling with low orders of a 2R1T compliant parallel mechanism is studied in the paper.The mechanism with two out-of-plane rotational and one lifting degrees of freedom(DoFs)plays an important role in posture adjustment.Based on elastic beam theory,the stiffness matrix and mass matrix of the beam element are established where the moment of inertia is considered.To improve solving efficiency,a dynamic model with low orders of the mechanism is established based on a modified modal synthesis method.Firstly,each branch of the RPR type mechanism is divided into a substructure.Subsequently,a set of hypothetical modes of each substructure is obtained based on the C-B method.Finally,dynamic equation of the whole mechanism is established by the substructure assembly.A dynamic experiment is conducted to verify the dynamic characteristics of the compliant mechanism.
文摘The experimental modal analysis of the selected self-propelled gun was completed to obtain its modal frequency distribution and modes by using an operational modal analysis experimental technique.The result obtained by the method was compared with that obtained by the traditional method.It indicates that the two results are in good agreement.
基金Supported by National Natural Science Foundation of China(Grant No.51605001)Joint Funds of the National Natural Science Foundation of China(Grant No.U1637207)Anhui University Research Foundation for Doctor(Grant No.J01003222)
文摘Because of the limited space of the launch rockets, deployable mechanisms are always used to solve the phenomenon. One dimensional deployable mast can deploy and support antenna, solar sail and space optical camera. Tape-spring hyperelastic hinges can be folded and extended into a rod like configuration. It utilizes the strain energy to realize self-deploying and drive the other structures. One kind of triangular prism mast with tape-spring hyperelastic hinges is proposed and developed. Stretching and compression stiffness theoretical model are established with considering the tape-spring hyperelastic hinges based on static theory. The finite element model of ten-module triangular prism mast is set up by ABAQUS with the tape-spring hyperelastic hinge and parameter study is performed to investigate the influence of thickness, section angle and radius. Two-module TPM is processed and tested the compression stiffness by the laser displacement sensor, deploying repeat accuracy by the high speed camera, modal shape and fundamental frequency at cantilever position by LMS multi-channel vibration test and analysis system, which are used to verify precision of the theoretical and finite element models of ten-module triangular prism mast with the tape-spring hyperelastic hinges. This research proposes an innovative one dimensional triangular prism with tape-spring hyperelastic hinge which has great application value to the space deployable mechanisms.
文摘A dynamic load identification model of structural system based on the gener-alized orthogonal polynomial theory is provided, and the least Square discrete algorithm foridentifying the dynamic load is supplied. The main key is that the convolution relationsbetween the input and output of the system in time domain are transformed into linear oP-erators in generalized orthogonal domain. The new theory is fully tested and verified bythe dynamic analysis l 'modal test and dynamic load identification teSt of a simulation speci-men- It is shown that the method has some advantages, such as the simple dynamic cali-bration test, the high identification accuracy, especially for the transient load with shortsampling. These are very useful in engineering applications.
文摘The chassis frame of a heavy lectra haul is analysed by both modal experiment method and finite element method (FEM ) . The first ten order modal parameters of the chassis frame have been obtained satisfactorily. These parameters have important reference value in designing the chassis frame properly and provide a necessary basis for the fault diagnostics of the truck.
基金financially supported by the National Key Research and Development Program of China Subproject(Grant No.2021YFD2000601)Innovation Scientists and Technicians Talent Projects of Henan Provincial Department of Education(Grant No.23IRTSTHN015,No.202300410124)。
文摘The vibration problem during the operation of rice transplanters is the most common phenomenon.In order that the static and dynamic characteristics of the rice transplanter chassis can meet the requirements of more stable operation,the research took the 2ZG-6DK rice transplanter as the research object to carry out a vibration reduction optimization study.In the research,the Pro/Engineer 5.0 software was first used to model the chassis of the rice transplanter.The constructed finite element model was revised by using the structural parameter revision method and the mixed penalty function method.The model was imported into ANSYS Workbench to solve the modal frequency and vibration shape of the rice transplanter chassis.Based on the MAC(modal assurance criterion)criterion,modal tests were carried out to verify the accuracy of the finite element theoretical analysis.Through the analysis of the characteristics of the external excitation frequency,the chassis is structurally optimized to avoid resonance caused by the natural frequency of the chassis falling within the road excitation frequency range.The final optimization results showed that the first four orders of modal frequencies of the chassis were adjusted to 32.083 Hz,33.751 Hz,42.517 Hz,and 50.362 Hz,respectively,in the case that the chassis mass was increased by 6.714 kg(8.8%).They all avoid the range of road excitation frequency(10-30 Hz)so that the rice transplanter can effectively avoid the resonance phenomenon during operation.This study can provide a reference for the design and optimization of the chassis structure of transplanter.