期刊文献+
共找到692篇文章
< 1 2 35 >
每页显示 20 50 100
基于SPA-GA-SVR模型的土壤水分及温度预测 被引量:5
1
作者 朱成杰 汪正权 《中国农村水利水电》 北大核心 2024年第1期30-36,共7页
土壤湿度和温度是影响水文循环和气候变化的重要参数,在农业实践活动和生态平衡中起着重要作用。为及时、准确地监测土壤含水量(Soil Moisture Content,SMC)及温度,提出了一种基于高光谱数据的预测方法。实验数据集来自为期5天的实地测... 土壤湿度和温度是影响水文循环和气候变化的重要参数,在农业实践活动和生态平衡中起着重要作用。为及时、准确地监测土壤含水量(Soil Moisture Content,SMC)及温度,提出了一种基于高光谱数据的预测方法。实验数据集来自为期5天的实地测量,所获得的高光谱数据包含大量的噪声及冗余信息,因此首先用Savitzky-Golay卷积平滑对光谱数据进行降噪处理,利用连续投影算法(Successive Projection Algorithm,SPA)提取数据特征波长,然后通过遗传算法(Genetic Algorithm,GA)对支持向量机回归(Support Vector Regression,SVR)的超参数权值和偏置进行优化,构建SPA-GASVR混合算法模型对土壤水分和温度进行预测,并与BP神经网络(Back Propagation Neural Network,BPNN)、SPA-BP、SVR、SPA-SVR、GA-SVR这5种模型的预测性能进行比较。实验结果表明:各模型在土壤湿度低于30%的情况下,表现出的预测能力差异并不显著。但整体上,复合模型相比于单一的神经网络或机器学习模型具有明显的优势,且经过连续投影算法优化的模型进一步的提高其预测能力,最终SPA-GA-SVR算法在各项指标上均优于其他模型,土壤水分预测模型的R^(2)=0.981、RMSE=0.473%,土壤温度预测模型R^(2)=0.963、RMSE=0.883℃。实验证明基于高光谱数据,经过SPA和GA优化的SVR模型能实现对土壤湿度和温度精准的预测。该方法具有一定的应用价值和现实意义,可应用于便携式高光谱仪和无人机上,实现对土壤水分和温度的实时监测,为今后的播种及灌溉提供理论参考。 展开更多
关键词 土壤水分 土壤温度 高光谱 连续投影算法(SPA) 遗传算法-支持向量机回归(GA-svr)
下载PDF
基于SVR的飓风海况下海浪多参数反演方法研究
2
作者 万勇 郭雅琦 +2 位作者 马恩男 戴永寿 张晓娜 《实验室研究与探索》 CAS 北大核心 2024年第10期74-81,180,共9页
针对卫星在飓风海况下观测海浪信息单一且准确性低的问题,利用哨兵1号卫星干涉宽刈幅模式合成孔径雷达(SAR)数据,通过分析SAR特征与海浪参数间的影响关系,筛选出26个特征作为输入变量,基于支持向量回归(SVR)建立海浪多参数反演模型。将... 针对卫星在飓风海况下观测海浪信息单一且准确性低的问题,利用哨兵1号卫星干涉宽刈幅模式合成孔径雷达(SAR)数据,通过分析SAR特征与海浪参数间的影响关系,筛选出26个特征作为输入变量,基于支持向量回归(SVR)建立海浪多参数反演模型。将该模型得到的有效波高、平均波周期、风涌浪波高、风涌浪波周期和平均波向与欧洲中期天气预报中心第5代全球气候再分析数据、国家浮标数据中心浮标数据以及传统MPI方法的结果进行对比。结果表明,基于SVR的海浪多参数反演模型能有效反演海浪多参数,且与理论方法相比,显著提高了飓风海况下海浪参数反演的准确性。 展开更多
关键词 合成孔径雷达 海浪多参数反演 飓风海况 支持向量机回归
下载PDF
基于SARIMA和SVR组合模型的转向架系统寿命评估
3
作者 师蔚 范乔 +2 位作者 杨洋 胡定玉 廖爱华 《铁道机车车辆》 北大核心 2024年第1期157-163,共7页
随着地铁运营时间和里程的增加,地铁车辆逐渐接近其理论寿命,为确保车辆运行安全性,需对其重要子系统进行健康状态及剩余寿命评估。文中选取车辆转向架系统作为研究对象,提出了一种基于协方差优选法的季节性回归移动平均(SARIMA)和支持... 随着地铁运营时间和里程的增加,地铁车辆逐渐接近其理论寿命,为确保车辆运行安全性,需对其重要子系统进行健康状态及剩余寿命评估。文中选取车辆转向架系统作为研究对象,提出了一种基于协方差优选法的季节性回归移动平均(SARIMA)和支持向量回归(SVR)的组合模型对转向架寿命进行评估。首先,将车辆转向架系统历史故障率转化为健康指数,然后基于协方差优选法将SARIMA和SVR进行赋权组合,根据转向架系统历史健康指数进行预测,最后建立历史和预测的健康指数与运行时间的数学模型,分析得到转向架系统的剩余寿命。以某地铁车辆转向架系统为例进行算例分析及验证,结果表明组合模型可更准确地预测其健康状态,为有关维修部门开展维修维护策略提供理论依据,估计得出其剩余寿命,为车辆寿命后期退役及延寿决策提供理论数据分析支撑。 展开更多
关键词 转向架系统 寿命预测 季节性回归移动平均和支持向量回归(SARIMA和svr) 组合模型 协方差优选法
下载PDF
基于Bagging-WOA-SVR的粮堆温度场预测模型
4
作者 韩建军 张梦琪 +2 位作者 赵道松 郭妍妍 杨雅冰 《中国粮油学报》 CAS CSCD 北大核心 2024年第6期7-12,共6页
采用阵列式分布的测温电缆检测粮仓温度变化情况,利用机器学习技术来预测粮食温度,用粮仓1年监测数据来预测粮堆未来27 d温度。传统的BP、RBF、RF、SVR单模型对粮堆温度进行预测存在误差大、泛化能力差等缺点,提出一种基于Bagging集成... 采用阵列式分布的测温电缆检测粮仓温度变化情况,利用机器学习技术来预测粮食温度,用粮仓1年监测数据来预测粮堆未来27 d温度。传统的BP、RBF、RF、SVR单模型对粮堆温度进行预测存在误差大、泛化能力差等缺点,提出一种基于Bagging集成的鲸鱼算法优化支持向量回归模型(Bagging-WOA-SVR),并与灰狼算法优化支持向量回归模型作比较。将影响粮堆温度的多种因素做灰色关联分析,选取粮仓内温度、粮仓内湿度、粮仓外温度、粮仓外湿度、粮仓平均温度、地表温度作为神经网络的输入,粮堆平均温度作为预测输出,选取3个指标为评判标准,对比分析模型预测精度。结果表明:提出的Bagging-WOA-SVR模型相比之下有着较好的稳定性,均方误差为0.24,相关系数为0.9892。 展开更多
关键词 粮堆温度 回归预测 Bagging-WOA-svr 预测模型
下载PDF
融合GWO和SVR的建筑安全事故预测模型
5
作者 李政道 曾佳 吴恒钦 《安全与环境学报》 CAS CSCD 北大核心 2024年第3期1079-1086,共8页
当前建筑业迅速发展,但随之而来的是频频发生的建筑安全事故,造成不可逆转的损失和伤害。虽然近些年来在建筑安全事故控制方面的研究已取得一定的成果,但建筑安全事故仍未得到有效控制。针对建筑业市政工程安全事故总数和死亡人数,探究... 当前建筑业迅速发展,但随之而来的是频频发生的建筑安全事故,造成不可逆转的损失和伤害。虽然近些年来在建筑安全事故控制方面的研究已取得一定的成果,但建筑安全事故仍未得到有效控制。针对建筑业市政工程安全事故总数和死亡人数,探究二者之间的关系,构建灰狼优化算法-支持向量回归机(Grey Wolf Optimization and Support Vactor Regression,GWO-SVR)组合模型,收集2008—2020年每个月的建筑安全事故数据及死亡人数数据集,发现二者之间成正向相关关系,以建筑安全事故数为特征对建筑死亡人数进行预测,精度达到95%以上,对建筑安全资源与人力投入有较大参考价值,有助于提升建筑安全管理水平。 展开更多
关键词 安全社会工程 建筑安全事故 支持向量回归机 灰狼优化算法 模型预测
下载PDF
基于SARIMAX-SVR的光伏发电功率预测 被引量:1
6
作者 周鑫 李燕 +1 位作者 曾永辉 石鹏程 《电力系统及其自动化学报》 CSCD 北大核心 2024年第5期1-8,共8页
为提高光伏发电功率预测精度,提出一种基于外生因素及季节性的差分自回归移动平均SARIMAX(seasonal autoregressive integrated moving average with exogenous factors)并结合优化支持向量回归SVR(support vector regression)的光伏发... 为提高光伏发电功率预测精度,提出一种基于外生因素及季节性的差分自回归移动平均SARIMAX(seasonal autoregressive integrated moving average with exogenous factors)并结合优化支持向量回归SVR(support vector regression)的光伏发电功率预测方法。首先,采用相关性特征法聚类气象条件中关键气象因子,以消除数据冗余并降低ARIMAX模型的复杂性;其次,在ARIMAX模型中引入季节性因素,构建SARIMAX模型来捕捉数据的季节性变化;最后,使用SARIMAX模型的拟合残差其作为SVR模型的输入,进一步拟合数据的非线性。通过仿真算例分析表明,所提方法可显著提高光伏发电功率预测精度。 展开更多
关键词 光伏发电 功率预测 差分自回归移动平均 季节性因子 支持向量回归
下载PDF
Support vector regression-based operational effectiveness evaluation approach to reconnaissance satellite system
7
作者 HAN Chi XIONG Wei +1 位作者 XIONG Minghui LIU Zhen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第6期1626-1644,共19页
As one of the most important part of weapon system of systems(WSoS),quantitative evaluation of reconnaissance satellite system(RSS)is indispensable during its construction and application.Aiming at the problem of nonl... As one of the most important part of weapon system of systems(WSoS),quantitative evaluation of reconnaissance satellite system(RSS)is indispensable during its construction and application.Aiming at the problem of nonlinear effectiveness evaluation under small sample conditions,we propose an evaluation method based on support vector regression(SVR)to effectively address the defects of traditional methods.Considering the performance of SVR is influenced by the penalty factor,kernel type,and other parameters deeply,the improved grey wolf optimizer(IGWO)is employed for parameter optimization.In the proposed IGWO algorithm,the opposition-based learning strategy is adopted to increase the probability of avoiding the local optima,the mutation operator is used to escape from premature convergence and differential convergence factors are applied to increase the rate of convergence.Numerical experiments of 14 test functions validate the applicability of IGWO algorithm dealing with global optimization.The index system and evaluation method are constructed based on the characteristics of RSS.To validate the proposed IGWO-SVR evaluation method,eight benchmark data sets and combat simulation are employed to estimate the evaluation accuracy,convergence performance and computational complexity.According to the experimental results,the proposed method outperforms several prediction based evaluation methods,verifies the superiority and effectiveness in RSS operational effectiveness evaluation. 展开更多
关键词 reconnaissance satellite system(RSS) support vector regression(svr) gray wolf optimizer opposition-based learning parameter optimization effectiveness evaluation
下载PDF
PVS-PSO-SVR协同模型及实证分析
8
作者 刘英迪 肖功为 刘琼 《湘潭大学学报(自然科学版)》 CAS 2024年第3期57-65,共9页
针对高维随机变量信息冗余以及主成分分析降维的缺陷,用主变量筛选法对高维随机变量降维,利用提取的主变量建立了支持向量回归机(SVR)模型.对于模型的参数,利用了改进的粒子群算法进行优化选择.构建出主变量筛选(PVS)、粒子群优化(PSO)... 针对高维随机变量信息冗余以及主成分分析降维的缺陷,用主变量筛选法对高维随机变量降维,利用提取的主变量建立了支持向量回归机(SVR)模型.对于模型的参数,利用了改进的粒子群算法进行优化选择.构建出主变量筛选(PVS)、粒子群优化(PSO)和SVR的协同模型,并用于葡萄酒的质量预测.实验证明PVS-PSO-SVR协同模型与已有的3种模型(N-CV-SVR模型、PCA-CV-SVR模型,PVS-CV-SVR模型)相比,检查误差有较大的改善,表明PVS-PSO-SVR协同模型泛化能力强、预测结果更有效. 展开更多
关键词 主变量筛选 粒子群算法 支持向量回归机 质量预测
下载PDF
基于CEEMDAN-GSA-LSTM和SVR的光伏功率短期区间预测 被引量:1
9
作者 李芬 孙凌 +3 位作者 王亚维 屈爱芳 梅念 赵晋斌 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第6期806-818,共13页
针对光伏输出功率存在间歇性和波动性的问题,提出一种光伏功率短期区间预测模型.首先,该模型采用自适应噪声完备集合经验模态分解将历史光伏出力数据分解为不同的分量并按照其与赤纬角、时角等时序特征量的相关性定义为时序分量和随机分... 针对光伏输出功率存在间歇性和波动性的问题,提出一种光伏功率短期区间预测模型.首先,该模型采用自适应噪声完备集合经验模态分解将历史光伏出力数据分解为不同的分量并按照其与赤纬角、时角等时序特征量的相关性定义为时序分量和随机分量.其次,分别使用经过引力搜索算法优化的长短期记忆神经网络和支持向量回归模型对时序分量和随机分量进行预测.再次,叠加时序分量和随机分量的预测结果得到点预测结果.然后,对误差进行Johnson变换及正态分布建模后得到光伏功率区间预测结果.最后,利用算例验证该模型的有效性.结果表明:在不同天气情况下,上述模型比现有预测模型精度更高,具有较好的鲁棒性,能够基于预测值提供较为精准的置信区间. 展开更多
关键词 光伏功率预测 区间预测 自适应噪声完备集合经验模态分解 引力搜索算法 长短期记忆 支持向量回归 Johnson变换
下载PDF
基于VMD-FE-SSA-SVR模型的超短期风速预测
10
作者 王胜研 王娟娟 《电器与能效管理技术》 2024年第4期57-64,共8页
为有效降低风速的非线性和无序性带来的风速预测难度,提高预测准确性,提出一种结合变分模态分解(VMD)、模糊熵(FE)、麻雀搜索算法(SSA)和支持向量回归(SVR)的组合预测模型来预测超短期风速。首先利用VMD技术将风速数据分解为若干模态分... 为有效降低风速的非线性和无序性带来的风速预测难度,提高预测准确性,提出一种结合变分模态分解(VMD)、模糊熵(FE)、麻雀搜索算法(SSA)和支持向量回归(SVR)的组合预测模型来预测超短期风速。首先利用VMD技术将风速数据分解为若干模态分量,再通过FE方法对各分量进行筛选,将FE值相近的分量进行叠加,形成若干个新序列,然后采用经SSA优化过的SVR模型对新序列进行训练与预测,最后将各新序列的预测结果叠加,形成最终预测结果。通过不同模型验证对比,VMD-FE-SSA-SVR模型预测效果较好,表明所提模型显示出较好的预测精度与稳定性,可有效预测超短期风速。 展开更多
关键词 风速预测 变分模态分解 模糊熵 麻雀搜索算法 支持向量回归
下载PDF
基于DBO-SVR算法的爆破振动预测比较研究
11
作者 王连生 高峰 +2 位作者 谢金熹 杨潘磊 常旭 《中国矿山工程》 2024年第4期1-5,共5页
为提高预测精度和适应性,基于梅山铁矿的爆破工程,提出了一种基于蜣螂算法优化的支持向量回归(Dung Beetle Optimize Support Vector Regression,DBO-SVR)模型用于爆破时质点峰值振动速度(Peak Particle Velocity,PPV)预测,使用皮尔逊... 为提高预测精度和适应性,基于梅山铁矿的爆破工程,提出了一种基于蜣螂算法优化的支持向量回归(Dung Beetle Optimize Support Vector Regression,DBO-SVR)模型用于爆破时质点峰值振动速度(Peak Particle Velocity,PPV)预测,使用皮尔逊热图分析各特征与PPV的相关性,并使用均方误差和决定系数作为模型评估指标,对比分析DBO-SVR,DBO-XGB,SVR,XGB四个算法的预测结果,四个算法的均方误差分别为0.028,0.152,1.084,0.226,决定系数分别为0.985,0.917,0.408,0.877。研究结果表明,DBO-SVR算法的预测效果优于其他几个模型;DBO-SVR算法模型综合考虑了多个爆破设计参数对PPV的影响,极大缩短样本数据的训练时间,并加快模型的收敛速度以满足实际爆破振动的速度预测要求,预测结果更精确,误差更小,可为类似爆破工程的峰值振动速度的预测提供参考。 展开更多
关键词 爆破振动 质点峰值振动速度 支持向量回归 DBO-svr模型
下载PDF
基于VMD-LSTM-SVR的IGBT寿命特征时间序列预测
12
作者 崔京港 冯高辉 《半导体技术》 CAS 北大核心 2024年第8期749-757,共9页
绝缘栅双极型晶体管(IGBT)失效是变频器等电力电子设备故障的主要原因,精确预测其寿命是解决该问题的方法之一,这对寿命预测模型的准确性和可靠性提出了更高要求。关断瞬态尖峰电压(Vce,peak)可以反映IGBT的老化状态,首先通过变分模态分... 绝缘栅双极型晶体管(IGBT)失效是变频器等电力电子设备故障的主要原因,精确预测其寿命是解决该问题的方法之一,这对寿命预测模型的准确性和可靠性提出了更高要求。关断瞬态尖峰电压(Vce,peak)可以反映IGBT的老化状态,首先通过变分模态分解(VMD)技术将Vce,peak构成的时间序列分解为趋势序列和波动序列,再利用长短期记忆(LSTM)网络的时间序列特征提取优势和支持向量机回归(SVR)的非线性求解能力,建立VMD-LSTM-SVR组合模型,提升模型的预测性能。模型预测对比实验结果表明,VMD-LSTM-SVR模型提升了IGBT寿命特征时间序列预测能力,与其他模型相比,该模型的预测精度指标均方根误差下降至0.0411 V,决定系数提升至0.75111。 展开更多
关键词 绝缘栅双极型晶体管(IGBT) 寿命预测 变分模态分解(VMD) 长短期记忆(LSTM)网络 支持向量机回归(svr)
下载PDF
PSO-SVR模型在吉林省干旱指数预测中的应用
13
作者 徐子曦 钟闻宇 唐友 《智慧农业导刊》 2024年第11期11-15,共5页
随着气候变暖程度愈加严重,干旱问题成为我国农业生产的一大威胁,严重妨碍我国农业生产的发展,因此掌握科学预测干旱指数的技术,可以为未来旱情提供预防建议,防止旱情进一步扩大,进而保障粮食安全。基于吉林省40个地区的气压、气温、降... 随着气候变暖程度愈加严重,干旱问题成为我国农业生产的一大威胁,严重妨碍我国农业生产的发展,因此掌握科学预测干旱指数的技术,可以为未来旱情提供预防建议,防止旱情进一步扩大,进而保障粮食安全。基于吉林省40个地区的气压、气温、降水量和相对湿度等多个气象因子及SPEI指数,对其未来干旱指数进行预测,比较BP模型、RF模型、SVR模型及经过优化的PSO-SVR模型的4个误差指标,发现PSO-SVR模型表现最为优异,R2达到0.964,MSE达到0.021,优于其他3个模型,拟合效果更为显著。结果显示,PSO-SVR模型在吉林省SPEI指数的预测中表现出极高的可行性和准确性,其出色的性能为吉林省的防旱减灾研究提供强有力的理论支持。 展开更多
关键词 SPEI svr 预测模型 干旱指数 回归分析
下载PDF
基于SVR和随机森林模型的动力煤高位发热量预测研究
14
作者 郭龙 郭文文 《能源工程》 2024年第1期35-42,共8页
采用两种统计学习算法(支持向量回归和随机森林)构建了5种模型(LSVR、PSVR、RSVR、SSVR和RF),评估了它们在预测典型动力煤高位发热量与工业分析数据关系方面的表现。结果表明,RSVR和RF模型能够准确预测高位发热量,特别是在HHV_(d)为26.0... 采用两种统计学习算法(支持向量回归和随机森林)构建了5种模型(LSVR、PSVR、RSVR、SSVR和RF),评估了它们在预测典型动力煤高位发热量与工业分析数据关系方面的表现。结果表明,RSVR和RF模型能够准确预测高位发热量,特别是在HHV_(d)为26.00~28.00 MJ/kg和V_(d)为28%~34%内。RSVR和RF模型的平均百分比误差(MAPE)分别为0.97%和0.96%。选择了不同类型的动力煤验证模型的可用性和应用范围,通过与各类煤的绝对百分比误差比较,可以发现随机森林模型普遍表现出较好的适应性和稳定性。 展开更多
关键词 高位发热量预测 机器学习 动力煤 支持向量回归(svr) 随机森林
下载PDF
基于PSO-SVR的重型柴油车NO_(x)排放预测 被引量:4
15
作者 王志红 董梦龙 +1 位作者 张远军 胡杰 《内燃机学报》 EI CAS CSCD 北大核心 2023年第6期524-531,共8页
结合重型汽车国Ⅵ污染物排放法规,采用车载便携式排放测试设备(PEMS)进行了某重型柴油车实际道路排放测试.对测试数据进行数据对齐,剔除无效数据后,采用灰色关联分析提取了对NO_(x)排放影响较大的参数,引入主成分分析(PCA)对输入数据进... 结合重型汽车国Ⅵ污染物排放法规,采用车载便携式排放测试设备(PEMS)进行了某重型柴油车实际道路排放测试.对测试数据进行数据对齐,剔除无效数据后,采用灰色关联分析提取了对NO_(x)排放影响较大的参数,引入主成分分析(PCA)对输入数据进行降维,引入非线性递减惯性权重粒子群算法(PSO)对支持向量回归(SVR)模型进行优化,最终得到重型柴油车实际道路NO_(x)排放预测模型,测试集均方根误差(RMSE)为1.381 6 mg/s,平均绝对百分比误差(MAPE)为19.88%,决定系数R^(2)为0.908 1.该研究为车载NO_(x)传感器故障诊断以及重型车NO_(x)排放在线监管提供一种可能性方法. 展开更多
关键词 重型柴油车 便携式排放测试设备 主成分分析 粒子群算法 支持向量回归
下载PDF
基于GWO-SVR的锂电池剩余使用寿命预测 被引量:4
16
作者 杨战社 王云浩 孔晨再 《电源学报》 CSCD 北大核心 2023年第2期154-162,共9页
锂离子电池剩余使用寿命预测在电池管理系统中发挥着重要作用,准确预测其剩余使用寿命能够保障电池的安全稳定运行。由于支持向量回归SVR(support vector regression)参数内核选择较为困难,为此提出灰狼优化—支持向量回归GWO-SVR(gray ... 锂离子电池剩余使用寿命预测在电池管理系统中发挥着重要作用,准确预测其剩余使用寿命能够保障电池的安全稳定运行。由于支持向量回归SVR(support vector regression)参数内核选择较为困难,为此提出灰狼优化—支持向量回归GWO-SVR(gray wolf optimization-SVR)方法,使用灰狼算法优化其内核参数,根据NASA预测中心提供的电池数据集对该方法进行了验证。通过与SVR方法进行对比发现,所提GWO-SVR方法的预测精度得到显著提高;在此基础上与ALO-SVR方法进行对比,证明所提方法平均相对误差降低了7.16%,预测精度更高,有效地提高了锂离子电池剩余寿命预测的精确性。 展开更多
关键词 锂离子电池 剩余使用寿命 灰狼优化 支持向量回归
下载PDF
基于EWM和SVR的滚动轴承剩余使用寿命预测方法 被引量:1
17
作者 古莹奎 汪源金 石昌武 《中国安全科学学报》 CAS CSCD 北大核心 2023年第9期49-55,共7页
为解决滚动轴承有限全寿命监测数据情况下退化特征分布失真导致轴承剩余使用寿命(RUL)预测精度不高的问题,提出一种基于熵权法(EWM)和支持向量回归(SVR)的轴承RUL预测方法。首先,提取振动信号的时域和频域特征,并对特征进行对数变换;然... 为解决滚动轴承有限全寿命监测数据情况下退化特征分布失真导致轴承剩余使用寿命(RUL)预测精度不高的问题,提出一种基于熵权法(EWM)和支持向量回归(SVR)的轴承RUL预测方法。首先,提取振动信号的时域和频域特征,并对特征进行对数变换;然后,通过EWM确定指标权重实现特征选择;最后,采用麻雀搜索算法(SSA)优化SVR模型,以主成分分析(PCA)降维后的低维特征作为优化后的SVR模型的输入,RUL占比作为输出,从而实现轴承剩余寿命的预测。结果表明:在有限监测数据情况下,与其他方法相比,所提方法不但预测性能更加稳定,而且预测的绝对误差平均降低19.51%,均方误差(MSE)平均降低17.73%。 展开更多
关键词 熵权法(EWM) 支持向量回归(svr) 滚动轴承 剩余使用寿命(RUL)预测 麻雀搜索算法(SSA)
下载PDF
基于SSA-SVR的光纤压力传感器温度补偿研究
18
作者 段松凯 刘守兵 《电子器件》 CAS 北大核心 2023年第5期1268-1274,共7页
针对光纤压力传感器存在的温度漂移问题,提出了基于麻雀搜索算法优化的支持向量回归(SSA-SVR)的温度补偿模型。对光纤压力传感器进行标定实验,并采用温度传感器LM35实时检测其工作温度,进而建立SVR温度补偿模型。利用SSA优化SVR的超参数... 针对光纤压力传感器存在的温度漂移问题,提出了基于麻雀搜索算法优化的支持向量回归(SSA-SVR)的温度补偿模型。对光纤压力传感器进行标定实验,并采用温度传感器LM35实时检测其工作温度,进而建立SVR温度补偿模型。利用SSA优化SVR的超参数,以改善温度补偿模型的补偿精度。研究结果表明,利用基于SSA-SVR的温度补偿模型对光纤压力传感器进行温度补偿后,其灵敏度温度系数和相对误差系数均提高了两个数量级,而最大绝对误差和最大相对误差只有0.5004 kPa和0.2501%,达到了温度补偿的目的。 展开更多
关键词 光纤压力传感器 温度补偿 麻雀搜索算法(SSA) 支持向量回归机(svr) SSA-svr模型
下载PDF
基于GA-SVR模型的肌力康复电刺激系统的设计研究
19
作者 隋修武 梁天翼 杨静文 《电子测量技术》 北大核心 2023年第19期35-41,共7页
为了实现康复电刺激系统治疗参数的个性化定制及实时调整,提出了一种基于调制中频电刺激的下肢肌力康复闭环电刺激系统。设计低频调制中频刺激电路,基于遗传算法建立了电刺激参数与膝关节角度之间的支持向量机回归预测模型,并搭建基于... 为了实现康复电刺激系统治疗参数的个性化定制及实时调整,提出了一种基于调制中频电刺激的下肢肌力康复闭环电刺激系统。设计低频调制中频刺激电路,基于遗传算法建立了电刺激参数与膝关节角度之间的支持向量机回归预测模型,并搭建基于模糊内模控制PID的闭环反馈系统,以达到更精确稳定的参数设置效果。通过膝关节运动实验表明,被试者在无痛感的前提下更接近预期的关节运动轨迹,30组膝关节运动角度与预期值最大均方根误差为10.21°,最小均方根误差为5.48°。相比传统低频电刺激,肌电平均振幅具有20μV以上提升。本文提出的电刺激系统参数可实现因人而异,且可根据闭环反馈结果进行实时调整,该系统能有效活化肌肉、提升肌力,在肌力康复步态训练中有较好的应用前景。 展开更多
关键词 低频调制中频电刺激 GA-svr回归预测模型 模糊内模PID反馈 膝关节运动控制 肌力康复
下载PDF
Modeling personalized head-related impulse response using support vector regression 被引量:1
20
作者 黄青华 方勇 《Journal of Shanghai University(English Edition)》 CAS 2009年第6期428-432,共5页
A new customization approach based on support vector regression (SVR) is proposed to obtain individual headrelated impulse response (HRIR) without complex measurement and special equipment. Principal component ana... A new customization approach based on support vector regression (SVR) is proposed to obtain individual headrelated impulse response (HRIR) without complex measurement and special equipment. Principal component analysis (PCA) is first applied to obtain a few principal components and corresponding weight vectors correlated with individual anthropometric parameters. Then the weight vectors act as output of the nonlinear regression model. Some measured anthropometric parameters are selected as input of the model according to the correlation coefficients between the parameters and the weight vectors. After the regression model is learned from the training data, the individual HRIR can be predicted based on the measured anthropometric parameters. Compared with a back-propagation neural network (BPNN) for nonlinear regression, better generalization and prediction performance for small training samples can be obtained using the proposed PCA-SVR algorithm. 展开更多
关键词 head-related impulse response (HRIR) personalization principal component analysis (PCA) support vector regression svr variable selection
下载PDF
上一页 1 2 35 下一页 到第
使用帮助 返回顶部