Tidal bore is a special and intensive form of flow movement induced by tidal effect in estuary areas, which has complex characteristics of profile, propagation and flow velocity. Although it has been widely studied fo...Tidal bore is a special and intensive form of flow movement induced by tidal effect in estuary areas, which has complex characteristics of profile, propagation and flow velocity. Although it has been widely studied for the generation mechanism, propagation features and influencing factors, the curved channel will complicate the characteristics of tidal bore propagation, which need further investigation compared with straight channel. In this study, the flume experiments for both undular and breaking bores’ propagation in curved channel are performed to measure the freesurface elevation and flow velocity by ultrasonic sensors and ADV respectively. The propagation characteristics,including tidal bore height, cross-section surface gradient, tidal bore propagation celerity, and flow velocity are obtained for both sides of the curved channel. And three bore intensities are set for each type of tidal bores. The freesurface gradients are consistently enlarged in high-curvature section for undular and breaking bores, but have distinct behaviors in low-curvature section. The spatial distributions of tidal bore propagation celerity and flow velocity are compared between concave and convex banks. This work will provide experimental reference for engineering design of beach and seawall protection, erosion reduction and siltation promotion in estuary areas with the existence of tidal bores.展开更多
Compared with a straight blade, a unique compressor blade integratedforward-swept and positive-curved stacking line is studied experimentally. Aerodynamic parameters ofthe two cascades are measured by a five-hole prob...Compared with a straight blade, a unique compressor blade integratedforward-swept and positive-curved stacking line is studied experimentally. Aerodynamic parameters ofthe two cascades are measured by a five-hole probe at different positions and ink trace flowvisualization is conducted on blade surfaces. The result shows that the swept-curved cascade haslower endwall loss and higher midspan loss as compared with the straight cascade. However, lowerloss is accompanied with lower diffusion factor. Opposite 'C' shape static pressure distribution isestablished on the suction surface of the swept-curved blade, which is helpful for avoiding theaccumulation of low energy fluid in the endwall corner region. Anyhow the studies support theconclusion that the swept-curved blade conduces to not only the reduction of overall loss but alsothe improvement of stable operation in the endwall corner region.展开更多
The conventional heat exchanger with segmental baffles is prone to bring forth fluid-induced vibration of heat transfer tubes and increase the pressure drop of shell-side greatly at higher fluid flow velocity. In orde...The conventional heat exchanger with segmental baffles is prone to bring forth fluid-induced vibration of heat transfer tubes and increase the pressure drop of shell-side greatly at higher fluid flow velocity. In order to avoid the above defects, the ROD-baffle heat exchanger has been developed. However, its collocation of heat transfer tubes is conventionally in square, which leads to fewer heat transfer area per unit volume. Based on the ROD-baffle heat exchanger, a new type curve-ROD baffle has been developed, and an industrial investigation of the curve-ROD baffle heat exchanger with normal triangular collocation has been carried into execution. In this paper, two equations using the Reynolds number were acquired to predict the heat transfer coefficients of the shell-side and tube-side. The experimental results show that the shell-side heat transfer and pressure drop characteristics of the curve-ROD baffle heat exchanger are superior to those of the segmental baffle one.展开更多
Owing to extensive construction of dams, the impact of backwater on flow may lead to navigation or flood control issues in curved channels. To date, the impact of backwater on the water surface profile in curved chann...Owing to extensive construction of dams, the impact of backwater on flow may lead to navigation or flood control issues in curved channels. To date, the impact of backwater on the water surface profile in curved channels remains unknown and requires investigation. In this study, experiments were conducted in a glass-walled recirculating flume with a length of 19.4 m, a width of 0.6 m, and a depth of 0.8 m, and the impact of backwater on the water surface profile in a 90° channel bend was investigated. The experimental results showed that the backwater degree had a significant impact on the transverse and longitudinal flow depth distributions in the bend. The transverse slope of the flow (Jr) increased linearly with an increase in the Froude number of the approach flow upstream of the bend. Jr increased with the longitudinal location parameter ξ when −0.2 < ξ < 0.5, and decreased with ξ when 0.5 < ξ < 1.2. Furthermore, the results showed that Jr asymptotically decreased to zero with an increase in the degree of backwater. An equation was formulated to estimate the transverse slope of the flow in a 90° bend in backwater zones.展开更多
The carcass layer of flexible pipe comprises a large-angle spiral structure with a complex interlocked stainless steel cross-section profile, which is mainly used to resist radial load. With the complex structure of t...The carcass layer of flexible pipe comprises a large-angle spiral structure with a complex interlocked stainless steel cross-section profile, which is mainly used to resist radial load. With the complex structure of the carcass layer, an equivalent simplified model is used to study the mechanical properties of the carcass layer. However, the current equivalent carcass model only considers the elastic deformation, and this simplification leads to huge errors in the calculation results. In this study, radial compression experiments were carried out to make the carcasses to undergo plastic deformation. Subsequently, a residual neural network based on the experimental data was established to predict the load-displacement curves of carcasses with different inner diameter in plastic states under radial compression.The established neural network model’s high precision was verified by experimental data, and the influence of the number of input variables on the accuracy of the neural network was discussed. The conclusion shows that the residual neural network model established based on the experimental data of the small-diameter carcass layer can predict the load-displacement curve of the large-diameter carcass layer in the plastic stage. With the decrease of input data, the prediction accuracy of residual network model in plasticity stage will decrease.展开更多
This paper describes the quasi-static testing and analytical modelling of the hysteretic behavior of aluminum alloy rigid bus-flexible connectors of 220 kV electrical substations.The main objective of the study is to ...This paper describes the quasi-static testing and analytical modelling of the hysteretic behavior of aluminum alloy rigid bus-flexible connectors of 220 kV electrical substations.The main objective of the study is to experimentally investigate the hysteretic behavior of six different types of rigid bus-flexible connectors 220 kV electrical substations when subjected to cyclic loading.Another objective is to theoretically study the flexibility and effectiveness of a previously proposed analytical model in fitting the experimental hysteresis loops of the tested rigid bus-flexible connectors.The experimental investigation indicates that the tested rigid bus-flexible connectors exhibit highly asymmetric hysteresis behavior along with tension stiffening effect.The theoretical study demonstrates that the generalized Bouc-Wen model has high flexibility and is effective in fitting the experimental hysteresis resisting force-displacement curves of the six tested rigid bus-flexible connectors.展开更多
River bending is the major effect responsible for bed topography and bank changes.In this study,fluid velocity(measured by a three-dimensional Doppler advanced point current meter)and bed topographical data have been ...River bending is the major effect responsible for bed topography and bank changes.In this study,fluid velocity(measured by a three-dimensional Doppler advanced point current meter)and bed topographical data have been collected in 40 sections of an experimental model.The whole flume was composed of an organic glass bend,upstream and downstream water tanks,two transition straight sections,a circulation pump,and a connection pipeline.Each section has been found to be characterized by a primary circulation and a small reverse circulation,with some sections even presenting three more or more circulation structures.The minimum circulation intensity has been detected in proximity to the top of the curved channel,while a region with small longitudinal velocity has been observed near the concave bank of each bend,corresponding to the flat bed formed after a short period of scouring.The maximum sediment deposition and scour depth in the presence of a uniform distribution of living flexible vegetation within 10 cm of the flume wall have been found to be smaller than those observed in the tests conducted without vegetation.展开更多
A stochastic error process of curves is proposed as the error model to describe the errors of curves in GIS. In terms of the stochastic process, four characteristics concerning the local error of curves, namely, mean ...A stochastic error process of curves is proposed as the error model to describe the errors of curves in GIS. In terms of the stochastic process, four characteristics concerning the local error of curves, namely, mean error function, standard error function, absolute error function, and the correlation function of errors , are put forward. The total error of a curve is expressed by a mean square integral of the stochastic error process. The probabilistic meanings and geometric meanings of the characteristics mentioned above are also discussed. A scan digitization experiment is designed to check the efficiency of the model. In the experiment, a piece of contour line is digitized for more than 100 times and lots of sample functions are derived from the experiment. Finally, all the error characteristics are estimated on the basis of sample functions. The experiment results show that the systematic error in digitized map data is not negligible, and the errors of points on curves are chiefly dependent on the curvature and the concavity of the curves.展开更多
Using a driving simulator,the effects of Chinese chevrons on drivers’actual and perceived safe speeds at horizontal curves on two-lane rural highways are tested. Twelve horizontal curves with different roadway geomet...Using a driving simulator,the effects of Chinese chevrons on drivers’actual and perceived safe speeds at horizontal curves on two-lane rural highways are tested. Twelve horizontal curves with different roadway geometries are designed and used as the simulated scenarios.The results show that, regardless of the curve radius, chevrons at horizontal curves provide advance warning and speed control for vehicles on the nearside of chevrons.Besides,chevrons can be used as an addition to speed limit signs in preventing excessive speed at horizontal curves and, therefore, can contribute to a reduction in run-off-road crashes.Moreover, Chinese chevrons can also serve to provide an improved sense of safety while driving around sharp curves.These study results lay a foundation for setting Chinese chevrons more reasonably.展开更多
Layered structures with upper porous and lower fractured media are widely distributed in the world. An experimen- tal investigation on rainfall infiltration and solute transport in such layered structures can provide ...Layered structures with upper porous and lower fractured media are widely distributed in the world. An experimen- tal investigation on rainfall infiltration and solute transport in such layered structures can provide the necessary foundation for effectively preventing and forecasting water bursting in mines, controlling contamination of mine water, and accomplishing ecological restoration of mining areas. A typical physical model of the layered structures with porous and fractured media was created in this study. Then rainfall infiltration experiments were conducted after salt solution was sprayed on the surface of the layered structure. The volumetric water content and concentration of chlorine ions at different specified positions along the profile of the experiment system were measured in real-time. The experimental results showed that the lower fractured media, with a considerably higher permeability than that of the upper porous media, had significant effects on preventing water infil- tration. Moreover, although the porous media were homogeneous statistically in the whole domain, spatial variations in the features of effluent concentrations with regards to time, or so called breakthrough curves, at various sampling points located at the horizontal plane in the porous media near the porous-fractured interface were observed, indicating the diversity of solute transport at small scales. Furthermore, the breakthrough curves of the outflow at the bottom, located beneath the underlying fractured rock, were able to capture and integrate features of the breakthrough curves of both the upper porous and fractured media, which exhibited multiple peaks, while the peak values were reduced one by one with time.展开更多
To provide hexapod robots with strategies of locomotion planning, observation experiments were operated on a kind of ant with the use of high speed digital photography and computer assistant analysis. Through digitali...To provide hexapod robots with strategies of locomotion planning, observation experiments were operated on a kind of ant with the use of high speed digital photography and computer assistant analysis. Through digitalization of original analog video, locomotion characters of ants were obtained, the biomimetic foundation was laid for polynomial trajectory planning of multi-legged robots, which was deduced with mathematics method. In addition, five rules were concluded, which apply to hexapod robots marching locomotion planning. The first one is the fundamental strategy of multi-legged robots' leg trajectory planning. The second one helps to enhance the static and dynamic stability of multi-legged robots. The third one can improve the validity and feasibility of legs' falling points. The last two give criterions of multi-legged robots' toe trajectory figures and practical recommendatory constraints. These five rules give a good method for marching locomotion planning of multi-legged robots, and can be expended to turning planning and any other special locomotion.展开更多
Tests and numerical simulations of super-critical adjust stage blade were carried out and the effect of bowed blade on flow characteristics and the secondary flow were analyzed. The simulation and test results show th...Tests and numerical simulations of super-critical adjust stage blade were carried out and the effect of bowed blade on flow characteristics and the secondary flow were analyzed. The simulation and test results show that the adjust stage blade with aft-loading and big front-edge radius has good flow characteristics by meridian shrink. The numerical studies were carried out with software of NUMECA in order to investigate the aerodynamic characteristics of adjust stage blades,which include prototype blade(tested blade) ,positive curved blade (15°) and negative curved blade(-15°) . The simulation results show that the positive curved blade forms a negative static pressure gradient in the lower region of the cascade along the blade height and a positive static pressure gradient in the upper region. This leads to the reduction of the streamwise vortices intensity and the aerodynamic load on both sides of the blade and the endwall. Therefore,the crosswise secondary flow losses of endwall can be decreased considerably.展开更多
Experiments have been carried out for studying the melting characteristics of two representative types of granite complexes relating to tin ore deposits in Guangxi. The curves of the beginning melting of the Longxiang...Experiments have been carried out for studying the melting characteristics of two representative types of granite complexes relating to tin ore deposits in Guangxi. The curves of the beginning melting of the Longxiangai porphyritic biotite granite (LPBG), the Longxiangai granular biotite granite (LGBG), the margin phase and central phase of the rocks of the Pinyin granite (MPPG and CPPG) are determined by the experiments. The results of the experiments show that the temperature of the beginning melting points of the tin -bearing granite not only depends on the type and features of the rocks, but also varies with the total water vapour pressure (PH2O) and the one of the different granites decrease with the increasing pressure. In different ranges of the pressure,the variance gradient of the beginning melting points sharply varies. When PH2O is less than or equal to 136 MPa, the beginning melting temperatures of LPBG somewhat lower than those of LGBG ;Whe P H2O is larger than 136MPa,The beginning temperatures of LPBG are higher than those of LGBG. The beginning teperatures of CPPG are always higher than those of MPFG at the conditions of PH2O from 75 to 250 MPa.展开更多
The wave rotor technology is an energy exchanging approach that achieves efficient energy transfer between gases without using mechanical components.The wave rotor technology has been successfully utilized in gas turb...The wave rotor technology is an energy exchanging approach that achieves efficient energy transfer between gases without using mechanical components.The wave rotor technology has been successfully utilized in gas turbine cycle systems,gas expansion refrigeration and a variety of other industrial domains,yielding numerous researches and application outcomes.The structure of wave rotor passages inside which the energy exchange between gases is realized has an important impact on the equipment performance.In this study,based on gas wave ejection technology,the first application trials of an expansion wave rotor with curved passages were conducted.Additionally,the performance enhancing effect and mechanism of curved passages on the energy exchanging process were studied precisely by the combination of experimental and three-dimensional numerical simulation methods.The experimental results demonstrate that the curved passage rotor(CIR rotor)employed in this research has a maximum isentropic efficiency of 61.6%,and the CIR rotor achieves higher efficiency than the straight passage rotor(STR rotor)on all working conditions in this study.Compared with the STR rotor,the maximum efficiency improving ratio of CIR rotor can exceed 14.2%at each experimental expansion ratio,and the maximum relative increments of ejection rate are more than 5%.In addition,the CIR rotor can also effectively increase the proportion of static pressure in total pressure of the medium-pressure gas,and reduce the device power consumption.The three-dimensional numerical investigations revealed the principle of gas ejection in the wave rotors and explained why the CIR rotor performed better.According to the numerical findings,the curved passages of the CIR rotor may effectively minimize various energy losses created in the processes of high-pressure gas incidence,exhausting flow in nozzle,and high-speed gas flow in the passages.展开更多
Based on exact Green strain of spatial curved beam, the relation for plane curved beam with varying curvature is derived nonlinear strain-displacement Instead of using the previous straight beam elements, curved beam ...Based on exact Green strain of spatial curved beam, the relation for plane curved beam with varying curvature is derived nonlinear strain-displacement Instead of using the previous straight beam elements, curved beam elements are used to approximate the curved beam with varying curvature. Based on virtual work principle, rigid-flexible coupling dynamic equations are obtained. Physical experiments were carried out to capture the large overall motion and the strain of curved beam to verify the present rigid-flexible coupling formulation for curved beam based on curved beam element. Numerical results obtained from simulations were compared with those results from the physical experiments. In order to illustrate the effectiveness of the curved beam element methodology, the simulation results of present curved beam elements are compared with those obtained by previous straight beam elements. The dynamic behavior of a slider-crank mechanism with an initially curved elastic connecting rod is investigated. The advantage of employing generalized-or method is pointed out and the special nonlinear dynamic characteristics of the curved beam are concluded.展开更多
基金supported by the National Key Research and Development Program of China (Grant No.2022YFE0104500)the National Natural Science Foundation of China (Grant No. 52271271)+2 种基金the National Natural Science Foundation of China (Grant No. 41906183)the National Natural Science Foundation of China (Grant No.52101308)the Fundamental Research Funds for the Central Universities (Grant No.B220202080)。
文摘Tidal bore is a special and intensive form of flow movement induced by tidal effect in estuary areas, which has complex characteristics of profile, propagation and flow velocity. Although it has been widely studied for the generation mechanism, propagation features and influencing factors, the curved channel will complicate the characteristics of tidal bore propagation, which need further investigation compared with straight channel. In this study, the flume experiments for both undular and breaking bores’ propagation in curved channel are performed to measure the freesurface elevation and flow velocity by ultrasonic sensors and ADV respectively. The propagation characteristics,including tidal bore height, cross-section surface gradient, tidal bore propagation celerity, and flow velocity are obtained for both sides of the curved channel. And three bore intensities are set for each type of tidal bores. The freesurface gradients are consistently enlarged in high-curvature section for undular and breaking bores, but have distinct behaviors in low-curvature section. The spatial distributions of tidal bore propagation celerity and flow velocity are compared between concave and convex banks. This work will provide experimental reference for engineering design of beach and seawall protection, erosion reduction and siltation promotion in estuary areas with the existence of tidal bores.
文摘Compared with a straight blade, a unique compressor blade integratedforward-swept and positive-curved stacking line is studied experimentally. Aerodynamic parameters ofthe two cascades are measured by a five-hole probe at different positions and ink trace flowvisualization is conducted on blade surfaces. The result shows that the swept-curved cascade haslower endwall loss and higher midspan loss as compared with the straight cascade. However, lowerloss is accompanied with lower diffusion factor. Opposite 'C' shape static pressure distribution isestablished on the suction surface of the swept-curved blade, which is helpful for avoiding theaccumulation of low energy fluid in the endwall corner region. Anyhow the studies support theconclusion that the swept-curved blade conduces to not only the reduction of overall loss but alsothe improvement of stable operation in the endwall corner region.
文摘The conventional heat exchanger with segmental baffles is prone to bring forth fluid-induced vibration of heat transfer tubes and increase the pressure drop of shell-side greatly at higher fluid flow velocity. In order to avoid the above defects, the ROD-baffle heat exchanger has been developed. However, its collocation of heat transfer tubes is conventionally in square, which leads to fewer heat transfer area per unit volume. Based on the ROD-baffle heat exchanger, a new type curve-ROD baffle has been developed, and an industrial investigation of the curve-ROD baffle heat exchanger with normal triangular collocation has been carried into execution. In this paper, two equations using the Reynolds number were acquired to predict the heat transfer coefficients of the shell-side and tube-side. The experimental results show that the shell-side heat transfer and pressure drop characteristics of the curve-ROD baffle heat exchanger are superior to those of the segmental baffle one.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFC1510701)the National Natural Science Foundation of China(Grant No.U20A20319).
文摘Owing to extensive construction of dams, the impact of backwater on flow may lead to navigation or flood control issues in curved channels. To date, the impact of backwater on the water surface profile in curved channels remains unknown and requires investigation. In this study, experiments were conducted in a glass-walled recirculating flume with a length of 19.4 m, a width of 0.6 m, and a depth of 0.8 m, and the impact of backwater on the water surface profile in a 90° channel bend was investigated. The experimental results showed that the backwater degree had a significant impact on the transverse and longitudinal flow depth distributions in the bend. The transverse slope of the flow (Jr) increased linearly with an increase in the Froude number of the approach flow upstream of the bend. Jr increased with the longitudinal location parameter ξ when −0.2 < ξ < 0.5, and decreased with ξ when 0.5 < ξ < 1.2. Furthermore, the results showed that Jr asymptotically decreased to zero with an increase in the degree of backwater. An equation was formulated to estimate the transverse slope of the flow in a 90° bend in backwater zones.
基金financially supported by the National Key R&D Program of China (2021YFA1003501)the National Natural Science Foundation of China (No.U1906233,11732004)the Fundamental Research Funds for the Central Universities (DUT20ZD213,DUT20LAB308)。
文摘The carcass layer of flexible pipe comprises a large-angle spiral structure with a complex interlocked stainless steel cross-section profile, which is mainly used to resist radial load. With the complex structure of the carcass layer, an equivalent simplified model is used to study the mechanical properties of the carcass layer. However, the current equivalent carcass model only considers the elastic deformation, and this simplification leads to huge errors in the calculation results. In this study, radial compression experiments were carried out to make the carcasses to undergo plastic deformation. Subsequently, a residual neural network based on the experimental data was established to predict the load-displacement curves of carcasses with different inner diameter in plastic states under radial compression.The established neural network model’s high precision was verified by experimental data, and the influence of the number of input variables on the accuracy of the neural network was discussed. The conclusion shows that the residual neural network model established based on the experimental data of the small-diameter carcass layer can predict the load-displacement curve of the large-diameter carcass layer in the plastic stage. With the decrease of input data, the prediction accuracy of residual network model in plasticity stage will decrease.
基金National Natural Science Foundation of China under Grant No.51978397。
文摘This paper describes the quasi-static testing and analytical modelling of the hysteretic behavior of aluminum alloy rigid bus-flexible connectors of 220 kV electrical substations.The main objective of the study is to experimentally investigate the hysteretic behavior of six different types of rigid bus-flexible connectors 220 kV electrical substations when subjected to cyclic loading.Another objective is to theoretically study the flexibility and effectiveness of a previously proposed analytical model in fitting the experimental hysteresis loops of the tested rigid bus-flexible connectors.The experimental investigation indicates that the tested rigid bus-flexible connectors exhibit highly asymmetric hysteresis behavior along with tension stiffening effect.The theoretical study demonstrates that the generalized Bouc-Wen model has high flexibility and is effective in fitting the experimental hysteresis resisting force-displacement curves of the six tested rigid bus-flexible connectors.
基金supported in part by the Special Fund for Basic Scientific Research Business Expenses of Central Public Welfare Scientific Research Institutes under Grant TKS20210103the Open Fund of Key Laboratory of Ocean Observation Technology,Ministry of Natural Resources of China(2021klootA06).
文摘River bending is the major effect responsible for bed topography and bank changes.In this study,fluid velocity(measured by a three-dimensional Doppler advanced point current meter)and bed topographical data have been collected in 40 sections of an experimental model.The whole flume was composed of an organic glass bend,upstream and downstream water tanks,two transition straight sections,a circulation pump,and a connection pipeline.Each section has been found to be characterized by a primary circulation and a small reverse circulation,with some sections even presenting three more or more circulation structures.The minimum circulation intensity has been detected in proximity to the top of the curved channel,while a region with small longitudinal velocity has been observed near the concave bank of each bend,corresponding to the flat bed formed after a short period of scouring.The maximum sediment deposition and scour depth in the presence of a uniform distribution of living flexible vegetation within 10 cm of the flume wall have been found to be smaller than those observed in the tests conducted without vegetation.
文摘A stochastic error process of curves is proposed as the error model to describe the errors of curves in GIS. In terms of the stochastic process, four characteristics concerning the local error of curves, namely, mean error function, standard error function, absolute error function, and the correlation function of errors , are put forward. The total error of a curve is expressed by a mean square integral of the stochastic error process. The probabilistic meanings and geometric meanings of the characteristics mentioned above are also discussed. A scan digitization experiment is designed to check the efficiency of the model. In the experiment, a piece of contour line is digitized for more than 100 times and lots of sample functions are derived from the experiment. Finally, all the error characteristics are estimated on the basis of sample functions. The experiment results show that the systematic error in digitized map data is not negligible, and the errors of points on curves are chiefly dependent on the curvature and the concavity of the curves.
基金The National Natural Science Foundation of China(No.51108011)
文摘Using a driving simulator,the effects of Chinese chevrons on drivers’actual and perceived safe speeds at horizontal curves on two-lane rural highways are tested. Twelve horizontal curves with different roadway geometries are designed and used as the simulated scenarios.The results show that, regardless of the curve radius, chevrons at horizontal curves provide advance warning and speed control for vehicles on the nearside of chevrons.Besides,chevrons can be used as an addition to speed limit signs in preventing excessive speed at horizontal curves and, therefore, can contribute to a reduction in run-off-road crashes.Moreover, Chinese chevrons can also serve to provide an improved sense of safety while driving around sharp curves.These study results lay a foundation for setting Chinese chevrons more reasonably.
基金Supported by ihe Major State Basic Research Development Program of China (973 Program) (2010CB428801, 2010CB428804) the National Science Foundation of China (40972166)+1 种基金 the Major Science and Technology Program for Water Pollution Control and Treatment (2009ZX07212-003) the Technology Development and Applications for Ecology System Reconstruction and Restoration of Yongding River (D08040903700000)
文摘Layered structures with upper porous and lower fractured media are widely distributed in the world. An experimen- tal investigation on rainfall infiltration and solute transport in such layered structures can provide the necessary foundation for effectively preventing and forecasting water bursting in mines, controlling contamination of mine water, and accomplishing ecological restoration of mining areas. A typical physical model of the layered structures with porous and fractured media was created in this study. Then rainfall infiltration experiments were conducted after salt solution was sprayed on the surface of the layered structure. The volumetric water content and concentration of chlorine ions at different specified positions along the profile of the experiment system were measured in real-time. The experimental results showed that the lower fractured media, with a considerably higher permeability than that of the upper porous media, had significant effects on preventing water infil- tration. Moreover, although the porous media were homogeneous statistically in the whole domain, spatial variations in the features of effluent concentrations with regards to time, or so called breakthrough curves, at various sampling points located at the horizontal plane in the porous media near the porous-fractured interface were observed, indicating the diversity of solute transport at small scales. Furthermore, the breakthrough curves of the outflow at the bottom, located beneath the underlying fractured rock, were able to capture and integrate features of the breakthrough curves of both the upper porous and fractured media, which exhibited multiple peaks, while the peak values were reduced one by one with time.
基金Sponsored by the Ministerial Level Advanced Research Foundation(65822576)
文摘To provide hexapod robots with strategies of locomotion planning, observation experiments were operated on a kind of ant with the use of high speed digital photography and computer assistant analysis. Through digitalization of original analog video, locomotion characters of ants were obtained, the biomimetic foundation was laid for polynomial trajectory planning of multi-legged robots, which was deduced with mathematics method. In addition, five rules were concluded, which apply to hexapod robots marching locomotion planning. The first one is the fundamental strategy of multi-legged robots' leg trajectory planning. The second one helps to enhance the static and dynamic stability of multi-legged robots. The third one can improve the validity and feasibility of legs' falling points. The last two give criterions of multi-legged robots' toe trajectory figures and practical recommendatory constraints. These five rules give a good method for marching locomotion planning of multi-legged robots, and can be expended to turning planning and any other special locomotion.
文摘Tests and numerical simulations of super-critical adjust stage blade were carried out and the effect of bowed blade on flow characteristics and the secondary flow were analyzed. The simulation and test results show that the adjust stage blade with aft-loading and big front-edge radius has good flow characteristics by meridian shrink. The numerical studies were carried out with software of NUMECA in order to investigate the aerodynamic characteristics of adjust stage blades,which include prototype blade(tested blade) ,positive curved blade (15°) and negative curved blade(-15°) . The simulation results show that the positive curved blade forms a negative static pressure gradient in the lower region of the cascade along the blade height and a positive static pressure gradient in the upper region. This leads to the reduction of the streamwise vortices intensity and the aerodynamic load on both sides of the blade and the endwall. Therefore,the crosswise secondary flow losses of endwall can be decreased considerably.
文摘Experiments have been carried out for studying the melting characteristics of two representative types of granite complexes relating to tin ore deposits in Guangxi. The curves of the beginning melting of the Longxiangai porphyritic biotite granite (LPBG), the Longxiangai granular biotite granite (LGBG), the margin phase and central phase of the rocks of the Pinyin granite (MPPG and CPPG) are determined by the experiments. The results of the experiments show that the temperature of the beginning melting points of the tin -bearing granite not only depends on the type and features of the rocks, but also varies with the total water vapour pressure (PH2O) and the one of the different granites decrease with the increasing pressure. In different ranges of the pressure,the variance gradient of the beginning melting points sharply varies. When PH2O is less than or equal to 136 MPa, the beginning melting temperatures of LPBG somewhat lower than those of LGBG ;Whe P H2O is larger than 136MPa,The beginning temperatures of LPBG are higher than those of LGBG. The beginning teperatures of CPPG are always higher than those of MPFG at the conditions of PH2O from 75 to 250 MPa.
基金supported by the National Key Research and Development Program of China(No.2018YFA0704600)。
文摘The wave rotor technology is an energy exchanging approach that achieves efficient energy transfer between gases without using mechanical components.The wave rotor technology has been successfully utilized in gas turbine cycle systems,gas expansion refrigeration and a variety of other industrial domains,yielding numerous researches and application outcomes.The structure of wave rotor passages inside which the energy exchange between gases is realized has an important impact on the equipment performance.In this study,based on gas wave ejection technology,the first application trials of an expansion wave rotor with curved passages were conducted.Additionally,the performance enhancing effect and mechanism of curved passages on the energy exchanging process were studied precisely by the combination of experimental and three-dimensional numerical simulation methods.The experimental results demonstrate that the curved passage rotor(CIR rotor)employed in this research has a maximum isentropic efficiency of 61.6%,and the CIR rotor achieves higher efficiency than the straight passage rotor(STR rotor)on all working conditions in this study.Compared with the STR rotor,the maximum efficiency improving ratio of CIR rotor can exceed 14.2%at each experimental expansion ratio,and the maximum relative increments of ejection rate are more than 5%.In addition,the CIR rotor can also effectively increase the proportion of static pressure in total pressure of the medium-pressure gas,and reduce the device power consumption.The three-dimensional numerical investigations revealed the principle of gas ejection in the wave rotors and explained why the CIR rotor performed better.According to the numerical findings,the curved passages of the CIR rotor may effectively minimize various energy losses created in the processes of high-pressure gas incidence,exhausting flow in nozzle,and high-speed gas flow in the passages.
基金supported by the Research Fund for the Doctoral Program of Higher Education of China(20100073110007)the Key Project of National Natural Science Foundation of China (11132007)
文摘Based on exact Green strain of spatial curved beam, the relation for plane curved beam with varying curvature is derived nonlinear strain-displacement Instead of using the previous straight beam elements, curved beam elements are used to approximate the curved beam with varying curvature. Based on virtual work principle, rigid-flexible coupling dynamic equations are obtained. Physical experiments were carried out to capture the large overall motion and the strain of curved beam to verify the present rigid-flexible coupling formulation for curved beam based on curved beam element. Numerical results obtained from simulations were compared with those results from the physical experiments. In order to illustrate the effectiveness of the curved beam element methodology, the simulation results of present curved beam elements are compared with those obtained by previous straight beam elements. The dynamic behavior of a slider-crank mechanism with an initially curved elastic connecting rod is investigated. The advantage of employing generalized-or method is pointed out and the special nonlinear dynamic characteristics of the curved beam are concluded.