针对行人航位推算(Pedestrian Dead Reckoning,PDR)室内定位系统的累计误差问题,提出了一种多维信息感知地标匹配的PDR定位算法(PDR positioning algorithm based Multi-imensional Information Perception Landmark Matching,MIPLM)。...针对行人航位推算(Pedestrian Dead Reckoning,PDR)室内定位系统的累计误差问题,提出了一种多维信息感知地标匹配的PDR定位算法(PDR positioning algorithm based Multi-imensional Information Perception Landmark Matching,MIPLM)。算法利用行人在室内走廊环境下的众包轨迹,并基于突出性路口结构,从位置、航向、影响范围以及WiFi特征指纹等方面构建多维信息感知地标库。给出的自适应地标检测算法,结合航向约束轨迹相似度匹配模型,更新行人位置和航向,避免了本地化匹配过程对空间位置的强依赖性。实验结果表明,相比于其他地标构建及匹配算法,所提算法更好地反映了行人活动与室内空间结构的相关性,且在未知起始位置时,算法能够快速收敛并提供较高的定位精度,对于室内行人连续定位具有较高的应用价值。展开更多
文摘针对行人航位推算(Pedestrian Dead Reckoning,PDR)室内定位系统的累计误差问题,提出了一种多维信息感知地标匹配的PDR定位算法(PDR positioning algorithm based Multi-imensional Information Perception Landmark Matching,MIPLM)。算法利用行人在室内走廊环境下的众包轨迹,并基于突出性路口结构,从位置、航向、影响范围以及WiFi特征指纹等方面构建多维信息感知地标库。给出的自适应地标检测算法,结合航向约束轨迹相似度匹配模型,更新行人位置和航向,避免了本地化匹配过程对空间位置的强依赖性。实验结果表明,相比于其他地标构建及匹配算法,所提算法更好地反映了行人活动与室内空间结构的相关性,且在未知起始位置时,算法能够快速收敛并提供较高的定位精度,对于室内行人连续定位具有较高的应用价值。