期刊文献+
共找到482篇文章
< 1 2 25 >
每页显示 20 50 100
Designing mixed <i>H</i><sub>2</sub>/<i>H</i><sub>&infin;</sub>structure specified controllers using Particle Swarm Optimization (PSO) algorithm
1
作者 Ayman N. Salman Younis Ali A. Khamees Farooq T. Taha 《Natural Science》 2014年第1期17-22,共6页
This paper proposes an efficient method for designing accurate structure-specified mixed H2/H∞ optimal controllers for systems with uncertainties and disturbance using particle swarm (PSO) algorithm. It is designed t... This paper proposes an efficient method for designing accurate structure-specified mixed H2/H∞ optimal controllers for systems with uncertainties and disturbance using particle swarm (PSO) algorithm. It is designed to find a suitable controller that minimizes the performance index of error signal subject to an unequal constraint on the norm of the closed-loop system. Although the mixed H2/H∞ for the output feedback approach control is considered as a robust and optimal control technique, the design process normally comes up with a complex and non-convex optimization problem, which is difficult to solve by the conventional optimization methods. The PSO can efficiently solve design problems of multi-input-multi-output (MIMO) optimal control systems, which is very suitable for practical engineering designs. It is used to search for parameters of a structure-specified controller, which satisfies mixed performance index. The simulation and experimental results show high feasibility, robustness and practical value compared with the conventional proportional-integral-derivative (PID) and proportional-Integral (PI) controller, and the proposed algorithm is also more efficient compared with the genetic algorithm (GA). 展开更多
关键词 mixed H2/H∞ optimal Control Particle Swarm optimization algorithm Structure-Specified Controller
下载PDF
Sequencing of Mixed Model Assembly Lines Based on Improved Shuffled Frog Leaping Algorithm 被引量:1
2
作者 ZHAO Xiaoqiang JI Shurong 《Journal of Donghua University(English Edition)》 EI CAS 2018年第2期154-159,共6页
Shuffled frog leaping algorithm( SFLA) was used to solve multi-objective sequencing problem of mixed model assembly line( MMAL). Local convergence can be avoided and optimal solution can be obtained to a certain exten... Shuffled frog leaping algorithm( SFLA) was used to solve multi-objective sequencing problem of mixed model assembly line( MMAL). Local convergence can be avoided and optimal solution can be obtained to a certain extent. However,the multi-objective sequencing problem of MMAL is an non-deterministic polynomial hard( NP-hard) problem and the shortcomings are slow convergence rate and low precision. To solve the shortcomings for optimization objectives of minimizing total utility time and keeping average consumption rate of parts, a chaos differential evolution SFLA( CDESFLA) is proposed in this study. Because SFLA is easy to fall into local optimum,the evolution operator of differential evolution algorithms is introduced in SFLA as a local search strategy,and differential mutation operator is introduced in chaotic sequence to prevent premature convergence. The examples show that the proposed CDESFLA is better for convergence accuracy than SFLA,genetic algorithm( GA) and particle swarm optimization( PSO) 展开更多
关键词 mixed model ASSEMBLY LINE (MMAL) SEQUENCING shuffledfrog leaping algorithm (SFLA) CHAOS optimization differentialevolution algorithm
下载PDF
A Method for Crude Oil Selection and Blending Optimization Based on Improved Cuckoo Search Algorithm 被引量:7
3
作者 Yang Huihua Ma Wei +2 位作者 Zhang Xiaofeng Li Hu Tian Songbai 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2014年第4期70-78,共9页
Refineries often need to find similar crude oil to replace the scarce crude oil for stabilizing the feedstock property. We introduced the method for calculation of crude blended properties firstly, and then created a ... Refineries often need to find similar crude oil to replace the scarce crude oil for stabilizing the feedstock property. We introduced the method for calculation of crude blended properties firstly, and then created a crude oil selection and blending optimization model based on the data of crude oil property. The model is a mixed-integer nonlinear programming(MINLP) with constraints, and the target is to maximize the similarity between the blended crude oil and the objective crude oil. Furthermore, the model takes into account the selection of crude oils and their blending ratios simultaneously, and transforms the problem of looking for similar crude oil into the crude oil selection and blending optimization problem. We applied the Improved Cuckoo Search(ICS) algorithm to solving the model. Through the simulations, ICS was compared with the genetic algorithm, the particle swarm optimization algorithm and the CPLEX solver. The results show that ICS has very good optimization efficiency. The blending solution can provide a reference for refineries to find the similar crude oil. And the method proposed can also give some references to selection and blending optimization of other materials. 展开更多
关键词 CRUDE OIL similarity CRUDE OIL SELECTION BLENDING optimIZATION mixed-INTEGER nonlinear programming CuckooSearch algorithm
下载PDF
Multi-objective modeling and optimization for scheduling of cracking furnace systems 被引量:8
4
作者 Peng Jiang Wenli Du 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第8期992-999,共8页
Cracking furnace is the core device for ethylene production. In practice, multiple ethylene furnaces are usually run in parallel. The scheduling of the entire cracking furnace system has great significance when multip... Cracking furnace is the core device for ethylene production. In practice, multiple ethylene furnaces are usually run in parallel. The scheduling of the entire cracking furnace system has great significance when multiple feeds are simultaneously processed in multiple cracking furnaces with the changing of operating cost and yield of product. In this paper, given the requirements of both profit and energy saving in actual production process, a multi-objective optimization model contains two objectives, maximizing the average benefits and minimizing the average coking amount was proposed. The model can be abstracted as a multi-objective mixed integer non- linear programming problem. Considering the mixed integer decision variables of this multi-objective problem, an improved hybrid encoding non-dominated sorting genetic algorithm with mixed discrete variables (MDNSGA-II) is used to solve the Pareto optimal front of this model, the algorithm adopted crossover and muta- tion strategy with multi-operators, which overcomes the deficiency that normal genetic algorithm cannot handle the optimization problem with mixed variables. Finally, using an ethylene plant with multiple cracking furnaces as an example to illustrate the effectiveness of the scheduling results by comparing the optimization results of multi-objective and single objective model. 展开更多
关键词 Cracking furnace systems Feed scheduling Multi-objective mixed integer nonlinear optimization Genetic algorithm
下载PDF
Closed-loop scheduling optimization strategy based on particle swarm optimization with niche technology and soft sensor method of attributes-applied to gasoline blending process 被引量:1
5
作者 Jian Long Kai Deng Renchu He 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第9期43-57,共15页
Gasoline blending scheduling optimization can bring significant economic and efficient benefits to refineries.However,the optimization model is complex and difficult to build,which is a typical mixed integer nonlinear... Gasoline blending scheduling optimization can bring significant economic and efficient benefits to refineries.However,the optimization model is complex and difficult to build,which is a typical mixed integer nonlinear programming(MINLP)problem.Considering the large scale of the MINLP model,in order to improve the efficiency of the solution,the mixed integer linear programming-nonlinear programming(MILP-NLP)strategy is used to solve the problem.This paper uses the linear blending rules plus the blending effect correction to build the gasoline blending model,and a relaxed MILP model is constructed on this basis.The particle swarm optimization algorithm with niche technology(NPSO)is proposed to optimize the solution,and the high-precision soft-sensor method is used to calculate the deviation of gasoline attributes,the blending effect is dynamically corrected to ensure the accuracy of the blending effect and optimization results,thus forming a prediction-verification-reprediction closed-loop scheduling optimization strategy suitable for engineering applications.The optimization result of the MILP model provides a good initial point.By fixing the integer variables to the MILPoptimal value,the approximate MINLP optimal solution can be obtained through a NLP solution.The above solution strategy has been successfully applied to the actual gasoline production case of a refinery(3.5 million tons per year),and the results show that the strategy is effective and feasible.The optimization results based on the closed-loop scheduling optimization strategy have higher reliability.Compared with the standard particle swarm optimization algorithm,NPSO algorithm improves the optimization ability and efficiency to a certain extent,effectively reduces the blending cost while ensuring the convergence speed. 展开更多
关键词 BLEND optimization algorithm Neural networks Particle swarm optimization mixed integer programming
下载PDF
Optimization on Water Resource System Operation Policy during Drought
6
作者 Hongyuan Fang Yi Cheng Songkai Yan 《Journal of Water Resource and Protection》 2011年第2期140-146,共7页
The mixed linear programming model is commonly recognized to be an effective means for searching optimal reservoir operation policy in water resources system. In this paper a multi-objective mixed integer linear progr... The mixed linear programming model is commonly recognized to be an effective means for searching optimal reservoir operation policy in water resources system. In this paper a multi-objective mixed integer linear programming model is set up to obtain the optimal operation policy of multi-reservoir water supply system during drought, which is able to consider the operation rule of reservoir-group system within longer-term successive drought periods, according to the basic connotation of indexes expressing the water-supply risk of reservoir during drought, that is, reliability, resilience and vulnerability of reservoir water supply, and mathematical programming principles. The model-solving procedures, particularly, the decomposition-adjustment algorithm, are proposed based on characteristics of the model structure. The principle of model-solving technique is to decompose the complex system into several smaller sub-systems on which some ease-solving mathematical models may be established. The objective of this optimization model aims at maximizing the reliability of water supply and minimizing the maximum water-shortage of single time-period within water- supply system during drought. The multi-objective mixed integer linear programming model and proposed solving procedures are applied to a case study of reservoir-group water-supply system in Huanghe-Huaihe River Basin, China. The desired water-shortage distribution within the system operation term and the maximum shortage of single time-period are achieved. The results of case study verifies that the lighter water-shortage distributed evenly among several time-periods can avoid the calamities resulted from severe water shortage concentrated on a few time-periods during drought. 展开更多
关键词 Water Supply System DROUGHT PERIOD MULTI-OBJECTIVE mixed INTEGER Linear Programming Decomposition-Adjustment algorithm Operation Policy optimIZATION
下载PDF
An Optimized Framework for Surgical Team Selection
7
作者 Hemant Petwal Rinkle Rani 《Computers, Materials & Continua》 SCIE EI 2021年第11期2563-2582,共20页
In the healthcare system,a surgical team is a unit of experienced personnel who provide medical care to surgical patients during surgery.Selecting a surgical team is challenging for a multispecialty hospital as the pe... In the healthcare system,a surgical team is a unit of experienced personnel who provide medical care to surgical patients during surgery.Selecting a surgical team is challenging for a multispecialty hospital as the performance of its members affects the efficiency and reliability of the hospital’s patient care.The effectiveness of a surgical team depends not only on its individual members but also on the coordination among them.In this paper,we addressed the challenges of surgical team selection faced by a multispecialty hospital and proposed a decision-making framework for selecting the optimal list of surgical teams for a given patient.The proposed framework focused on improving the existing surgical history management system by arranging surgery-bound patients into optimal subgroups based on similar characteristics and selecting an optimal list of surgical teams for a new surgical patient based on the patient’s subgroups.For this end,two population-based meta-heuristic algorithms for clustering of mixed datasets and multi-objective optimization were proposed.The proposed algorithms were tested using different datasets and benchmark functions.Furthermore,the proposed framework was validated through a case study of a real postoperative surgical dataset obtained from the orthopedic surgery department of a multispecialty hospital in India.The results revealed that the proposed framework was efficient in arranging patients in optimal groups as well as selecting optimal surgical teams for a given patient. 展开更多
关键词 Multi-objective optimization artificial electric field algorithm mixed dataset clustering surgical team strength Pareto
下载PDF
机器人人工拣选环境下混流装配线齐套物料配送优化 被引量:3
8
作者 周晓晔 马小云 朱梅琳 《计算机集成制造系统》 EI CSCD 北大核心 2024年第4期1527-1536,共10页
为了提高汽车制造企业配送的智能化水平、解决混流装配线齐套物料人工拣选效率低、成本高的问题,引入基于齐套物料配送策略的机器人人工拣选模式,通过优化自动拣选机器人、工人的配置数量及配送周期,使包含机器人使用成本、劳动力成本... 为了提高汽车制造企业配送的智能化水平、解决混流装配线齐套物料人工拣选效率低、成本高的问题,引入基于齐套物料配送策略的机器人人工拣选模式,通过优化自动拣选机器人、工人的配置数量及配送周期,使包含机器人使用成本、劳动力成本和在制品库存成本在内的总成本最小。为求解该配送优化问题,提出了改进量子蚁群算法,利用量子比特的叠加性增加种群多样性,避免算法陷入局部最优,同时设计了改进量子旋转门更新机制和基于差分进化操作的非最优个体优化策略,提高了算法收敛速度和寻优质量。最后,通过算例分析验证了模型的正确性与算法的有效性,并分析了拣选批量对总成本的影响。 展开更多
关键词 机器人人工拣选 齐套配送策略 混流装配线 自动拣选机器人 改进量子蚁群算法
下载PDF
Heuristic Algorithm for Minimizing the Electricity Cost of Smart House
9
作者 Mohamed Arikiez Faisal Alotaibi +2 位作者 Farouq Gdhaidh Radwan Khershif Salahedin Rehan 《Journal of Energy and Power Engineering》 2017年第4期254-268,共15页
This framework proposes a heuristic algorithm based on LP (linear programming) for optimizing the electricity cost in large residential buildings, in a smart grid environment. Our heuristic tackles large multi-objec... This framework proposes a heuristic algorithm based on LP (linear programming) for optimizing the electricity cost in large residential buildings, in a smart grid environment. Our heuristic tackles large multi-objective energy allocation problem (large number of appliances and high time resolution). The primary goal is to reduce the electricity bills, and discomfort factor. Also, increase the utilization of domestic renewable energy, and reduce the running time of the optimization algorithm. Our heuristic algorithm uses linear programming relaxation, and two rounding strategies. The first technique, called CR (cumulative rounding), is designed for thermostatic appliances such as air conditioners and electric heaters, and the second approach, called MCR (minimum cost rounding), is designed for other interruptible appliances. The results show that the proposed heuristic algorithm can be used to solve large MILP (mixed integer linear programming) problems and gives a decent suboptimal solution in polynomial time. 展开更多
关键词 Smart grid mixed integer linear programming LP relaxation demand side management demand response multi-objective optimization heuristic allocation algorithm.
下载PDF
基于仿真实验的固液混合搅拌器桨叶结构多目标优化
10
作者 易力力 李佳 +2 位作者 李子昂 杨波 何彦 《实验技术与管理》 CAS 北大核心 2024年第11期109-113,共5页
熔混阶段的固液混合过程作为熔铸装药工艺的重要环节,决定了固液两相多组分物料混合的均匀性,进而影响着最终的装药质量。而螺带-冲孔四斜叶搅拌桨作为该阶段的核心部件,其合理的结构参数对于提升固液混合性能具有显著影响。该文采用数... 熔混阶段的固液混合过程作为熔铸装药工艺的重要环节,决定了固液两相多组分物料混合的均匀性,进而影响着最终的装药质量。而螺带-冲孔四斜叶搅拌桨作为该阶段的核心部件,其合理的结构参数对于提升固液混合性能具有显著影响。该文采用数值模拟、最优拉丁超立方采样法、响应面法和多目标优化算法相结合的方式对该桨叶的关键结构参数进行优化以进一步提高该桨叶的混合效率,实现熔混过程物料的高效混合。具体来说,首先,选择固液混合搅拌器的桨叶离底高度、桨叶层间距、桨叶倾角以及螺带宽度4个关键参数作为优化变量,以提高悬浮均匀度和降低功率消耗为优化目标;然后,采用最优拉丁超立方采样方法进行试验设计,并基于CFD仿真模拟获得50组样本数据;接着,根据样本数据构建桨叶结构参数与混合均匀度和功率消耗的二阶响应面代理模型,并结合优化变量约束范围建立桨叶结构参数多目标优化数学模型;最后,为了克服传统天鹰优化算法在求解后期由于种群多样性减少易陷入局部最优的问题,引入精英混沌反向学习策略和柯西-高斯变异策略,提出一种改进的多目标天鹰优化(improved multi-objective aquila optimization,IMOAO)算法,并采用IMOAO算法对桨叶结构参数多目标优化问题进行求解,以获取最优搅拌桨结构参数组合。结果表明:相比于初始设计,优化后的桨叶在功率消耗基本不变的情况下,混合均匀度提升了11.96%,同时,结合桨叶优化前后槽内的固相浓度分布情况可以看出,优化后搅拌槽内的固相浓度分布均匀性明显优于初始设计,基本实现了均匀混合,进一步证明了桨叶结构参数多目标优化方法的有效性。 展开更多
关键词 固液混合 数值模拟 天鹰优化算法 多目标优化
下载PDF
基于BayesShrink阈值估计的混合属性数据聚类优化仿真
11
作者 董华松 连远锋 《计算机仿真》 2024年第5期460-464,共5页
与单一属性数据不同,混合属性数据通常存在尺度不一致的特点,为了可以得到准确率更高的混合属性聚类结果,提出一种基于k最近邻的混合属性聚类算法。采用高频系数滑动窗口准确估计含有噪声的混合属性数据噪声方差,通过BayesShrink阈值估... 与单一属性数据不同,混合属性数据通常存在尺度不一致的特点,为了可以得到准确率更高的混合属性聚类结果,提出一种基于k最近邻的混合属性聚类算法。采用高频系数滑动窗口准确估计含有噪声的混合属性数据噪声方差,通过BayesShrink阈值估计算法得到最佳阈值,对混合属性数据展开去噪。采用k最近邻方法展开数据聚类,在去噪后的数据样本贡献度中加入特征权重,并计算融入贡献度后的特征权重欧几里得距离,距离越近,说明数据属于同一类别的概率就越大,对全部样本特征展开加权处理后,构建混合属性聚类模型,利用粒子群算法对模型展开寻优,获取最优加权特征向量,实现混合属性数据聚类。仿真结果表明,所提算法可以有效提升混合属性聚类结果的精度和聚类效率。 展开更多
关键词 混合属性数据 阈值估计算法 粒子群算法
下载PDF
考虑场景差异性的混合车型公交调度优化方法
12
作者 翁剑成 乔润童 +3 位作者 王茂林 林鹏飞 刘冬梅 张晓亮 《交通运输系统工程与信息》 EI CSCD 北大核心 2024年第4期176-187,共12页
纯电动公交因其低碳和节能环保的特性,已成为车辆电动化转型的必然选择,但纯电动公交车在实际运营中仍面临低温条件下性能下降和电池老化导致续航里程降低等挑战。考虑在运营中混合使用燃油车和电动车,以弥补纯电动公交车在特定场景下... 纯电动公交因其低碳和节能环保的特性,已成为车辆电动化转型的必然选择,但纯电动公交车在实际运营中仍面临低温条件下性能下降和电池老化导致续航里程降低等挑战。考虑在运营中混合使用燃油车和电动车,以弥补纯电动公交车在特定场景下的性能下降,提升公交运营效率和服务质量。本文考虑公交动态运行特征建立公交时刻表分段优化模型,以优化后的车次为输入,构建混合车型运营条件下的公交行车计划编制优化模型,并设计改进的遗传算法实现模型求解。最后,以北京市公交线路为例,选取单线路运营、异地充电及区域集中调度等不同典型运营场景开展案例研究,验证优化模型在差异化运营场景条件下的适用性和优化效果。结果表明,对比本地充电场景,异地充电场景下的运营成本增加5.15%,运营车辆数量增加5.88%;在多线路联合编制行车计划的区域集中调度场景下,运营成本较单线路运营场景降低4.68%;在给定的车型比例阈值下,使用混合车型运营效果优于使用单一车型运营,有效降低运营成本和碳排放。本文研究为公共交通企业结合不同运营场景,制定科学灵活的电动公交运营调度方案提供了重要支撑。 展开更多
关键词 城市交通 公交调度优化 遗传算法 混合车型 纯电动公交 行车计划
下载PDF
串联双级蒸发有机朗肯循环系统的多目标优化及工质优选
13
作者 何志霞 姚林 +3 位作者 冯永强 王玉 张强 徐康静 《江苏大学学报(自然科学版)》 CAS 北大核心 2024年第5期581-589,共9页
为了探究串联双级蒸发有机朗肯循环系统在特定工况下的最佳混合工质,选取了3组不同特性的混合工质,即R21/R113、R1234ze/R141b和R227ea/R245fa,引入热力学性能指标、经济指标和环境指标,利用非支配排序遗传算法进行多目标优化.通过求解P... 为了探究串联双级蒸发有机朗肯循环系统在特定工况下的最佳混合工质,选取了3组不同特性的混合工质,即R21/R113、R1234ze/R141b和R227ea/R245fa,引入热力学性能指标、经济指标和环境指标,利用非支配排序遗传算法进行多目标优化.通过求解Pareto边界,采用3种决策方法对每组工质流体进行最优解的选择,根据偏移量选取最优决策方法.结果表明:在热源温度为150℃、冷源温度为15℃的工况下,混合工质R1234ze/R141b最优解的[火用]效率相对较高,平准化度电成本(levelized cost of energy, LCOE)和当量二氧化碳排放量(equivalent carbon emission, ECE)相对也较低,热源温度也适配,为该工况下较为合适的混合工质. 展开更多
关键词 有机朗肯循环系统 混合工质 仿真建模 目标优化 非支配排序遗传算法
下载PDF
基于混合威布尔分布的水稻插秧机的可靠性分析及剩余寿命预测
14
作者 文昌俊 陈洋洋 +1 位作者 何永豪 陈凡 《科学技术与工程》 北大核心 2024年第1期163-169,共7页
为了更准确描述水稻插秧机的失效规律,提高可靠性分析的准确性,对水稻插秧机的故障数据进行分析,采用两参数混合威布尔分布对水稻插秧机进行建模。以残差平方和最小为优化目标,建立参数估计优化模型,利用改进粒子群算法对其进行求解,然... 为了更准确描述水稻插秧机的失效规律,提高可靠性分析的准确性,对水稻插秧机的故障数据进行分析,采用两参数混合威布尔分布对水稻插秧机进行建模。以残差平方和最小为优化目标,建立参数估计优化模型,利用改进粒子群算法对其进行求解,然后采用K-S检验法对模型进行检验,对比单一威布尔模型、混合威布尔模型与水稻插秧机失效数据之间的拟合程度,得出使用两参数混合威布尔模型评估水稻插秧机可靠性的合理性,在此模型的基础上计算得到水稻插秧机的平均无故障工作时间为161.75 h,中位寿命为147.14 h,特征寿命为191.31 h,且在可靠度为0.6时,预防性维修周期为115.19 h,最后在混合威布尔分布模型的基础上计算出剩余寿命-可靠度的关系,可定量分析插秧机在一定使用时间下的剩余寿命,从而进行预测性维护。 展开更多
关键词 可靠性 混合威布尔分布 非线性最小二乘法 粒子群算法 剩余寿命预测
下载PDF
考虑电压-无功调节的台区互联装置规划方法
15
作者 王书征 赵洋 +2 位作者 李沛林 单婷婷 张金华 《电力工程技术》 北大核心 2024年第3期111-120,共10页
伴随分布式能源广泛接入低压配电网,其对配电网运行灵活性和消纳能力的要求不断提高。利用低压柔性互联装置将独立运行的低压配电台区分区互联,避免传统电压调节和无功补偿装置频繁动作。考虑到柔性互联装置造价昂贵,协同传统电压-无功... 伴随分布式能源广泛接入低压配电网,其对配电网运行灵活性和消纳能力的要求不断提高。利用低压柔性互联装置将独立运行的低压配电台区分区互联,避免传统电压调节和无功补偿装置频繁动作。考虑到柔性互联装置造价昂贵,协同传统电压-无功调节装置,文中提出低压柔性互联装置的选址定容规划方法。首先,分析低压柔性互联装置拓扑和运行方式,建立其潮流模型。其次,建立低压柔性互联装置优化配置的双层规划模型,上层规划以年综合费用最小为目标,下层规划考虑电压-无功协调控制时间序列模型,以运行成本和电压偏差最小为目标,基于粒子群优化算法和混合整数二阶锥规划算法交替求解,得出配电系统最优柔性互联方案和最优运行方式。最后,在IEEE 33节点系统上进行实例分析,验证该双层规划算法的有效性。结果表明,所提方法能有效减少柔性互联装置的过度布置,同时减少由分布式能源频繁波动造成的运行成本。将模型凸化并线性化的方法明显提高了求解效率。 展开更多
关键词 分布式能源 低压柔性互联 电压-无功控制 双层规划 选址定容 粒子群优化 混合整数二阶锥规划算法
下载PDF
考虑物料配送的混流装配线协同优化
16
作者 金玉超 黎向锋 +3 位作者 梁铖 闫泓驰 王斌 左敦稳 《计算机集成制造系统》 EI CSCD 北大核心 2024年第11期3877-3888,共12页
针对混流装配线的平衡排序和物料配送的协同问题,提出了一种装配线同步的协同配送策略,在此基础上以平衡工位负载、最小化最大完工时间和减少物料配送成本为目标,建立了考虑物料配送的协同优化模型。利用改进的非支配排序遗传算法(INSGA... 针对混流装配线的平衡排序和物料配送的协同问题,提出了一种装配线同步的协同配送策略,在此基础上以平衡工位负载、最小化最大完工时间和减少物料配送成本为目标,建立了考虑物料配送的协同优化模型。利用改进的非支配排序遗传算法(INSGA)对模型进行求解,基于模型的三层编码设计保证了解集的合法性和完整性。提出的多层编码交叉算子和变异算子,在提高种群多样性的同时也加快了算法的收敛速度。为避免算法陷入局部最优,重新设计了拥挤度距离,并改进了精英选择策略。此外,基于竞争机制,设计了一种舒适度竞争算子,便于在Pareto最优解集中确定具体方案。最后,通过标准算例和具体案例的求解,证明了改进算法的优越性和模型的有效性,案例的优化结果表示,装配线的完工时间缩短了近20%,物料配送成本节省了30%以上,取得了较好的优化效果。 展开更多
关键词 混流装配线 物料配送 协同优化 竞争选择 多目标算法
下载PDF
基于收敛性提升的粒子群算法及其在火电厂配煤优化研究
17
作者 李前胜 解继刚 +4 位作者 关怀 陈筑 李扬 李俊 王永富 《控制工程》 CSCD 北大核心 2024年第10期1849-1855,共7页
针对大型火电机组的燃煤煤种复杂、混煤掺烧决策困难的现状,以及配煤优化过程存在多种设计约束和物理约束而导致传统优化算法的寻优过程难以收敛的问题,提出了一种改进粒子群优化算法。该算法将自适应约束处理机制引入传统粒子群优化算... 针对大型火电机组的燃煤煤种复杂、混煤掺烧决策困难的现状,以及配煤优化过程存在多种设计约束和物理约束而导致传统优化算法的寻优过程难以收敛的问题,提出了一种改进粒子群优化算法。该算法将自适应约束处理机制引入传统粒子群优化算法中,基于距离测度和自适应惩罚项对违反约束的粒子进行自适应处理,引导寻优过程实现收敛;同时,采用平滑非线性权重递减策略代替传统粒子群优化算法的定值惯性权重设置方法,防止算法的寻优过程陷入局部最优。基于现场数据的仿真结果表明,所提算法在存在多约束条件的非线性函数寻优过程中具有明显优势,能够实现不同评价指标的均衡优化。 展开更多
关键词 数学模型 自适应约束处理 粒子群优化算法 混煤掺烧
下载PDF
基于混合策略的蜣螂优化算法研究
18
作者 秦喜文 冷春晓 董小刚 《吉林大学学报(信息科学版)》 CAS 2024年第5期829-839,共11页
针对蜣螂优化算法存在易陷入局部最优、全局探索和局部开发能力不平衡等问题,为提升蜣螂优化算法的寻优能力,提出一种混合策略的蜣螂优化算法。采用Sobol序列初始化种群,以使蜣螂种群更好地遍历整个解空间;在滚球蜣螂位置更新阶段加入... 针对蜣螂优化算法存在易陷入局部最优、全局探索和局部开发能力不平衡等问题,为提升蜣螂优化算法的寻优能力,提出一种混合策略的蜣螂优化算法。采用Sobol序列初始化种群,以使蜣螂种群更好地遍历整个解空间;在滚球蜣螂位置更新阶段加入黄金正弦算法,提高收敛速度和寻优精度;引入混合变异算子进行扰动,提高算法跳出局部最优的能力。对改进的算法进行8个基准函数的测试,并与灰狼优化算法、鲸鱼优化算法和蜣螂优化算法等进行比较,并验证了3种改进策略的有效性。结果表明,混合策略的蜣螂优化算法在收敛速度、鲁棒性和寻优精度有明显增强。 展开更多
关键词 蜣螂优化算法 Sobol序列 黄金正弦算法 混合变异算子
下载PDF
量子计算技术在新型电力系统决策优化中的应用 被引量:2
19
作者 李知艺 许悦 韩旭涛 《电力系统自动化》 EI CSCD 北大核心 2024年第6期62-73,共12页
新型电力系统的规划、运行和市场运营等决策优化过程呈现变量激增、约束繁杂等特点,而量子计算具有运算并行和状态叠加等特性,为高效解决此类“维数灾难”难题提供了新的技术路径。文中围绕量子计算技术赋能新型电力系统决策优化的原理... 新型电力系统的规划、运行和市场运营等决策优化过程呈现变量激增、约束繁杂等特点,而量子计算具有运算并行和状态叠加等特性,为高效解决此类“维数灾难”难题提供了新的技术路径。文中围绕量子计算技术赋能新型电力系统决策优化的原理可行性及实现思路展开探析。首先,梳理分析量子计算应用于新型电力系统决策优化过程的先进性与局限性,构建量子-经典计算混合的变分量子决策优化框架。在此基础上,提炼新型电力系统典型优化问题的共性,推导统一的问题结构,形成可利用量子比特系统描述的能量模型。随后,提出基于量子近似优化算法的求解流程,寻找能量模型的极值,并映射得到原优化问题的最优解。最后,从软硬件、算法框架以及行业发展等角度提出思考与展望。 展开更多
关键词 量子计算 新型电力系统 决策优化 变分量子算法 量子近似优化算法 混合整数规划 分布式计算
下载PDF
基于神经辐射场算法的混合现实三维重建技术
20
作者 杜旋 黄勇 +4 位作者 董惠良 周宇豪 宫正 姚雨龙 曾晰 《机电工程》 CAS 北大核心 2024年第10期1759-1767,共9页
针对目前在混合现实(MR)环境中高效率建立高质量三维(3D)模型的需求,基于神经辐射场算法(NeRF)的三维重建技术,提出了一种基于Laplacian算子的数据集优化算法。首先,围绕某线切割设备录制了一段1 min 51 s的视频,并采取等距提取视频帧... 针对目前在混合现实(MR)环境中高效率建立高质量三维(3D)模型的需求,基于神经辐射场算法(NeRF)的三维重建技术,提出了一种基于Laplacian算子的数据集优化算法。首先,围绕某线切割设备录制了一段1 min 51 s的视频,并采取等距提取视频帧的方式,获取了训练数据集;然后,使用Laplacian算子对数据集进行了优化,同时保留了原始数据集作为对比,使用了基于NeRF算法的重建方式与传统的基于COLMAP的稠密点云重建方式,分别对两组数据集进行了三维重建;最后,在重建精度与重建速度方面,对不同重建方式、不同重建数据集的重建结果进行了比较。研究结果表明:COLMAP稠密点云重建耗时是基于NeRF重建耗时的9.98倍,而相较于COLMAP稠密点云重建,使用NeRF重建方式的模型表面缺陷较少;此外,使用Laplacian算子优化的数据集的NeRF重建在峰值信噪比(PSNR)和结构相似性(SSIM)指标上分别提升了2.43%、0.72%,有利于提升重建模型的质量。研究结果支持混合现实技术在制造业数字化转型中的应用,可为其提供有益的参考。 展开更多
关键词 高质量三维模型 神经辐射场算法 混合现实 重建速度 重建精度 LAPLACIAN算子 数据集优化算法
下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部