期刊文献+
共找到3,172篇文章
< 1 2 159 >
每页显示 20 50 100
A Study on Optimizing the Double-Spine Type Flow Path Design for the Overhead Transportation System Using Tabu Search Algorithm
1
作者 Nguyen Huu Loc Khuu Thuy Duy Truong +3 位作者 Quoc Dien Le Tran Thanh Cong Vu Hoa Binh Tran Tuong Quan Vo 《Intelligent Automation & Soft Computing》 2024年第2期255-279,共25页
Optimizing Flow Path Design(FPD)is a popular research area in transportation system design,but its application to Overhead Transportation Systems(OTSs)has been limited.This study focuses on optimizing a double-spine f... Optimizing Flow Path Design(FPD)is a popular research area in transportation system design,but its application to Overhead Transportation Systems(OTSs)has been limited.This study focuses on optimizing a double-spine flow path design for OTSs with 10 stations by minimizing the total travel distance for both loaded and empty flows.We employ transportation methods,specifically the North-West Corner and Stepping-Stone methods,to determine empty vehicle travel flows.Additionally,the Tabu Search(TS)algorithm is applied to branch the 10 stations into two main layout branches.The results obtained from our proposed method demonstrate a reduction in the objective function value compared to the initial feasible solution.Furthermore,we explore howchanges in the parameters of the TS algorithm affect the optimal result.We validate the feasibility of our approach by comparing it with relevant literature and conducting additional tests on layouts with 20 and 30 stations. 展开更多
关键词 Overhead transportation systems tabu search double-spine layout transportationmethod empty travel flow path design
下载PDF
A proposed NMR solution for multi-phase flow fluid detection 被引量:5
2
作者 Jun-Feng Shi Feng Deng +7 位作者 Li-Zhi Xiao Hua-Bing Liu Feng-Qin Ma Meng-Ying Wang Rui-Dong Zhao Shi-Wen Chen Jian-Jun Zhang Chun-Ming Xiong 《Petroleum Science》 SCIE CAS CSCD 2019年第5期1148-1158,共11页
In the petroleum industry,detection of multi-phase fluid flow is very important in both surface and down-hole measurements.Accurate measurement of high rate of water or gas multi-phase flow has always been an academic... In the petroleum industry,detection of multi-phase fluid flow is very important in both surface and down-hole measurements.Accurate measurement of high rate of water or gas multi-phase flow has always been an academic and industrial focus.NMR is an efficient and accurate technique for the detection of fluids;it is widely used in the determination of fluid compositions and properties.This paper is aimed to quantitatively detect multi-phase flow in oil and gas wells and pipelines and to propose an innovative method for online nuclear magnetic resonance(NMR)detection.The online NMR data acquisition,processing and interpretation methods are proposed to fill the blank of traditional methods.A full-bore straight tube design without pressure drop,a Halbach magnet structure design with zero magnetic leakage outside the probe,a separate antenna structure design without flowing effects on NMR measurement and automatic control technology will achieve unattended operation.Through the innovation of this work,the application of NMR for the real-time and quantitative detection of multi-phase flow in oil and gas wells and pipelines can be implemented. 展开更多
关键词 Oil and gas wells multi-phase flow NMR Online detection
下载PDF
Linear Plus Linear Fractional Capacitated Transportation Problem with Restricted Flow 被引量:1
3
作者 Kavita Gupta Shri Ram Arora 《American Journal of Operations Research》 2013年第6期581-588,共8页
In this paper, a transportation problem with an objective function as the sum of a linear and fractional function is considered. The linear function represents the total transportation cost incurred when the goods are... In this paper, a transportation problem with an objective function as the sum of a linear and fractional function is considered. The linear function represents the total transportation cost incurred when the goods are shipped from various sources to the destinations and the fractional function gives the ratio of sales tax to the total public expenditure. Our objective is to determine the transportation schedule which minimizes the sum of total transportation cost and ratio of total sales tax paid to the total public expenditure. Sometimes, situations arise where either reserve stocks have to be kept at the supply points, for emergencies or there may be extra demand in the markets. In such situations, the total flow needs to be controlled or enhanced. In this paper, a special class of transportation problems is studied where in the total transportation flow is restricted to a known specified level. A related transportation problem is formulated and it is shown that to each basic feasible solution which is called corner feasible solution to related transportation problem, there is a corresponding feasible solution to this restricted flow problem. The optimal solution to restricted flow problem may be obtained from the optimal solution to related transportation problem. An algorithm is presented to solve a capacitated linear plus linear fractional transportation problem with restricted flow. The algorithm is supported by a real life example of a manufacturing company. 展开更多
关键词 transportation Problem LINEAR PLUS LINEAR FRACTIONAL RESTRICTED flow CORNER Feasible Solution
下载PDF
Flow Characteristics of Crude Oil with High Water Fraction during Non-heating Gathering and Transportation 被引量:1
4
作者 LüYuling Tan Hao +2 位作者 Li Jiao Yang Donghai Xu Peiyang 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2021年第1期88-97,共10页
In order to ensure the safety of the non-heating gathering and transportation processes for high water fraction crude oil,the effect of temperature,water fraction,and flow rate on the flow characteristics of crude oil... In order to ensure the safety of the non-heating gathering and transportation processes for high water fraction crude oil,the effect of temperature,water fraction,and flow rate on the flow characteristics of crude oil with high water fraction was studied in a flow experimental system of the X Oilfield.Four distinct flow patterns were identified by the photographic and local sampling techniques.Especially,three new flow patterns were found to occur below the pour point of crude oil,including EW/O&W stratified flow with gel deposition,EW/O&W intermittent flow with gel deposition,and water single-phase flow with gel deposition.Moreover,two characteristic temperatures,at which the change rate of pressure drop had changed obviously,were found during the change of pressure drop.The characteristic temperature of the first congestion of gel deposition in the pipeline was determined to be the safe temperature for the non-heating gathering and transportation of high water cut crude oil,while the pressure drop reached the peak at this temperature.An empirical formula for the safe temperature was established for oil-water flow with high water fraction/low fluid production rate.The results can serve as a guide for the safe operation of the non-heating gathering and transportation of crude oil in high water fraction oilfields. 展开更多
关键词 crude oil with high water fraction non-heating gathering and transportation flow pattern pressure drop safe temperature
下载PDF
Modeling non-isothermal multi-phase multi-component reactive chemical transport in geological media
5
《Global Geology》 1998年第1期83-83,共1页
关键词 Modeling non-isothermal multi-phase multi-component reactive chemical transport in geological media
下载PDF
Lattice Boltzmann modeling of transport phenomena in fuel cells and flow batteries 被引量:12
6
作者 Ao Xu Wei Shyy Tianshou Zhao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第3期555-574,共20页
Fuel cells and flow batteries are promising technologies to address climate change and air pollution problems. An understanding of the complex multiscale and multiphysics transport phenomena occurring in these electro... Fuel cells and flow batteries are promising technologies to address climate change and air pollution problems. An understanding of the complex multiscale and multiphysics transport phenomena occurring in these electrochemical systems requires powerful numerical tools. Over the past decades, the lattice Boltzmann (LB) method has attracted broad interest in the computational fluid dynamics and the numerical heat transfer communities, primarily due to its kinetic nature making it appropriate for modeling complex multiphase transport phenomena. More importantly, the LB method fits well with parallel computing due to its locality feature, which is required for large-scale engineering applications. In this article, we review the LB method for gas-liquid two-phase flows, coupled fluid flow and mass transport in porous media, and particulate flows. Examples of applications are provided in fuel cells and flow batteries. Further developments of the LB method are also outlined. 展开更多
关键词 Lattice Boltzmann method transport phenomena Multiphase flow Fuel cells flow batteries
下载PDF
Experimental investigation of the effect of flow turbulence and sediment transport patterns on the adsorption of cadmium ions onto sediment particles 被引量:6
7
作者 HUANG Sui-liang NG Chiu-on GUO Qi-zhong 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第6期696-703,共8页
The mechanism of flow turbulence, sediment supply conditions, and sediment transport patterns that affect the adsorption of cadmium ions onto sediment particles in natural waters are experimentally simulated and studi... The mechanism of flow turbulence, sediment supply conditions, and sediment transport patterns that affect the adsorption of cadmium ions onto sediment particles in natural waters are experimentally simulated and studied both in batch reactors and in a turbulence simulation tank. By changing the agitation conditions, the sediment transport in batch reactors can be categorized into bottom sediment-dominated sediment and suspended sediment-dominated sediment. It is found that the adsorption rate of bottom sediment is much less than that of suspended sediment, but the sediment transport pattern does not affect the final (equilibrium) concentration of dissolved cadmium. This result indicates that the parameters of an adsorption isotherm are the same regardless of the sediment transport pattern. In the turbulence simulation tank, the turbulence is generated by harmonic grid-stirred motions, and the turbulence intensity is quantified in terms of eddy diffusivity, which is equal to 9.84F (F is the harmonic vibration frequency) and is comparable to natural surface water conditions. When the turbulence intensity of flow is low and sediment particles stay as bottom sediment, the adsorption rate is significantly low, and the adsorption quantity compared with that of suspended sediment is negligible in the 6 h duration of the experiment. This result greatly favors the simplification of the numerical modeling of heavy metal pollutant transformation in natural rivers. When the turbulence intensity is high but bottom sediment persists, the rate and extent of descent of the dissolved cadmium concentration in the tank noticeably increase, and the time that is required to reach adsorption equilibrium also increases considerably due to the continuous exchange that occurs between the suspended sediment and the bottom sediment. A comparison of the results of the experiments in the batch reactor and those in the turbulence simulation tank reveals that the adsorption ability of the sediment, and in particular the adsorption rate, is greatly over-estimated in the batch reactor. 展开更多
关键词 water flow sediment transport POLLUTANT INTERACTIONS turbulence adsorption
下载PDF
Water Vapor Transport and Cross-Equatorial Flow over the Asian-Australia Monsoon Region Simulated by CMIP5 Climate Models 被引量:7
8
作者 宋亚娟 乔方利 +1 位作者 宋振亚 姜春飞 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第3期726-738,共13页
The summer mean water vapor transport (WVT) and cross-equatorial flow (CEF) over the Asian- Australian monsoon region simulated by 22 coupled atmospheric-oceanic general circulation models (AOGCMs) from the Worl... The summer mean water vapor transport (WVT) and cross-equatorial flow (CEF) over the Asian- Australian monsoon region simulated by 22 coupled atmospheric-oceanic general circulation models (AOGCMs) from the World Climate Research Programme's Coupled Model Intercomparison Project Phase 5 (CMIP5) were evaluated. Based on climatology of the twentieth-century simulations, most of models have a reason- ably realistic representation of summer monsoon WVT characterized by southeast water vapor conveyor belt over the South Indian Ocean and southwest belt from the Arabian Sea to the East Asian. The correlation coefficients between NCEP reanalysis and simulations of BCC-CSMI-1, BNU-ESM, CanESM2, FGOALS-s2, MIROC4h and MPI-ESM-LR are up to 0.8. The simulated CEF depicted by the meridional wind along the equator includes the Somali jet and eastern CEF in low atmosphere and the reverse circulation in upper atmosphere, which were generally consistent with NCEP reanalysis. Multi-model ensemble means (MME) can reproduce more reasonable climatological features in spatial distribution both of WVT and CEF. Ten models with more reasonable WVT simulations were selected for future projection studies, including BCC- CSMI-1, BNU-ESM, CanESM2, CCSM4, FGOALS-s2, FIO-ESM, GFDL-ESM2G, MRIOCS, MPI-ESM-LR and NorESM-1M. Analysis based on the future projection experiments in RCP (Representative Concentra- tion Pathway) 2.6, RCP4.5, RCP6 and RCP8.5 show that the global warming forced by different RCP scenarios will results in enhanced WVT over the Indian area and the west Pacific and weaken WVT in the low latitudes of tropical Indian Ocean. 展开更多
关键词 CMIP5 AOGCMs water vapor transport cross-equatorial flow future projection
下载PDF
Bionic Design and Finite Element Analysis of Elbow in Ice Transportation Cooling System 被引量:4
9
作者 Dejun Miao~(1,2), Xiuhua Sui~3, Linjing Xiao~3 1. Key Laboratory of Mine Hazard Prevention and Control (Ministry of Education, China), Shandong University of Science and Technology, Qingdao 266510, P. R. China 2. School of Architecture, Tsinghua University, Beijing 100084, P. R. China 3. College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266510, P. R. China 《Journal of Bionic Engineering》 SCIE EI CSCD 2010年第3期301-306,共6页
With the increase in mining depth, mine heat harm has appeared to be more prominent. The mine heat harm could be resolvedor reduced by ice refrigeration. Thus, ice transportation through pipeline becomes a critical pr... With the increase in mining depth, mine heat harm has appeared to be more prominent. The mine heat harm could be resolvedor reduced by ice refrigeration. Thus, ice transportation through pipeline becomes a critical problem; typically flowresistance occurs in the elbow. In the present study, according to the analysis of the surface morphology of fish scale, abiomimetic functional surface structure for the interior wall of elbow is designed. Based on the theory of liquid-solid two phaseflow, a CFD numerical simulation of ice-water mixture flowing through the elbow is carried out using finite element method.Conventional experiments of pressure drop and flow resistance for both bionic and common elbows are conducted to test theeffect of the bionic elbow on flow resistance reduction. It is found that with the increase in the ice mass fraction in the ice-watermixture, the effect of bionic elbow on resistance reduction becomes more obvious. 展开更多
关键词 bionic elbow two phase flow ice transportation flow resistance reduction pressure loss
下载PDF
Coupled Model of Two-phase Debris Flow,Sediment Transport and Morphological Evolution 被引量:5
10
作者 HE Siming OUYANG Chaojun +1 位作者 LIU Wei WANG Dongpo 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第6期2206-2215,共10页
The volume fraction of the solid and liquid phase of debris flows, which evolves simultaneously across terrains, largely determines the dynamic property of debris flows. The entrainment process significantly influence... The volume fraction of the solid and liquid phase of debris flows, which evolves simultaneously across terrains, largely determines the dynamic property of debris flows. The entrainment process significantly influences the amplitude of the volume fraction. In this paper, we present a depth-averaged two-phase debris-flow model describing the simultaneous evolution of the phase velocity and depth, the solid and fluid volume fractions and the bed morphological evolution. The model employs the Mohr–Coulomb plasticity for the solid stress, and the fluid stress is modeled as a Newtonian viscous stress. The interfacial momentum transfer includes viscous drag and buoyancy. A new extended entrainment rate formula that satisfies the boundary momentum jump condition (Iverson and Ouyang, 2015) is presented. In this formula, the basal traction stress is a function of the solid volume fraction and can take advantage of both the Coulomb and velocity-dependent friction models. A finite volume method using Roe’s Riemann approximation is suggested to solve the equations. Three computational cases are conducted and compared with experiments or previous results. The results show that the current computational model and framework are robust and suitable for capturing the characteristics of debris flows. 展开更多
关键词 debris flows two-phase model sediment transport entrainment rate finite volume method
下载PDF
Numerical simulation of complex multi-phase fluid of casting process and its applications 被引量:5
11
作者 C. Beckermann 《China Foundry》 SCIE CAS 2006年第2期83-86,共4页
The fluid of casting process is a typical kind of multi-phase flow. Actually, many casting phenomena have close relationship with the multi-phase flow, such as molten metal filling process, air entrapment, slag moveme... The fluid of casting process is a typical kind of multi-phase flow. Actually, many casting phenomena have close relationship with the multi-phase flow, such as molten metal filling process, air entrapment, slag movement, venting process of die casting, gas escaping of lost foam casting and so on. Obviously, in order to analyze these phenomena accurately, numerical simulation of the multi-phase fluid is necessary. Unfortunately, so far, most of the commercial casting simulation systems do not have the ability of multi-phase flow modeling due to the difficulty in the multi-phase flow calculation. In the paper, Finite Different Method (FDM) technique was adopt to solve the multi-phase fluid model. And a simple object of the muiti-phase fluid was analyzed to obtain the fluid rates of the liquid phase and the entrapped air phase. 展开更多
关键词 CASTING multi-phase flow NUMERICAL simulation
下载PDF
Features of pipe transportation of paste-like backfilling in deep mine 被引量:10
12
作者 王新民 赵建文 +1 位作者 薛俊华 余国锋 《Journal of Central South University》 SCIE EI CAS 2011年第5期1413-1417,共5页
Based on the pipe transportation of paste-like backfilling system of a certain deep coal mine,its dynamics process was simulated and analyzed.A two-dimensional dynamic model of extraordinary deep and lone pipe was bui... Based on the pipe transportation of paste-like backfilling system of a certain deep coal mine,its dynamics process was simulated and analyzed.A two-dimensional dynamic model of extraordinary deep and lone pipe was built by GAMBIT,on the basis of which the simulation was done by implicit solver of FLUENT 2ddp.The results show that hydraulic loss of pipe transportation is less than the pressure produced by gravity,which means the backfilling material can flow by itself.When the inlet velocity is 3.2 m/s,the maximum velocity of 4.10 m/s is at the elbow and the maximum velocity in the horizontal pipe is 3.91 m/s,which can both meet the stability requirement.The results of the simulation are proved to be reliable by the residual monitor plotting of related parameter,so it can be concluded that the system of pipe transportation is safe. 展开更多
关键词 BACKFILLING deep mine paste-like slurry pipe transportation flow
下载PDF
Effects of electroacupuncture on microcirculatory blood flow and glucose transporter function in the hippocampus 被引量:6
13
作者 Lu, Yan Han, Bingbing Wang, Shijun 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第3期200-205,共6页
Nerve cell metabolism in post brain ischemia depends on increased microcirculation perfusion and transport function of microvascular endothelial cells. In the present study, a rat model of middle cerebral artery occlu... Nerve cell metabolism in post brain ischemia depends on increased microcirculation perfusion and transport function of microvascular endothelial cells. In the present study, a rat model of middle cerebral artery occlusion was established to investigate the influence of electroacupuncture (EA) on hippocampal CA1 cerebral blood flow and glucose transporter 1 (GLUT1) expression in the microvascular endothelial cells. Following EA at Neiguan (PC 6), the cerebral blood flow in the ischemic hippocampal CA1 region was significantly elevated, the number and microvascular integrated absorbance of the GLUTl-positive cells were significantly increased, nerve cell damage was ameliorated, and GLUT1 protein expression in the ischemic hippocampus was significantly increased. Results demonstrate that EA increased the cerebral blood flow of the hippocampal CA1 region and improved the glucose transport function, thereby attenuating neuronal injuries. 展开更多
关键词 ELECTROACUPUNCTURE Neiguan (PC 6) focal cerebral ischemia microvascularendothelial cells glucose transporter 1 cerebral blood flow CA1 region neural regeneration
下载PDF
Experimental Study and Simulation Principles of An Oil-Gas Multiphase Transportation System 被引量:3
14
作者 吴应湘 郑之初 +2 位作者 李东晖 劳力云 马艺馨 《China Ocean Engineering》 SCIE EI 2000年第1期33-44,共12页
Presented is an experimental study on the performance of an oil-gas multiphase transportation system, especially on the multiphase flow patterns, multiphase pumping and multiphase metering of the system. A dynamic sim... Presented is an experimental study on the performance of an oil-gas multiphase transportation system, especially on the multiphase flow patterns, multiphase pumping and multiphase metering of the system. A dynamic simulation analysis is conducted to deduce simulation parameters of the system and similarity criteria under simplified conditions are obtained. The reliability and feasibility of two-phase flow experiment with oil and natural gas simulated by water and air are discussed by using the similarity criteria. 展开更多
关键词 multiphase flow similarity criteria simulation principle oil-gas multiphase transportation
下载PDF
Three-phase flow of submarine gas hydrate pipe transport 被引量:7
15
作者 李立 徐海良 杨放琼 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第9期3650-3656,共7页
In the hydraulic transporting process of cutter-suction mining natural gas hydrate, when the temperature-pressure equilibrium of gas hydrate is broken, gas hydrates dissociate into gas. As a result, solid-liquid two-p... In the hydraulic transporting process of cutter-suction mining natural gas hydrate, when the temperature-pressure equilibrium of gas hydrate is broken, gas hydrates dissociate into gas. As a result, solid-liquid two-phase flow(hydrate and water) transforms into gas-solid-liquid three-phase flow(methane, hydrate and water) inside the pipeline. The Euler model and CFD-PBM model were used to simulate gas-solid-liquid three-phase flow. Numerical simulation results show that the gas and solid phase gradually accumulate to the center of the pipe. Flow velocity decreases from center to boundary of the pipe along the radial direction. Comparison of numerical simulation results of two models reveals that the flow state simulated by CFD-PBM model is more uniform than that simulated by Euler model, and the main behavior of the bubble is small bubbles coalescence to large one. Comparison of numerical simulation and experimental investigation shows that the values of flow velocity and gas fraction in CFD-PBM model agree with experimental data better than those in Euler model. The proposed PBM model provides a more accurate and effective way to estimate three-phase flow state of transporting gas hydrate within the submarine pipeline. 展开更多
关键词 gas hydrate pipe transport three-phase flow Euler model CFD-PBM model
下载PDF
Field Measurements of Influence of Sand Transport Rate on Structure of Wind-sand Flow over Coastal Transverse Ridge 被引量:10
16
作者 DONG Yuxiang S L NAMIKAS +1 位作者 P A HESP MA Jun 《Chinese Geographical Science》 SCIE CSCD 2008年第3期255-261,共7页
The structure of wind-sand flow under different total sand transport rates was measured with field vertical anemometer and sand trap on the crest of typical coastal transverse ridge in Changli Gold Coast of Hebei Prov... The structure of wind-sand flow under different total sand transport rates was measured with field vertical anemometer and sand trap on the crest of typical coastal transverse ridge in Changli Gold Coast of Hebei Province, which is one of the most typical coastal aeolian distribution regions in China and famous for the tall and typical coastal transverse ridges. The measurement results show that, on the conditions of approximate wind velocities and same surface materials and environments, some changes happen to the structure of wind-sand flow with the increase of total sand transport rate on the crest of coastal transverse ridge. First, the sand transport rates of layers at different heights in the wind-sand flow increase, with the maximum increase at the height layer of 4-8cm. Second, the ratios of sand trans-port rates of layers at different heights to total sand transport rate decrease at the low height layer (0-4cm), but increase at the high height layer (4-60cm). Third, the distribution of the sand transport rate in the wind-sand flow can be expressed by an exponential function at the height layer of 0-40cm, but it changes from power function model to ex-ponential function model in the whole height layer (0-60cm) and changes into polynomial function model at the height layer of 40-60cm with the increase of total sand transport rate. Those changes have a close relationship with the limit of sand grain size of wind flow transporting and composition of sand grain size in the wind-sand flow. 展开更多
关键词 sand transport rate coastal transverse ridge structure of wind-sand flow field measurement
下载PDF
EXPERIMENTAL STUDY ON TURBULENT FEATURES IN THE NEGATIVE TRANSPORT REGION OF ASYMMETRIC PLANE CHANNEL FLOW 被引量:4
17
作者 卢志明 刘宇陆 蒋剑波 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2001年第2期125-132,共8页
Turbulent features of streamwise and vertical components of velocity in the negative transport region of asymmetric plane channel flow have been studied experimentally in details. Experiments show that turbulent fluct... Turbulent features of streamwise and vertical components of velocity in the negative transport region of asymmetric plane channel flow have been studied experimentally in details. Experiments show that turbulent fluctuations in negative transport region are suppressed, and their probability distributions are far from Gaussian. Besides, the skewness factors attain their negative maxima at the position of the maximum mean velocity, whereas the flatness factors attain their positive maxima at the same position. 展开更多
关键词 negative transport asymmetric channel flow turbulent characteristics
下载PDF
Mathematical model for coupled reactive flow and solute transport during heap bioleaching of copper sulfide 被引量:5
18
作者 尹升华 吴爱祥 +1 位作者 李希雯 王贻明 《Journal of Central South University》 SCIE EI CAS 2011年第5期1434-1440,共7页
Based on the momentum and mass conservation equations, a comprehensive model of heap bioleaching process is developed to investigate the interaction between chemical reactions, solution flow, gas flow, and solute tran... Based on the momentum and mass conservation equations, a comprehensive model of heap bioleaching process is developed to investigate the interaction between chemical reactions, solution flow, gas flow, and solute transport within the leaching system. The governing equations are solved numerically using the COMSOL Multiphysics software for the coupled reactive flow and solute transport at micro-scale, meso-scale and macro-scale levels. At or near the surface of ore particle, the acid concentration is relatively higher than that in the central area, while the concentration gradient decreases after 72 d of leaching. The flow simulation between ore particles by combining X-ray CT technology shows that the highest velocity in narrow pore reaches 0.375 m/s. The air velocity within the dump shows that the velocity near the top and side surface is relatively high, which leads to the high oxygen concentration in that area. The coupled heat transfer and liquid flow process shows that the solution can act as an effective remover from the heap, dropping the highest temperature from 60 to 38 ℃. The reagent transfer coupled with solution flow is also analyzed. The results obtained allow us to obtain a better understanding of the fundamental physical phenomenon of the bioleaching process. 展开更多
关键词 copper sulphide heap bioleaching leaching reaction solution flow solute transport
下载PDF
Optimization study of a PEM fuel cell performance using 3D multi-phase computational fluid dynamics model 被引量:2
19
作者 AL-BAGHDADI Maher A.R. Sadiq AL-JANABI Haroun A.K.Shahad 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第2期285-300,共16页
An optimization study using a comprehensive 3D, multi-phase, non-isothermal model of a PEM (proton exchange membrane) fuel cell that incorporates significant physical processes and key parameters affecting fuel cell... An optimization study using a comprehensive 3D, multi-phase, non-isothermal model of a PEM (proton exchange membrane) fuel cell that incorporates significant physical processes and key parameters affecting fuel cell performance is presented and discussed in detail. The model accounts for both gas and liquid phase in the same computational domain, and thus allows for the implementation of phase change inside the gas diffusion layers. The model includes the transport of gaseous species, liquid water, protons, energy, and water dissolved in the ion-conducting polymer. Water is assumed to be exchanged among three phases: liquid, vapottr, and dissolved, with equilibrium among these phases being assumed. This model also takes into account convection and diffusion of different species in the channels as well as in the porous gas diffusion layer, heat transfer in the solids as well as in the gases, and electrochemical reactions. The results showed that the present multi-phase model is capable of identifying important parameters for the wetting behaviour of the gas diffusion layers and can be used to identify conditions that might lead to the onset of pore plugging, which has a detrimental effect on the fuel cell performance. This model is used to study the effects of several operating, design, and material parameters on fuel cell performance. Detailed analyses of the fuel cell performance under various operating conditions have been conducted and examined. 展开更多
关键词 OPTIMIZATION PEM fuel cell multi-phase Water transport CFD (computational fluid dynamics)
下载PDF
Unsaturated flow and solute transport in a porous column using spherical ore particles 被引量:1
20
作者 Xiu-xiu Miao Ai-xiang Wu +3 位作者 Bao-hua Yang Jin-zhi Liu Sheng-hua Yin Hong-jiang Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第2期113-121,共9页
This paper dealt with the development of a two-dimensional (2D) mathematical model for column leaching and confirmed the important simulation parameters through experiment. The unsaturated state of the variably satu... This paper dealt with the development of a two-dimensional (2D) mathematical model for column leaching and confirmed the important simulation parameters through experiment. The unsaturated state of the variably saturated flow column and the solute transport of copper ions were studied during leaching. The fluid flow problem was handled using the Richards equation on the premise of an ambient pressure column air, where the van Genuchten formulas were applied to define the nonlinear relationships of pressure head with the retention and permeability properties. The ore column permeability test gave a varied hydraulic conductivity, which was analyzed in the model. In the solute transport problem, the copper ion concentration was solved using the advection-diffusion-reaction equation whose reaction term was determined by the joint analysis of experimental copper leaching rate and the shrinking core model. Particle-and column-scale leaching tests were carried out to illustrate the difference and connection of copper extraction in both processes. This fluid flow and solute transport cou-pled model was determined through the finite element method using the numerical simulation software, COMSOL Multiphysics. 展开更多
关键词 mathematical models LEACHING unsaturated flow solute transport
下载PDF
上一页 1 2 159 下一页 到第
使用帮助 返回顶部