The explicit form of the evolution operator for the three-atom Tavis-Cummings model is given. The atoms can be entangled through their interaction with a thermal field. The degree of entanglement depends on the mean p...The explicit form of the evolution operator for the three-atom Tavis-Cummings model is given. The atoms can be entangled through their interaction with a thermal field. The degree of entanglement depends on the mean photon number of the thermal field and the initial state of the atoms.展开更多
We examine the single-atom entropy squeezing and the atom-field entanglement in a system of two moving twolevel atoms interacting with a single-mode coherent field in a lossless resonant cavity. Our numerical calculat...We examine the single-atom entropy squeezing and the atom-field entanglement in a system of two moving twolevel atoms interacting with a single-mode coherent field in a lossless resonant cavity. Our numerical calculations indicate that the squeezing period, the squeezing time and the maximM squeezing can be controlled by appropriately choosing the atomic motion and the field-mode structure. The atomic motion leads to a periodical time evolution of entanglement between the two-atom and the field. Moreover, there exists corresponding relation between the time evolution properties of the atomic entropy squeezing and that of the entanglement between the two atoms and the field.展开更多
We study the dissipative quantum phase transition(QPT)in a biased Tavis–Cummings model consisting of an ensemble of two-level systems(TLSs)interacting with a cavity mode,where the TLSs are pumped by a drive field.In ...We study the dissipative quantum phase transition(QPT)in a biased Tavis–Cummings model consisting of an ensemble of two-level systems(TLSs)interacting with a cavity mode,where the TLSs are pumped by a drive field.In our proposal,we use a dissipative TLS ensemble and an active cavity with effective gain.In the weak drive-field limit,the QPT can occur under the combined actions of the loss and gain of the system.Owing to the active cavity,the QPT behavior can be much differentiated even for a finite strength of the drive field on the TLS ensemble.Also,we propose to implement our scheme based on the dissipative nitrogen-vacancy(NV)centers coupled to an active optical cavity made from the gainmedium-doped silica.Furthermore,we show that the QPT can be measured by probing the transmission spectrum of the cavity embedding the ensemble of the NV centers.展开更多
Quantum correlation, measured by measurement-induced disturbance (MID), between two two-level atoms is investi- gated in detail in Tavis-Cummings model with dipole--dipole interaction (DDI). We find that MID can b...Quantum correlation, measured by measurement-induced disturbance (MID), between two two-level atoms is investi- gated in detail in Tavis-Cummings model with dipole--dipole interaction (DDI). We find that MID can be determined only by the dipole-dipole interaction between the two atoms when the cavity and atoms are at resonance. Moreover, DDI will have different effects on MID for two different kinds of initial states.展开更多
We have studied entanglement evolution and transfer in a double Tavis-Cumming model where two pairs of entangled two-level atoms AB and CD interact with two single-mode cavity fields a and b. We show that the Bellwlik...We have studied entanglement evolution and transfer in a double Tavis-Cumming model where two pairs of entangled two-level atoms AB and CD interact with two single-mode cavity fields a and b. We show that the Bellwlike initial state of atoms AB can exhibit entanglement sudden death which should be independent of the initial entanglement of atoms CD. Also, we show that the initial entanglement of one atomic pair can be transferred into another pair, as well as the possible subsystems, that become entangled during evolution.展开更多
We derive the adiabatic and non-adiabatic Berry phases in the generalized Jaynes-Cummings model of multi-photon process. The results show that the adiabatic Berry phase is kept a constant π independent of all the par...We derive the adiabatic and non-adiabatic Berry phases in the generalized Jaynes-Cummings model of multi-photon process. The results show that the adiabatic Berry phase is kept a constant π independent of all the parameters, while the non-adiabatic approximate Berry phase is parameter-dependent, proportional to the average photon number m, and tends to be constant with the increasing detuning. In the ease of exact n-photon resonance and an integer ratio of m/n, the two results coincide with each other, otherwise there appears an additional non-trivial phase factor.展开更多
Considering two identical two-level atoms interacting with a single-model dissipative coherent cavity field without rotating wave approximation, we explore the entanglement dynamics of the two atoms prepared in differ...Considering two identical two-level atoms interacting with a single-model dissipative coherent cavity field without rotating wave approximation, we explore the entanglement dynamics of the two atoms prepared in different states using concurrence. Interestingly, our results show that the entanglement between the two atoms that initially disentangled will come up to a large constant rapidly, and then keeps steady in the following time or always has its maximum when prepared in some special Bell states. The model considered in this study is a good candidate for quantum information processing especially for quantum computation as steady high-degree atomic entanglement resource obtained in dissipative cavit.展开更多
In Jaynes-Cummings model,by using the modulation of the coupling coefficient formed by the atom,medium and scattering optical,atomic inversion evolution of arbitrary forms has been worked out.Its feasibility has been ...In Jaynes-Cummings model,by using the modulation of the coupling coefficient formed by the atom,medium and scattering optical,atomic inversion evolution of arbitrary forms has been worked out.Its feasibility has been proved,and the curvature of the atomic inversion evolution of the arbitrary forms is obtained.It announces that the atom and coupling medium system are to express the operators of the atom and optical field quantum in Jaynes-Cummings model.These operators can express arbitrary medium system.In these systems,the coupling coefficient can be changed and exactly controlled in the longer coherent times.展开更多
文摘The explicit form of the evolution operator for the three-atom Tavis-Cummings model is given. The atoms can be entangled through their interaction with a thermal field. The degree of entanglement depends on the mean photon number of the thermal field and the initial state of the atoms.
基金supported by the Science and Technology Program of Dezhou,Shandong Province,China (Grant No. 20080153)the Scientific Research Fund of Dezhou University,China (Grant No. 07024)
文摘We examine the single-atom entropy squeezing and the atom-field entanglement in a system of two moving twolevel atoms interacting with a single-mode coherent field in a lossless resonant cavity. Our numerical calculations indicate that the squeezing period, the squeezing time and the maximM squeezing can be controlled by appropriately choosing the atomic motion and the field-mode structure. The atomic motion leads to a periodical time evolution of entanglement between the two-atom and the field. Moreover, there exists corresponding relation between the time evolution properties of the atomic entropy squeezing and that of the entanglement between the two atoms and the field.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11934010,U1801661,U1930402,and 11847087)the National Key Research and Development Program of China(Grant No.2016YFA0301200)。
文摘We study the dissipative quantum phase transition(QPT)in a biased Tavis–Cummings model consisting of an ensemble of two-level systems(TLSs)interacting with a cavity mode,where the TLSs are pumped by a drive field.In our proposal,we use a dissipative TLS ensemble and an active cavity with effective gain.In the weak drive-field limit,the QPT can occur under the combined actions of the loss and gain of the system.Owing to the active cavity,the QPT behavior can be much differentiated even for a finite strength of the drive field on the TLS ensemble.Also,we propose to implement our scheme based on the dissipative nitrogen-vacancy(NV)centers coupled to an active optical cavity made from the gainmedium-doped silica.Furthermore,we show that the QPT can be measured by probing the transmission spectrum of the cavity embedding the ensemble of the NV centers.
基金Project supported by Beijing City Talent Plan for Middle School Student and the Open Fund of IPOC(BUPT),China(Grant No.IPOC2013B007)the National Natural Science Foundation of China(Grant Nos.11174024 and 61227902)+1 种基金the Fundamental Research Funds for the Central Universities,China(Grant No.YWF-13-D2-JC-19)the Beijing City Youth Talent Plan
文摘Quantum correlation, measured by measurement-induced disturbance (MID), between two two-level atoms is investi- gated in detail in Tavis-Cummings model with dipole--dipole interaction (DDI). We find that MID can be determined only by the dipole-dipole interaction between the two atoms when the cavity and atoms are at resonance. Moreover, DDI will have different effects on MID for two different kinds of initial states.
文摘We have studied entanglement evolution and transfer in a double Tavis-Cumming model where two pairs of entangled two-level atoms AB and CD interact with two single-mode cavity fields a and b. We show that the Bellwlike initial state of atoms AB can exhibit entanglement sudden death which should be independent of the initial entanglement of atoms CD. Also, we show that the initial entanglement of one atomic pair can be transferred into another pair, as well as the possible subsystems, that become entangled during evolution.
基金Supported by the National Natural Science Foundation of China under Grants Nos.11075099,11047167,and 11105087
文摘We derive the adiabatic and non-adiabatic Berry phases in the generalized Jaynes-Cummings model of multi-photon process. The results show that the adiabatic Berry phase is kept a constant π independent of all the parameters, while the non-adiabatic approximate Berry phase is parameter-dependent, proportional to the average photon number m, and tends to be constant with the increasing detuning. In the ease of exact n-photon resonance and an integer ratio of m/n, the two results coincide with each other, otherwise there appears an additional non-trivial phase factor.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10374025)the Education Ministry of Hunan Province,China (Grant No. 06A038)the Natural Science Foundation of Hunan Province,China (Grant No. 07JJ3013
文摘Considering two identical two-level atoms interacting with a single-model dissipative coherent cavity field without rotating wave approximation, we explore the entanglement dynamics of the two atoms prepared in different states using concurrence. Interestingly, our results show that the entanglement between the two atoms that initially disentangled will come up to a large constant rapidly, and then keeps steady in the following time or always has its maximum when prepared in some special Bell states. The model considered in this study is a good candidate for quantum information processing especially for quantum computation as steady high-degree atomic entanglement resource obtained in dissipative cavit.
基金Natural Science Basic Research Project for Education Depart ment of Henan Province(2007140010)
文摘In Jaynes-Cummings model,by using the modulation of the coupling coefficient formed by the atom,medium and scattering optical,atomic inversion evolution of arbitrary forms has been worked out.Its feasibility has been proved,and the curvature of the atomic inversion evolution of the arbitrary forms is obtained.It announces that the atom and coupling medium system are to express the operators of the atom and optical field quantum in Jaynes-Cummings model.These operators can express arbitrary medium system.In these systems,the coupling coefficient can be changed and exactly controlled in the longer coherent times.