Measuring multi-directional waves with the wave gauge array is one of the fundamental and easily realised methods. In this paper, the wave gauge array is described and the effects of the gauge spacing, the array orien...Measuring multi-directional waves with the wave gauge array is one of the fundamental and easily realised methods. In this paper, the wave gauge array is described and the effects of the gauge spacing, the array orientations, etc. of the three array arrangements, i. e., linear array, T-type array and pentagon array, on the resolution of the directional spreading of waves, are investigated experimentally. This study can be used as a reference in the experimental study and the field measurement of directional waves.展开更多
In this study the probable seismic behavior of skewed bridges with continuous decks under earthquake excitations from different directions is investigated. A 45° skewed bridge is studied. A suite of 20 records is...In this study the probable seismic behavior of skewed bridges with continuous decks under earthquake excitations from different directions is investigated. A 45° skewed bridge is studied. A suite of 20 records is used to perform an Incremental Dynamic Analysis (IDA) for fragility curves. Four different earthquake directions have been considered: -45°, 0°, 22.5, 45°. A sensitivity analysis on different spectral intensity measures is presented; efficiency and practicality of different intensity measures have been studied. The fragility curves obtained indicate that the critical direction for skewed bridges is the skew direction as well as the longitudinal direction. The study shows the importance of finding the most critical earthquake in understanding and predicting the behavior of skewed bridges.展开更多
Crop water stress index(CWSI)is widely used for efficient irrigation management.Precise canopy temperature(T_(c))measurement is necessary to derive a reliable CWSI.The objective of this research was to investigate the...Crop water stress index(CWSI)is widely used for efficient irrigation management.Precise canopy temperature(T_(c))measurement is necessary to derive a reliable CWSI.The objective of this research was to investigate the influences of atmospheric conditions,settled height,view angle of infrared thermography,and investigating time of temperature measuring on the performance of the CWSI.Three irrigation treatments were used to create different soil water conditions during the 2020-2021 and 2021-2022 winter wheat-growing seasons.The CWSI was calculated using the CWSI-E(an empirical approach)and CWSI-T(a theoretical approach)based on the T_(c).Weather conditions were recorded continuously throughout the experimental period.The results showed that atmospheric conditions influenced the estimation of the CWSI;when the vapor pressure deficit(VPD)was>2000 Pa,the estimated CWSI was related to soil water conditions.The height of the installed infrared thermograph influenced the T_(c)values,and the differences among the T_(c)values measured at height of 3,5,and 10 m was smaller in the afternoon than in the morning.However,the lens of the thermometer facing south recorded a higher T_(c)than those facing east or north,especially at a low height,indicating that the direction of the thermometer had a significant influence on T_(c).There was a large variation in CWSI derived at different times of the day,and the midday measurements(12:00-15:00)were the most reliable for estimating CWSI.Negative linear relationships were found between the transpiration rate and CWSI-E(R^(2)of 0.3646-0.5725)and CWSI-T(R^(2)of 0.5407-0.7213).The relations between fraction of available soil water(FASW)with CWSI-T was higher than that with CWSI-E,indicating CWSI-T was more accurate for predicting crop water status.In addition,The R^(2)between CWSI-T and FASW at 14:00 was higher than that at other times,indicating that 14:00 was the optimal time for using the CWSI for crop water status monitoring.Relative higher yield of winter wheat was obtained with average seasonal values of CWSI-E and CWSI-T around 0.23 and 0.25-0.26,respectively.The CWSI-E values were more easily influenced by meteorological factors and the timing of the measurements,and using the theoretical approach to derive the CWSI was recommended for precise irrigation water management.展开更多
The present study aims at the design and making of measuring instrument of whole direct method for bed shear stress under two-dimensional water-flow co-action. The instrument combines the traditional strain gauge with...The present study aims at the design and making of measuring instrument of whole direct method for bed shear stress under two-dimensional water-flow co-action. The instrument combines the traditional strain gauge with a precise pressure gauge, and adopts the method directly measuring the difference between the lateral hydrodynamic pressure and different head pressures on both sides of the force plate. As a result, such an instrument solves a technical puzzle of the past strain gauge, i.e. the difficulty to set apart shear stress and lateral force. Static force test and sink test both prove that the instrument is precise, stable and applicable to the measurement of rough beds with different shear stresses.展开更多
Power measurement is necessary for an electron cyclotron resonance heating(ECRH)system.The directional coupler method has been put forward to monitor high-power microwave from gyrotrons in real time.A multi-hole direc...Power measurement is necessary for an electron cyclotron resonance heating(ECRH)system.The directional coupler method has been put forward to monitor high-power microwave from gyrotrons in real time.A multi-hole directional coupler has been designed and manufactured for the 105 GHz/500 kW ECRH system on the J-TEXT tokamak.During the design process,we established the relationships between hole parameters and coupling characteristics based on the multi-hole coupling method and small-hole coupling theory.High-power tests have been carried out.The results indicated the reasonability of the theoretical design and practicality of the fabricated directional coupler.Sources of test errors have been discussed in detail,and the influences of spurious modes on the directional couplers have been emphatically analyzed.展开更多
Using the evaluation indicator system for arable land fertility in Suiping County,this paper analyzes some factors influencing agricultural production,such as physical and chemical properties of soil,site conditions,s...Using the evaluation indicator system for arable land fertility in Suiping County,this paper analyzes some factors influencing agricultural production,such as physical and chemical properties of soil,site conditions,soil management,and soil nutrients concerning various types of low-yielding fields in the county. In accordance with the dominant soil constraint factors and main direction of improvement,the lowyielding fields in the county are divided into four types: irrigation improvement type,waterlogging drainage type,barren soil fertilization and barrier layer type. Finally this paper offers specific guidance on the construction of arable land.展开更多
Mechanized direct sowing of rapeseed is a labor-saving and highly-efficient culture technique. In order to explore high-yield cultivation techniques suitable for Chengdu Plain, effects of several key agronomic measure...Mechanized direct sowing of rapeseed is a labor-saving and highly-efficient culture technique. In order to explore high-yield cultivation techniques suitable for Chengdu Plain, effects of several key agronomic measures', such as sowing date, density and N fertilizers, on development and yield formation were studied by strip and split plot experiment of three factors. The research showed that optimal condi- tions for direct seeding technology can be achieved provided with scientific sowing date, density and appropriate N fertilizers, and the research showed that rapeseed yield reached the peak at 320 g/m2, when sowing date was on September 3th, sow- ing density was 30 plant/m2, and nitrogen fertilizer was 27 g/m2.展开更多
An accurate and reasonable technique combining direct absorption spectroscopy and laser-induced fluorescence(LIF)methods is developed to quantitatively measure the concentrations of hydroxyl in CH;/air flat laminar ...An accurate and reasonable technique combining direct absorption spectroscopy and laser-induced fluorescence(LIF)methods is developed to quantitatively measure the concentrations of hydroxyl in CH;/air flat laminar flame. In our approach, particular attention is paid to the linear laser-induced fluorescence and absorption processes, and experimental details as well. Through measuring the temperature, LIF signal distribution and integrated absorption, spatially absolute OH concentrations profiles are successfully resolved. These experimental results are then compared with the numerical simulation. It is proved that the good quality of the results implies that this method is suitable for calibrating the OH-PLIF measurement in a practical combustor.展开更多
The directional dependency of the acoustic emission (AE) and deformation rate analysis (DRA) methods was analyzed, based on the contact bond model in the two-dimensional particle flow code (PFC2D) in two types o...The directional dependency of the acoustic emission (AE) and deformation rate analysis (DRA) methods was analyzed, based on the contact bond model in the two-dimensional particle flow code (PFC2D) in two types of rocks, the coarse-grained sandstone and Aue granite. Each type of rocks had two shapes, the Brazilian disk and a square shape. The mechanical behaviors of the numerical model had already been verified to be in agreement with those of the physical specimens in previous research. Three loading protocols with different loading cycles in two orthogonal directions were specially designed in the numerical tests. The results show that no memory effect is observed in the second loading in the orthogonal direction. However, both the cumulative crack number of the second loading and the differential strain value at the inflection point are influenced by the first loading in the orthogonal direction.展开更多
The one-step quantum secure direct communication(QSDC)(Sci.Bull.67,367(2022))can effectively simplify QSDC’s operation and reduce message loss.For enhancing its security under practical experimental condition,we prop...The one-step quantum secure direct communication(QSDC)(Sci.Bull.67,367(2022))can effectively simplify QSDC’s operation and reduce message loss.For enhancing its security under practical experimental condition,we propose two measurement-device-independent(MDI)one-step QSDC protocols,which can resist all possible attacks from imperfect measurement devices.In both protocols,the communication parties prepare identical polarization-spatial-mode two-photon hyperentangled states and construct the hyperentanglement channel by hyperentanglement swapping.The first MDI one-step QSDC protocol adopts the nonlinear-optical complete hyperentanglement Bell state measurement(HBSM)to construct the hyperentanglement channel,while the second protocol adopts the linear-optical partial HBSM.Then,the parties encode the photons in the polarization degree of freedom and send them to the third party for the hyperentanglementassisted complete polarization Bell state measurement.Both protocols are unconditionally secure in theory.The simulation results show the MDI one-step QSDC protocol with complete HBSM attains the maximal communication distance of about354 km.Our MDI one-step QSDC protocols may have potential applications in the future quantum secure communication field.展开更多
For measuring velocity and impacting position of single fragment of warhead,a non-contact measuring method is proposed,in which a six-light-screen array,a position indicator,a multi-channel chronograph and a computer ...For measuring velocity and impacting position of single fragment of warhead,a non-contact measuring method is proposed,in which a six-light-screen array,a position indicator,a multi-channel chronograph and a computer are used.The principle of measurement is described.The key device of the system is a light screen array sensor which consists of six light screens allocated with certain geometrical parameters.When the fragment flies through the light screen array,the time of passing through each of the screens is recorded by the multi-channel chronograph.According to the time data and the geometrical parameters of the array,the velocity vector and the location of the fragment can be calculated immediately.The presented method can be used to locate the fragment and to measure the real velocity on its flying direction.It can also be used to measure the velocity of a fragment swarm after the system is engineered further.展开更多
Measurements of wave heights with image sequences from a Charged Coupled Device(CCD) camera were made. Sinusoidal, as well as unidirectional and directional, waves were used for the experiments. A transfer function wa...Measurements of wave heights with image sequences from a Charged Coupled Device(CCD) camera were made. Sinusoidal, as well as unidirectional and directional, waves were used for the experiments. A transfer function was obtained by calibration of the magnitudes of the gray values of the images against the results of wave gauge measurements for directional waves. With this transfer function, wave heights for regular waves were deduced. It is shown that the average relative errors are smaller than 16% for both unidirectional and directional waves.展开更多
Electron thermal transport is one of the most complex processes in fusionplasmas. It is generally described by a simple thermal diffusivity in transport analyses ofdischarges, but there is evidence of critical gradien...Electron thermal transport is one of the most complex processes in fusionplasmas. It is generally described by a simple thermal diffusivity in transport analyses ofdischarges, but there is evidence of critical gradient effects with moderate stiffness. By analyzingperiodic perturbations to an equilibrium, one canmeasure the variations in electron energy flux andelectron temperature gradient over the perturbation cycle, obtaining the flux as a function ofgradient over the range of parameters generated by the perturbation. Although time-dependenttransport analysis is very sensitive to noise in the input data, averaging over many cycles of aperiodic perturbation can provide data of sufficient quality. The analyses presented here are basedon the ECE temperature data with high spatial and temporal resolution and full profile coverage onDIII-D for sawteeth and modulated ECH heating.展开更多
Efficient acquiring information from a quantum state is important for research in fundamental quantum physics and quantum information applications. Instead of using standard quantum state tomography method with recons...Efficient acquiring information from a quantum state is important for research in fundamental quantum physics and quantum information applications. Instead of using standard quantum state tomography method with reconstruction algorithm, weak values were proposed to directly measure density matrix elements of quantum state. Recently, similar to the concept of weak value, modular values were introduced to extend the direct measurement scheme to nonlocal quantum wavefunction. However, this method still involves approximations, which leads to inherent low precision. Here, we propose a new scheme which enables direct measurement for ideal value of the nonlocal density matrix element without taking approximations. Our scheme allows more accurate characterization of nonlocal quantum states, and therefore has greater advantages in practical measurement scenarios.展开更多
The deviation control of directional drilling is essentially the controlling of two angles of the wellbore actually drilled, namely, the inclination and azimuth. In directional drilling the bit trajectory never coinci...The deviation control of directional drilling is essentially the controlling of two angles of the wellbore actually drilled, namely, the inclination and azimuth. In directional drilling the bit trajectory never coincides exactly with the planned path, which is usually a plane curve with straight, building, holding, and dropping sections in succession. The drilling direction is of course dependant on the direction of the resultant forces acting on the bit and it is quite a tough job to hit the optimum target at the hole bottom as required. The traditional passive methods for correcting the drilling path have not met the demand to improve the techniques of deviation control. A method for combining wellbore surveys to obtain a composite, more accurate well position relies on accepting the position of the well from the most accurate survey instrument used in a given section of the wellbore. The error in each position measurement is the sum of many independent root sources of error effects. The relationship between surveys and other influential factors is considered, along with an analysis of different points of view. The collaborative work describes, establishes a common starting point of wellbore position uncertainty model, definition of what constitutes an error model, mathematics of position uncertainty calculation and an error model for basic directional service.展开更多
The optical frequency comb has been widely used in precision measurement. In this study, a multi-peak fitting approach is first proposed to fit the two-photon transition spectrum which overlaps with the neighboring tr...The optical frequency comb has been widely used in precision measurement. In this study, a multi-peak fitting approach is first proposed to fit the two-photon transition spectrum which overlaps with the neighboring transition in Rb-87. The multi-peak fitting approach is used to eliminate the frequency shift affected by the neighboring transition. With locking the carrier envelope offset frequency at 1/4 repetition frequency, the transition frequency is measured to be 770569132739.9 +/- 5.8 kHz, which agrees well with the previous result recommended by Comite International des Poids et Mesures.展开更多
The first stars in the early Universe were formed about 400 million years after the big bang. Verification of the existence of these stars is important for our understanding of the evolution of the Universe[1]. It has...The first stars in the early Universe were formed about 400 million years after the big bang. Verification of the existence of these stars is important for our understanding of the evolution of the Universe[1]. It has been predicted that for Population-III stellar production yields, the abundances of odd-Z elements are remarkably deficient compared to their adjacent even-Z elements[2]. Astronomers are searching for long-lived, low mass stars with the unique nucleosynthetic pattern matching the predicted yields[3].展开更多
This paper.fi'rst conducts a systematic review of domestic and foreign scholars' approaches to predicting short-term capital flows, then employs a combination of both direct and indirect methods to carry out its ana...This paper.fi'rst conducts a systematic review of domestic and foreign scholars' approaches to predicting short-term capital flows, then employs a combination of both direct and indirect methods to carry out its analysis. Three kinds of indicators, both specific and general, are applied in both methods. Thorough consideration is given to short-term international capital inflow from trade, other current account items, capital account, and errors and omissions, as well as other channels through which short term capital might accrue to a nation's balance. Based on a comprehensive comparison of year-on-year data, this paper also estimates monthly data using a simplified, indirect calculation approach. Estimates show that, despite a degree of difference in results between methods, most estimates are highly consistent for a given period. Based on monthly estimates, we conclude that turbulence in international financial markets (i.e., the United States subprime mortgage crisis and the European sovereign debt crisis) has had a major impact on China 's short-term capital flow.展开更多
The 13C(, n)16O reaction is the key neutron source reaction for the main s-process nucleosynthesis[1]. Theimportant energy range (Gamow window) for the 13C( , n)16O reaction during the s-process spans from 140 to230 k...The 13C(, n)16O reaction is the key neutron source reaction for the main s-process nucleosynthesis[1]. Theimportant energy range (Gamow window) for the 13C( , n)16O reaction during the s-process spans from 140 to230 keV in the center of mass frame. Because of the Coulomb barrier, the cross sections drop exponentially asmeasurement approaches the Gamow window energies. Limited by cosmic ray background and the available beamintensity, the ground-based measurements are limited to energies above 280 keV. Therefore, the extrapolationbased on R-matrix calculation and/or in-direct measurement is the current method to estimate the cross sectionsfor astrophysical interest with limited precision. Moreover, due to the existence of sub-threshold resonances, thereare rather large uncertainties associated with the extrapolated cross sections which limit the precision of the currentreaction rate and thus prevent us from a complete understanding of the nucleosynthesis of heavy elements.展开更多
This study was an effort to calculate geographic coordinates, solar horizontal and equatorial cooridnates, direction of Qibla, sizes of Earth and Sun through gnomon (a vertical stick casting shadow). Gnomon has been u...This study was an effort to calculate geographic coordinates, solar horizontal and equatorial cooridnates, direction of Qibla, sizes of Earth and Sun through gnomon (a vertical stick casting shadow). Gnomon has been used in history for remote navigations, astronomical and geodetic measurements. Geographic coordinates were found out with accuracy of less than 0.19 decimal degree from gnomon. Sun’s horizontal and equatorial coordinates were calculated and analyzed with US Navy Observatory and NOAA Earth System Research Laboratory. These coordinates were less than 0.01 decimal degree different from coordinates provided by US Navy and following same daily trend with time. Through spherical triangle, direction of Qibla was found out. And it came out less than 0.18 decimal degree different from its value, used in Lahore. Radius of the earth measured from gnomon using concepts of Al Buruni was 1.45 km different from its true value. Using geometrical technique of similar and concurrent triangles, size of the sun was calculated and it was 1,651,088.776 km. Investigation of systematic and random errors in each calculation was the part of this research.展开更多
文摘Measuring multi-directional waves with the wave gauge array is one of the fundamental and easily realised methods. In this paper, the wave gauge array is described and the effects of the gauge spacing, the array orientations, etc. of the three array arrangements, i. e., linear array, T-type array and pentagon array, on the resolution of the directional spreading of waves, are investigated experimentally. This study can be used as a reference in the experimental study and the field measurement of directional waves.
文摘In this study the probable seismic behavior of skewed bridges with continuous decks under earthquake excitations from different directions is investigated. A 45° skewed bridge is studied. A suite of 20 records is used to perform an Incremental Dynamic Analysis (IDA) for fragility curves. Four different earthquake directions have been considered: -45°, 0°, 22.5, 45°. A sensitivity analysis on different spectral intensity measures is presented; efficiency and practicality of different intensity measures have been studied. The fragility curves obtained indicate that the critical direction for skewed bridges is the skew direction as well as the longitudinal direction. The study shows the importance of finding the most critical earthquake in understanding and predicting the behavior of skewed bridges.
基金supported by the Project of State Grid Hebei Electric Power Co.,Ltd.(SGHEYX00SCJS2100077).
文摘Crop water stress index(CWSI)is widely used for efficient irrigation management.Precise canopy temperature(T_(c))measurement is necessary to derive a reliable CWSI.The objective of this research was to investigate the influences of atmospheric conditions,settled height,view angle of infrared thermography,and investigating time of temperature measuring on the performance of the CWSI.Three irrigation treatments were used to create different soil water conditions during the 2020-2021 and 2021-2022 winter wheat-growing seasons.The CWSI was calculated using the CWSI-E(an empirical approach)and CWSI-T(a theoretical approach)based on the T_(c).Weather conditions were recorded continuously throughout the experimental period.The results showed that atmospheric conditions influenced the estimation of the CWSI;when the vapor pressure deficit(VPD)was>2000 Pa,the estimated CWSI was related to soil water conditions.The height of the installed infrared thermograph influenced the T_(c)values,and the differences among the T_(c)values measured at height of 3,5,and 10 m was smaller in the afternoon than in the morning.However,the lens of the thermometer facing south recorded a higher T_(c)than those facing east or north,especially at a low height,indicating that the direction of the thermometer had a significant influence on T_(c).There was a large variation in CWSI derived at different times of the day,and the midday measurements(12:00-15:00)were the most reliable for estimating CWSI.Negative linear relationships were found between the transpiration rate and CWSI-E(R^(2)of 0.3646-0.5725)and CWSI-T(R^(2)of 0.5407-0.7213).The relations between fraction of available soil water(FASW)with CWSI-T was higher than that with CWSI-E,indicating CWSI-T was more accurate for predicting crop water status.In addition,The R^(2)between CWSI-T and FASW at 14:00 was higher than that at other times,indicating that 14:00 was the optimal time for using the CWSI for crop water status monitoring.Relative higher yield of winter wheat was obtained with average seasonal values of CWSI-E and CWSI-T around 0.23 and 0.25-0.26,respectively.The CWSI-E values were more easily influenced by meteorological factors and the timing of the measurements,and using the theoretical approach to derive the CWSI was recommended for precise irrigation water management.
基金supported by the National Major Special Project for Scientific Instruments and Equipment Development“Intelligent Measurement and Control System Development for Large-Scale River Model Tests in China”(Grant No.2011YQ070055)
文摘The present study aims at the design and making of measuring instrument of whole direct method for bed shear stress under two-dimensional water-flow co-action. The instrument combines the traditional strain gauge with a precise pressure gauge, and adopts the method directly measuring the difference between the lateral hydrodynamic pressure and different head pressures on both sides of the force plate. As a result, such an instrument solves a technical puzzle of the past strain gauge, i.e. the difficulty to set apart shear stress and lateral force. Static force test and sink test both prove that the instrument is precise, stable and applicable to the measurement of rough beds with different shear stresses.
基金supported by the National Key Research and Development Program of China (Nos.2017YFE0300200 and 2017YFE0300204)in part by National Natural Science Foundation of China(No.51821005).
文摘Power measurement is necessary for an electron cyclotron resonance heating(ECRH)system.The directional coupler method has been put forward to monitor high-power microwave from gyrotrons in real time.A multi-hole directional coupler has been designed and manufactured for the 105 GHz/500 kW ECRH system on the J-TEXT tokamak.During the design process,we established the relationships between hole parameters and coupling characteristics based on the multi-hole coupling method and small-hole coupling theory.High-power tests have been carried out.The results indicated the reasonability of the theoretical design and practicality of the fabricated directional coupler.Sources of test errors have been discussed in detail,and the influences of spurious modes on the directional couplers have been emphatically analyzed.
基金Supported by National Soil Testing and Fertilizer Recommendation Project
文摘Using the evaluation indicator system for arable land fertility in Suiping County,this paper analyzes some factors influencing agricultural production,such as physical and chemical properties of soil,site conditions,soil management,and soil nutrients concerning various types of low-yielding fields in the county. In accordance with the dominant soil constraint factors and main direction of improvement,the lowyielding fields in the county are divided into four types: irrigation improvement type,waterlogging drainage type,barren soil fertilization and barrier layer type. Finally this paper offers specific guidance on the construction of arable land.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(200903050-4)National Public Science and Technology Research Funds Project(201303129)~~
文摘Mechanized direct sowing of rapeseed is a labor-saving and highly-efficient culture technique. In order to explore high-yield cultivation techniques suitable for Chengdu Plain, effects of several key agronomic measures', such as sowing date, density and N fertilizers, on development and yield formation were studied by strip and split plot experiment of three factors. The research showed that optimal condi- tions for direct seeding technology can be achieved provided with scientific sowing date, density and appropriate N fertilizers, and the research showed that rapeseed yield reached the peak at 320 g/m2, when sowing date was on September 3th, sow- ing density was 30 plant/m2, and nitrogen fertilizer was 27 g/m2.
基金supported by the National Natural Science Foundation of China(Grant No.11272338)the Science and Technology on Scramjet Key Laboratory Funding,China(Grant No.STSKFKT 2013004)the China Scholarship Council
文摘An accurate and reasonable technique combining direct absorption spectroscopy and laser-induced fluorescence(LIF)methods is developed to quantitatively measure the concentrations of hydroxyl in CH;/air flat laminar flame. In our approach, particular attention is paid to the linear laser-induced fluorescence and absorption processes, and experimental details as well. Through measuring the temperature, LIF signal distribution and integrated absorption, spatially absolute OH concentrations profiles are successfully resolved. These experimental results are then compared with the numerical simulation. It is proved that the good quality of the results implies that this method is suitable for calibrating the OH-PLIF measurement in a practical combustor.
基金supported by the National Natural Science Foundation of China (Grant No. 50978083)the Fundamental Research Funds for the Central Universities (Grants No. 2009B07714 and 2010B13914) in Chinathe Innovation Project for Graduate Students of Jiangsu Province (Grant No. CX10B_215Z)
文摘The directional dependency of the acoustic emission (AE) and deformation rate analysis (DRA) methods was analyzed, based on the contact bond model in the two-dimensional particle flow code (PFC2D) in two types of rocks, the coarse-grained sandstone and Aue granite. Each type of rocks had two shapes, the Brazilian disk and a square shape. The mechanical behaviors of the numerical model had already been verified to be in agreement with those of the physical specimens in previous research. Three loading protocols with different loading cycles in two orthogonal directions were specially designed in the numerical tests. The results show that no memory effect is observed in the second loading in the orthogonal direction. However, both the cumulative crack number of the second loading and the differential strain value at the inflection point are influenced by the first loading in the orthogonal direction.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11974189 and 12175106)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.20KJB140001)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grand No.KYCX22-0963)
文摘The one-step quantum secure direct communication(QSDC)(Sci.Bull.67,367(2022))can effectively simplify QSDC’s operation and reduce message loss.For enhancing its security under practical experimental condition,we propose two measurement-device-independent(MDI)one-step QSDC protocols,which can resist all possible attacks from imperfect measurement devices.In both protocols,the communication parties prepare identical polarization-spatial-mode two-photon hyperentangled states and construct the hyperentanglement channel by hyperentanglement swapping.The first MDI one-step QSDC protocol adopts the nonlinear-optical complete hyperentanglement Bell state measurement(HBSM)to construct the hyperentanglement channel,while the second protocol adopts the linear-optical partial HBSM.Then,the parties encode the photons in the polarization degree of freedom and send them to the third party for the hyperentanglementassisted complete polarization Bell state measurement.Both protocols are unconditionally secure in theory.The simulation results show the MDI one-step QSDC protocol with complete HBSM attains the maximal communication distance of about354 km.Our MDI one-step QSDC protocols may have potential applications in the future quantum secure communication field.
基金Sponsored by Foundation of Department Education of Shaanxi Province of China(03JC31)Key Lab Foundationin Nanjing University of Science and Technology(51453010103SX0201).
文摘For measuring velocity and impacting position of single fragment of warhead,a non-contact measuring method is proposed,in which a six-light-screen array,a position indicator,a multi-channel chronograph and a computer are used.The principle of measurement is described.The key device of the system is a light screen array sensor which consists of six light screens allocated with certain geometrical parameters.When the fragment flies through the light screen array,the time of passing through each of the screens is recorded by the multi-channel chronograph.According to the time data and the geometrical parameters of the array,the velocity vector and the location of the fragment can be calculated immediately.The presented method can be used to locate the fragment and to measure the real velocity on its flying direction.It can also be used to measure the velocity of a fragment swarm after the system is engineered further.
基金This work was financially supported by the Science Council, Taiwan (Project No. NSC 91 2611 E 019 007)
文摘Measurements of wave heights with image sequences from a Charged Coupled Device(CCD) camera were made. Sinusoidal, as well as unidirectional and directional, waves were used for the experiments. A transfer function was obtained by calibration of the magnitudes of the gray values of the images against the results of wave gauge measurements for directional waves. With this transfer function, wave heights for regular waves were deduced. It is shown that the average relative errors are smaller than 16% for both unidirectional and directional waves.
基金the US Department of Energy under grant DE-FG03-97-ER54415
文摘Electron thermal transport is one of the most complex processes in fusionplasmas. It is generally described by a simple thermal diffusivity in transport analyses ofdischarges, but there is evidence of critical gradient effects with moderate stiffness. By analyzingperiodic perturbations to an equilibrium, one canmeasure the variations in electron energy flux andelectron temperature gradient over the perturbation cycle, obtaining the flux as a function ofgradient over the range of parameters generated by the perturbation. Although time-dependenttransport analysis is very sensitive to noise in the input data, averaging over many cycles of aperiodic perturbation can provide data of sufficient quality. The analyses presented here are basedon the ECE temperature data with high spatial and temporal resolution and full profile coverage onDIII-D for sawteeth and modulated ECH heating.
基金Project supported by National Key Research and Development Program of China (Grant No. 2019YFA0705000)the National Natural Science Foundation of China (Grant No. 11974178)。
文摘Efficient acquiring information from a quantum state is important for research in fundamental quantum physics and quantum information applications. Instead of using standard quantum state tomography method with reconstruction algorithm, weak values were proposed to directly measure density matrix elements of quantum state. Recently, similar to the concept of weak value, modular values were introduced to extend the direct measurement scheme to nonlocal quantum wavefunction. However, this method still involves approximations, which leads to inherent low precision. Here, we propose a new scheme which enables direct measurement for ideal value of the nonlocal density matrix element without taking approximations. Our scheme allows more accurate characterization of nonlocal quantum states, and therefore has greater advantages in practical measurement scenarios.
文摘The deviation control of directional drilling is essentially the controlling of two angles of the wellbore actually drilled, namely, the inclination and azimuth. In directional drilling the bit trajectory never coincides exactly with the planned path, which is usually a plane curve with straight, building, holding, and dropping sections in succession. The drilling direction is of course dependant on the direction of the resultant forces acting on the bit and it is quite a tough job to hit the optimum target at the hole bottom as required. The traditional passive methods for correcting the drilling path have not met the demand to improve the techniques of deviation control. A method for combining wellbore surveys to obtain a composite, more accurate well position relies on accepting the position of the well from the most accurate survey instrument used in a given section of the wellbore. The error in each position measurement is the sum of many independent root sources of error effects. The relationship between surveys and other influential factors is considered, along with an analysis of different points of view. The collaborative work describes, establishes a common starting point of wellbore position uncertainty model, definition of what constitutes an error model, mathematics of position uncertainty calculation and an error model for basic directional service.
基金Supported by the National Natural Science Foundation of China under Grant Nos 91336103,10934010 and 61078026
文摘The optical frequency comb has been widely used in precision measurement. In this study, a multi-peak fitting approach is first proposed to fit the two-photon transition spectrum which overlaps with the neighboring transition in Rb-87. The multi-peak fitting approach is used to eliminate the frequency shift affected by the neighboring transition. With locking the carrier envelope offset frequency at 1/4 repetition frequency, the transition frequency is measured to be 770569132739.9 +/- 5.8 kHz, which agrees well with the previous result recommended by Comite International des Poids et Mesures.
文摘The first stars in the early Universe were formed about 400 million years after the big bang. Verification of the existence of these stars is important for our understanding of the evolution of the Universe[1]. It has been predicted that for Population-III stellar production yields, the abundances of odd-Z elements are remarkably deficient compared to their adjacent even-Z elements[2]. Astronomers are searching for long-lived, low mass stars with the unique nucleosynthetic pattern matching the predicted yields[3].
文摘This paper.fi'rst conducts a systematic review of domestic and foreign scholars' approaches to predicting short-term capital flows, then employs a combination of both direct and indirect methods to carry out its analysis. Three kinds of indicators, both specific and general, are applied in both methods. Thorough consideration is given to short-term international capital inflow from trade, other current account items, capital account, and errors and omissions, as well as other channels through which short term capital might accrue to a nation's balance. Based on a comprehensive comparison of year-on-year data, this paper also estimates monthly data using a simplified, indirect calculation approach. Estimates show that, despite a degree of difference in results between methods, most estimates are highly consistent for a given period. Based on monthly estimates, we conclude that turbulence in international financial markets (i.e., the United States subprime mortgage crisis and the European sovereign debt crisis) has had a major impact on China 's short-term capital flow.
文摘The 13C(, n)16O reaction is the key neutron source reaction for the main s-process nucleosynthesis[1]. Theimportant energy range (Gamow window) for the 13C( , n)16O reaction during the s-process spans from 140 to230 keV in the center of mass frame. Because of the Coulomb barrier, the cross sections drop exponentially asmeasurement approaches the Gamow window energies. Limited by cosmic ray background and the available beamintensity, the ground-based measurements are limited to energies above 280 keV. Therefore, the extrapolationbased on R-matrix calculation and/or in-direct measurement is the current method to estimate the cross sectionsfor astrophysical interest with limited precision. Moreover, due to the existence of sub-threshold resonances, thereare rather large uncertainties associated with the extrapolated cross sections which limit the precision of the currentreaction rate and thus prevent us from a complete understanding of the nucleosynthesis of heavy elements.
文摘This study was an effort to calculate geographic coordinates, solar horizontal and equatorial cooridnates, direction of Qibla, sizes of Earth and Sun through gnomon (a vertical stick casting shadow). Gnomon has been used in history for remote navigations, astronomical and geodetic measurements. Geographic coordinates were found out with accuracy of less than 0.19 decimal degree from gnomon. Sun’s horizontal and equatorial coordinates were calculated and analyzed with US Navy Observatory and NOAA Earth System Research Laboratory. These coordinates were less than 0.01 decimal degree different from coordinates provided by US Navy and following same daily trend with time. Through spherical triangle, direction of Qibla was found out. And it came out less than 0.18 decimal degree different from its value, used in Lahore. Radius of the earth measured from gnomon using concepts of Al Buruni was 1.45 km different from its true value. Using geometrical technique of similar and concurrent triangles, size of the sun was calculated and it was 1,651,088.776 km. Investigation of systematic and random errors in each calculation was the part of this research.