The multi-pulse orbits and chaotic dynamics of a simply supported laminated composite piezoelectric rectangular plate under combined parametric excitation and transverse excitation are studied in detail. It is assumed...The multi-pulse orbits and chaotic dynamics of a simply supported laminated composite piezoelectric rectangular plate under combined parametric excitation and transverse excitation are studied in detail. It is assumed that different layers are perfectly bonded to each other with piezoelectric actuator patches embedded. The nonlinear equations of motion for the laminated composite piezoelectric rectangular plate are derived from von Karman-type equation and third-order shear deformation plate theory of Reddy. The two-degree-of-freedom dimensionless equations of motion are obtained by using the Galerkin approach to the partial differential governing equation of motion for the laminated composite piezoelectric rectangular plate. The four-dimensional averaged equation in the case of primary parametric resonance and 1:3 internal resonances is obtained by using the method of multiple scales. From the averaged equation, the theory of normal form is used to find the explicit formulas of normal form. Based on the normal form obtained, the energy phase method is utilized to analyze the multi-pulse global bifurcations and chaotic dynamics for the laminated composite piezoelectric rectangular plate. The analysis of the global dynamics indicates that there exist multi-pulse jumping orbits in the perturbed phase space of the averaged equation. Based on the averaged equation obtained, the chaotic motions and the Shilnikov type multi-pulse orbits of the laminated composite piezoelectric rectangular plate are also found by numerical simulation. The results obtained above mean the existence of the chaos in the Smale horseshoe sense for the simply supported laminated composite piezoelectric rectangular plate.展开更多
We theoretically study the charge order and orbital magnetic properties of a new type of antiferromagnetic kagome metal FeGe.Based on first-principles density functional theory calculations,we study the electronic str...We theoretically study the charge order and orbital magnetic properties of a new type of antiferromagnetic kagome metal FeGe.Based on first-principles density functional theory calculations,we study the electronic structures,Fermi-surface quantum fluctuations,as well as phonon properties of the antiferromagnetic kagome metal FeGe.It is found that charge density wave emerges in such a system due to a subtle cooperation between electron-electron interactions and electron–phonon couplings,which gives rise to an unusual scenario of interaction-triggered phonon instabilities,and eventually yields a charge density wave(CDW)state.We further show that,in the CDW phase,the ground-state current density distribution exhibits an intriguing star-of-David pattern,leading to flux density modulation.The orbital fluxes(or current loops)in this system emerge as a result of the subtle interplay between magnetism,lattice geometries,charge order,and spin-orbit coupling(SOC),which can be described by a simple,yet universal,tight-binding theory including a Kane-Mele-type SOC term and a magnetic exchange interaction.We further study the origin of the peculiar step-edge states in FeGe,which sheds light on the topological properties and correlation effects in this new type of kagome antiferromagnetic material.展开更多
The rational design of metal single-atom catalysts(SACs)for electrochemical nitrogen reduction reaction(NRR)is challenging.Two-dimensional metal-organic frameworks(2DMOFs)is a unique class of promising SACs.Up to now,...The rational design of metal single-atom catalysts(SACs)for electrochemical nitrogen reduction reaction(NRR)is challenging.Two-dimensional metal-organic frameworks(2DMOFs)is a unique class of promising SACs.Up to now,the roles of individual metals,coordination atoms,and their synergy effect on the electroanalytic performance remain unclear.Therefore,in this work,a series of 2DMOFs with different metals and coordinating atoms are systematically investigated as electrocatalysts for ammonia synthesis using density functional theory calculations.For a specific metal,a proper metal-intermediate atoms p-d orbital hybridization interaction strength is found to be a key indicator for their NRR catalytic activities.The hybridization interaction strength can be quantitatively described with the p-/d-band center energy difference(Δd-p),which is found to be a sufficient descriptor for both the p-d hybridization strength and the NRR performance.The maximum free energy change(ΔG_(max))andΔd-p have a volcanic relationship with OsC_(4)(Se)_(4)located at the apex of the volcanic curve,showing the best NRR performance.The asymmetrical coordination environment could regulate the band structure subtly in terms of band overlap and positions.This work may shed new light on the application of orbital engineering in electrocatalytic NRR activity and especially promotes the rational design for SACs.展开更多
This paper presents an analysis on the nonlinear dynamics and multi-pulse chaotic motions of a simply-supported symmetric cross-ply composite laminated rectangular thin plate with the parametric and forcing excitation...This paper presents an analysis on the nonlinear dynamics and multi-pulse chaotic motions of a simply-supported symmetric cross-ply composite laminated rectangular thin plate with the parametric and forcing excitations. Firstly, based on the Reddy's third-order shear deformation plate theory and the model of the yon Karman type geometric nonlinearity, the nonlinear governing partial differential equations of motion for the composite laminated rectangular thin plate are derived by using the Hamilton's principle. Then, using the second-order Galerkin dis- cretization, the partial differential governing equations of motion are transformed to nonlinear ordinary differential equations. The case of the primary parametric resonance and 1:1 internal resonance is considered. Four-dimensional averaged equation is obtained by using the method of multiple scales. From the averaged equation obtained here, the theory of normal form is used to give the explicit expressions of normal form. Based on normal form, the energy phase method is utilized to analyze the global bifurcations and multi-pulse chaotic dynamics of the composite laminated rectangular thin plate. The theoretic results obtained above illustrate the existence of the chaos for the Smale horseshoe sense in a parametrical and forcing excited composite laminated thin plate. The chaotic motions of the composite laminated rectangular thin plate are also found by using numerical simulation, which also indicate that there exist different shapes of the multi-pulse chaotic motions for the composite laminated rectangular thin plate.展开更多
AIM:To compare the exposure rate,infection rate,percentage of enhancement,and success rate between Medpor and the three-dimensional printed polyethylene(3DP-PE)orbital implant in a preliminary report.METHODS:This pros...AIM:To compare the exposure rate,infection rate,percentage of enhancement,and success rate between Medpor and the three-dimensional printed polyethylene(3DP-PE)orbital implant in a preliminary report.METHODS:This prospective,randomized,equivalence,controlled trial was conducted at two institutes.The equivalent margin was±10%.The sample size for the equivalence trial was 174 participants per group.Patients who were eligible for enucleations received either Medpor or 3DP-PE implants based on a randomized block of six.The surgeries were performed by five oculoplastic surgeons.The assessor and patients were masked.The magnetic resonance imaging(MRI)of the orbit was performed at least 6mo after operation and the fibrovascular ingrowth was analyzed using the Image J software.Follow-up continued at least 1y after surgery.The intention to treat and per protocol approaches were used.RESULTS:Totally 128 patients met the criteria in the report.Fifty Medpor and 553DP-PE cases completed the trial.The most common cause of blindness was trauma.The mean follow-up times of Medpor and 3DP-PE were 33 and 40mo respectively.The exposure rate was not statistically significant between two groups(6.0%and 7.3%),P<0.05,95%CI(-9.8%,+12.0%).The success rates were 94%(Medpor)and 92.7%(3DP-PE).No postoperative infection was reported.Nine patients had MRI tests and two had implant exposures with 66.3% enhancement at 75mo(Medpor)and 58% enhancement at 57mo(3DP-PE)postoperatively.CONCLUSION:There is no statistically significant difference in exposure rate and success rate between Medpor and 3DP-PE in enucleation in the report.However,we cannot conclude that they are equivalent in terms of the exposure rate and success rate because the 95%CI is wider than±10%.The infection rate is equivalent in both groups.展开更多
Fractional orbital angular momentum(OAM) vortex beams present a promising way to increase the data throughput in optical communication systems. Nevertheless, high-precision recognition of fractional OAM with different...Fractional orbital angular momentum(OAM) vortex beams present a promising way to increase the data throughput in optical communication systems. Nevertheless, high-precision recognition of fractional OAM with different propagation distances remains a significant challenge. We develop a convolutional neural network(CNN)method to realize high-resolution recognition of OAM modalities, leveraging asymmetric Bessel beams imbued with fractional OAM. Experimental results prove that our method achieves a recognition accuracy exceeding 94.3% for OAM modes, with an interval of 0.05, and maintains a high recognition accuracy above 92% across varying propagation distances. The findings of our research will be poised to significantly contribute to the deployment of fractional OAM beams within the domain of optical communications.展开更多
AIM:To assess the clinical presentations and outcomes of idiopathic orbital inflammatory pseudotumor(IOIP)patients with orbital wall bone destruction(OWBD)and to propose an expanded classification system that includes...AIM:To assess the clinical presentations and outcomes of idiopathic orbital inflammatory pseudotumor(IOIP)patients with orbital wall bone destruction(OWBD)and to propose an expanded classification system that includes bone destruction.METHODS:The study retrospectively reviewed clinical presentations,imaging findings,treatment modalities,and outcomes of six patients diagnosed histopathologically with IOIP and OWBD at the Beijing Tongren Hospital,Capital Medical University between October 2018 and June 2021.RESULTS:Over two years,6(10%)of 60 IOIP patients at our hospital exhibited OWBD,but this may overrepresent severe cases.The cohort consisted of three men and three women,aged 17 to 60y(mean 35.5±16.1y).Presenting symptoms included proptosis,eyelid swelling,decreased visual acuity with pain,and palpable mass.Imaging revealed multiple anatomical structures involved with the medial wall being the most common site of bone destruction.Histopathological examination showed classic type in five patients and sclerosing type in one patient.All patients underwent surgical resection followed by methylprednisolone treatment.Follow-up(mean 30.3±3.1mo)indicated three patients had no recurrence,while others had varying degrees of symptom persistence or recurrence.CONCLUSION:IOIP with bone destruction is a rare but significant subtype that mimics malignancy,leading to potential diagnostic and therapeutic challenges.Our findings suggest that complete surgical resection combined with adjunctive glucocorticoid therapy can yield favorable outcomes.However,larger-scale studies are needed to further optimize therapeutic approaches.展开更多
Two-dimensional(2D)van der Waals magnetic materials have promising and versatile electronic and magnetic properties in the 2D limit,indicating a considerable potential to advance spintronic applications.Theoretical pr...Two-dimensional(2D)van der Waals magnetic materials have promising and versatile electronic and magnetic properties in the 2D limit,indicating a considerable potential to advance spintronic applications.Theoretical predictions thus far have not ascertained whether monolayer VCl_(3) is a ferromagnetic(FM)or anti-FM monolayer;this also remains to be experimentally verified.We theoretically investigate the influence of potential factors,including C_(3) symmetry breaking,orbital ordering,epitaxial strain,and charge doping,on the magnetic ground state.Utilizing first-principles calculations,we predict a collinear type-Ⅲ FM ground state in monolayer VCl_(3) with a broken C_(3) symmetry,wherein only the former two of three t_(2g)orbitals(a_(1g),e_(g2)^(π)and e_(g1)^(π))are occupied.The atomic layer thickness and bond angles of monolayer VCl_(3) undergo abrupt changes driven by an orbital ordering switch,resulting in concomitant structural and magnetic phase transitions.Introducing doping to the underlying Cl atoms of monolayer VCl_(3) without C_(3) symmetry simultaneously induces in-and out-of-plane polarizations.This can achieve a multiferroic phase transition if combined with the discovered adjustments of magnetic ground state and polarization magnitude under strain.The establishment of an orbital-ordering driven regulatory mechanism can facilitate deeper exploration and comprehension of magnetic properties of strongly correlated systems in monolayer VCl_(3).展开更多
Non-specific orbital inflammation(NSOI)is a noninfectious orbital inflammation.Although it is often considered the most common diagnosis in orbital biopsies,it is an exclusionary diagnosis that requires ruling out sys...Non-specific orbital inflammation(NSOI)is a noninfectious orbital inflammation.Although it is often considered the most common diagnosis in orbital biopsies,it is an exclusionary diagnosis that requires ruling out systemic disease or other possible causes.Its characteristics include acute orbital signs and symptoms,including pain,proptosis,periorbital edema,chemosis,diplopia,and visual impairment.The clinical manifestations and histological findings of NSOI are heterogeneous,without specific diagnostic criteria or treatment guidelines,which poses significant challenges for diagnosis and treatment.This guideline provides a detailed description of the definition,classification,diagnosis,and treatment of NSOI.展开更多
AIM:To determine the frequency of patients’vision survival and prognostic factors and evaluate clinical features in rhino-orbital mucormycosis.METHODS:Forty-three eyes of 43 patients followed up with orbital mucormyc...AIM:To determine the frequency of patients’vision survival and prognostic factors and evaluate clinical features in rhino-orbital mucormycosis.METHODS:Forty-three eyes of 43 patients followed up with orbital mucormycosis infections were included in the study.Demographic characteristics of the patients,symptoms at admission,ophthalmologic and non-ophthalmologic examination findings,clinical findings during follow-up,medical and surgical procedures,and complications were recorded.Patient survival was determined by assessing the incidence of mortality,and vision survival was defined as achieving a final visual acuity of at least light perception.RESULTS:Twenty-seven(62.8%)patients were male,and 16(37.2%)were female.When the underlying disease status of the patients was examined,it was observed that all patients had an underlying disease and diabetes constituted the majority(65.2%).Periorbital swelling(69.8%)and ophthalmoplegia(53.5%)were the most common symptoms and findings at the admission of patients with mucormycosis infection.The disease resulted in death in 22(51.2%)patients.The presence of fever and shorter duration of antifungal therapy were associated with lower patient survival.Exenteration surgery was not found to be associated with the survival of the patients.Frozen eye,loss of pupillary light reflex,and development of central retinal artery occlusion were associated with lower vision survival.CONCLUSION:This study presents one of the most extensive patient series in the literature on rhino-orbital mucormycosis.Knowing the patients’symptoms at the time of admission and the clinical findings during the infection process will increase awareness about the disease.展开更多
●AIM:To explore the combined application of surgical navigation nasal endoscopy(NNE)and three-dimensional printing technology(3DPT)for the adjunctive treatment of orbital blowout fractures(OBF).●METHODS:Retrospectiv...●AIM:To explore the combined application of surgical navigation nasal endoscopy(NNE)and three-dimensional printing technology(3DPT)for the adjunctive treatment of orbital blowout fractures(OBF).●METHODS:Retrospective analysis was conducted on the data of patients with OBF who underwent surgical treatment at the Affiliated Eye Hospital of Nanchang University between July 2012 and November 2022.The control group consisted of patients who received traditional surgical treatment(n=43),while the new surgical group(n=52)consisted of patients who received NNE with 3DPT.The difference in therapeutic effects between the two groups was evaluated by comparing the duration of the operation,best corrected visual acuity(BCVA),enophthalmos difference,recovery rate of eye movement disorder,recovery rate of diplopia,and incidence of postoperative complications.●RESULTS:The study included 95 cases(95 eyes),with 63 men and 32 women.The patients’age ranged from 5 to 67y(35.21±15.75y).The new surgical group and the control group exhibited no statistically significant differences in the duration of the operation,BCVA and enophthalmos difference.The recovery rates of diplopia in the new surgical group were significantly higher than those in the control group at 1mo[OR=0.03,95%CI(0.01–0.15),P<0.0000]and 3mo[OR=0.11,95%CI(0.03–0.36),P<0.0000]postoperation.Additionally,the recovery rates of eye movement disorders at 1 and 3mo after surgery were OR=0.08,95%CI(0.03–0.24),P<0.0000;and OR=0.01,95%CI(0.00–0.18),P<0.0000.The incidence of postoperative complications was lower in the new surgical group compared to the control group[OR=4.86,95%CI(0.95–24.78),P<0.05].●CONCLUSION:The combination of NNE and 3DPT can shorten the recovery time of diplopia and eye movement disorder in patients with OBF.展开更多
Angles-only relative orbit determination for space non-cooperative targets based on passive sensor is subject to weakly observable problem of the relative state between two spacecraft. Previously, the evidence for ang...Angles-only relative orbit determination for space non-cooperative targets based on passive sensor is subject to weakly observable problem of the relative state between two spacecraft. Previously, the evidence for angles-only observability was found by using cylindrical dynamics, however, the solution of orbit determination is still not provided. This study develops a relative orbit determination algorithm with the cylindrical dynamics based on differential evolution. Firstly, the relative motion dynamics and line-of-sight measurement model for nearcircular orbit are established in cylindrical coordinate system.Secondly, the observability is qualitatively analyzed by using the dynamics and measurement model where the unobservable geometry is found. Then, the angles-only relative orbit determination problem is modeled into an optimal searching frame and an improved differential evolution algorithm is introduced to solve the problem. Finally, the proposed algorithm is verified and tested by a set of numerical simulations in the context of highEarth and low-Earth cases. The results show that initial relative orbit determination(IROD) solution with an appropriate accuracy in a relative short span is achieved, which can be used to initialize the navigation filter.展开更多
Orbital angular momentum(OAM)holography has become a promising technique in information encryption,data storage and opto-electronic computing,owing to the infinite topological charge of one single OAM mode and the ort...Orbital angular momentum(OAM)holography has become a promising technique in information encryption,data storage and opto-electronic computing,owing to the infinite topological charge of one single OAM mode and the orthogonality of different OAM modes.In this paper,we propose a novel OAM hologram generation method based on a densely connected U-net(DCU),where the densely connected convolution blocks(DCB)replace the convolution blocks of the U-net.Importantly,the reconstruction process of the OAM hologram is integrated into DCU as its output layer,so as to eliminate the requirement to prepare training data for the OAM hologram,which is required by conventional neural networks through an iterative algorithm.The experimental and simulation results show that the OAM hologram can rapidly be generated with the well-trained DCU,and the reconstructed image's quality from the generated OAM hologram is significantly improved in comparison with those from the Gerchberg-Saxton generation method,the Gerchberg-Saxton based generation method and the U-net method.In addition,a 10-bit OAM multiplexing hologram scheme is numerically demonstrated to have a high capacity with OAM hologram.展开更多
We theoretically studied the dynamic properties of the skyrmion driven by electromagnetic(EM)waves with spin angular momentum(SAM)and orbital angular momentum(OAM)using micromagnetic simulations.First,the guiding cent...We theoretically studied the dynamic properties of the skyrmion driven by electromagnetic(EM)waves with spin angular momentum(SAM)and orbital angular momentum(OAM)using micromagnetic simulations.First,the guiding centers of the skyrmion driven by EM waves with SAM,i.e.,left-handed and right-handed circularly polarized EM waves,present circular trajectories,while present elliptical trajectories under linear EM waves driving due to the superposition of oppositely polarized wave components.Second,the trajectories of the skyrmion driven by EM waves with OAM demonstrate similar behavior to that driven by linearly polarized EM waves.Because the wave vector intensity varies with the phase for both linearly polarized EM waves and EM waves with OAM,the angular momentum is transferred to the skyrmion non-uniformly,while the angular momentum is transferred to the skyrmion uniformly for left-handed and right-handed circularly polarized EM driving.Third,the dynamic properties of the skyrmion driven by EM waves with both SAM and OAM are investigated.It is found that the dynamic trajectories exhibit more complex behavior due to the contributions or competition of SAM and OAM.We investigate the characteristics of intrinsic gyration modes and frequency-dependent trajectories.Our research may provide insight into the dynamic properties of skyrmion manipulated by EM waves with SAM or OAM and provide a method for controlling skyrmion in spintronic devices.展开更多
Orbital angular momentum(OAM), as a new degree of freedom, has recently been applied in holography technology.Due to the infinite helical mode index of OAM mode, a large number of holographic images can be reconstruct...Orbital angular momentum(OAM), as a new degree of freedom, has recently been applied in holography technology.Due to the infinite helical mode index of OAM mode, a large number of holographic images can be reconstructed from an OAM-multiplexing hologram. However, the traditional design of an OAM hologram is constrained by the helical mode index of the selected OAM mode, for a larger helical mode index OAM mode has a bigger sampling distance, and the crosstalk is produced for different sampling distances for different OAM modes. In this paper, we present the design of the OAM hologram based on a Bessel–Gaussian beam, which is non-diffractive and has a self-healing property during its propagation. The Fourier transform of the Bessel–Gaussian beam is the perfect vortex mode that has the fixed ring radius for different OAM modes. The results of simulation and experiment have demonstrated the feasibility of the generation of the OAM hologram with the Bessel–Gaussian beam. The quality of the reconstructed holographic image is increased, and the security is enhanced. Additionally, the anti-interference property is improved owing to its self-healing property of the Bessel-OAM holography.展开更多
The presence of the debris in the Earth’s orbit poses a significant risk to human activity in outer space.This debris population continues to grow due to ground launches,the loss of external parts from space ships,an...The presence of the debris in the Earth’s orbit poses a significant risk to human activity in outer space.This debris population continues to grow due to ground launches,the loss of external parts from space ships,and uncontrollable collisions between objects.A computationally feasible continuum model for the growth of the debris population and its spatial distribution is therefore critical.Here we propose a diffusion-collision model for the evolution of the debris density in the low-Earth orbit and its dependence on the ground-launch policy.We parametrize this model and test it against data from publicly available object catalogs to examine timescales for the uncontrolled growth.Finally,we consider sensible launch policies and cleanup strategies and how they reduce the future risk of collisions with active satellites or space ships.展开更多
Precisely refining the electronic structure of electrocatalysts represents a powerful approach to further optimize the electrocatalytic performance.Herein,we demonstrate an ingenious d-d orbital hybridization concept ...Precisely refining the electronic structure of electrocatalysts represents a powerful approach to further optimize the electrocatalytic performance.Herein,we demonstrate an ingenious d-d orbital hybridization concept to construct Mo-doped Co_(9)S_(8) nanorod arrays aligned on carbon cloth(CC)substrate(abbreviated as Mo-Co_(9)S_(8)@CC hereafter)as a high-efficiency bifunctional electrocatalyst toward water electrolysis.It has experimentally and theoretically validated that the 4d-3d orbital coupling between Mo dopant and Co site can effectively optimize the H_(2)O activation energy and lower H^(*)adsorption energy barrier,thereby leading to enhanced hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)activities.Thanks to the unique electronic and geometrical advantages,the optimized Mo-Co_(9)S_(8)@CC with appropriate Mo content exhibits outstanding bifunctional performance in alkaline solution,with the overpotentials of 75 and 234 mV for the delivery of a current density of 10 mA cm^(-2),small Tafel slopes of 53.8 and 39.9 mV dec~(-1)and long-term stabilities for at least 32 and 30 h for HER and OER,respectively.More impressively,a water splitting electrolylzer assembled by the self-supported Mo-Co_(9)S_(8)@CC electrode requires a low cell voltage of 1.53 V at 10 mA cm^(-2)and shows excellent stability and splendid reversibility,demonstrating a huge potential for affordable and scalable electrochemical H_(2) production.The innovational orbital hybridization strategy for electronic regulation herein provides an inspirable avenue for developing progressive electrocatalysts toward new energy systems.展开更多
With an extended Su–Schrieffer–Heeger model and Green's function method, the spin–orbit coupling(SOC) effects on spin admixture of electronic states and quantum transport in organic devices are investigated. Th...With an extended Su–Schrieffer–Heeger model and Green's function method, the spin–orbit coupling(SOC) effects on spin admixture of electronic states and quantum transport in organic devices are investigated. The role of lattice distortion induced by the strong electron–lattice interaction in organics is clarified in contrast with a uniform chain. The results demonstrate an enhanced SOC effect on the spin admixture of frontier eigenstates by the lattice distortion at a larger SOC,which is explained by the perturbation theory. The quantum transport under the SOC is calculated for both nonmagnetic and ferromagnetic electrodes. A more notable SOC effect on total transmission and current is observed for ferromagnetic electrodes, where spin filtering induced by spin-flipped transmission and suppression of magnetoresistance are obtained.Unlike the spin admixture, a stronger SOC effect on transmission exists for the uniform chain rather than the organic lattices with distortion. The reason is attributed to the modified spin-polarized conducting states in the electrodes by lattice configuration, and hence the spin-flip transmission, instead of the spin admixture of eigenstates. This work is helpful to understand the SOC effect in organic spin valves in the presence of lattice distortion.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 10872010, 10732020 and 11072008)the National Science Foundation for Distinguished Young Scholars of China (Grant No. 10425209)+1 种基金the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipalitythe Ph.D. Programs Foundation of Beijing University of Technology (Grant No. 52001015200701)
文摘The multi-pulse orbits and chaotic dynamics of a simply supported laminated composite piezoelectric rectangular plate under combined parametric excitation and transverse excitation are studied in detail. It is assumed that different layers are perfectly bonded to each other with piezoelectric actuator patches embedded. The nonlinear equations of motion for the laminated composite piezoelectric rectangular plate are derived from von Karman-type equation and third-order shear deformation plate theory of Reddy. The two-degree-of-freedom dimensionless equations of motion are obtained by using the Galerkin approach to the partial differential governing equation of motion for the laminated composite piezoelectric rectangular plate. The four-dimensional averaged equation in the case of primary parametric resonance and 1:3 internal resonances is obtained by using the method of multiple scales. From the averaged equation, the theory of normal form is used to find the explicit formulas of normal form. Based on the normal form obtained, the energy phase method is utilized to analyze the multi-pulse global bifurcations and chaotic dynamics for the laminated composite piezoelectric rectangular plate. The analysis of the global dynamics indicates that there exist multi-pulse jumping orbits in the perturbed phase space of the averaged equation. Based on the averaged equation obtained, the chaotic motions and the Shilnikov type multi-pulse orbits of the laminated composite piezoelectric rectangular plate are also found by numerical simulation. The results obtained above mean the existence of the chaos in the Smale horseshoe sense for the simply supported laminated composite piezoelectric rectangular plate.
基金supported by the National Natural Science Foundation of China(Grant No.12174257)the National Key R&D program of China(Grant No.2020YFA0309601)+1 种基金the Science and Technology Commission of the Shanghai Municipality(Grant No.21JC1405100)the Start-Up Grant of ShanghaiTech University。
文摘We theoretically study the charge order and orbital magnetic properties of a new type of antiferromagnetic kagome metal FeGe.Based on first-principles density functional theory calculations,we study the electronic structures,Fermi-surface quantum fluctuations,as well as phonon properties of the antiferromagnetic kagome metal FeGe.It is found that charge density wave emerges in such a system due to a subtle cooperation between electron-electron interactions and electron–phonon couplings,which gives rise to an unusual scenario of interaction-triggered phonon instabilities,and eventually yields a charge density wave(CDW)state.We further show that,in the CDW phase,the ground-state current density distribution exhibits an intriguing star-of-David pattern,leading to flux density modulation.The orbital fluxes(or current loops)in this system emerge as a result of the subtle interplay between magnetism,lattice geometries,charge order,and spin-orbit coupling(SOC),which can be described by a simple,yet universal,tight-binding theory including a Kane-Mele-type SOC term and a magnetic exchange interaction.We further study the origin of the peculiar step-edge states in FeGe,which sheds light on the topological properties and correlation effects in this new type of kagome antiferromagnetic material.
基金supported by the National Natural Science Foundation of China(21905253,51973200,and 52122308)the Natural Science Foundation of Henan(202300410372)the National Supercomputing Center in Zhengzhou
文摘The rational design of metal single-atom catalysts(SACs)for electrochemical nitrogen reduction reaction(NRR)is challenging.Two-dimensional metal-organic frameworks(2DMOFs)is a unique class of promising SACs.Up to now,the roles of individual metals,coordination atoms,and their synergy effect on the electroanalytic performance remain unclear.Therefore,in this work,a series of 2DMOFs with different metals and coordinating atoms are systematically investigated as electrocatalysts for ammonia synthesis using density functional theory calculations.For a specific metal,a proper metal-intermediate atoms p-d orbital hybridization interaction strength is found to be a key indicator for their NRR catalytic activities.The hybridization interaction strength can be quantitatively described with the p-/d-band center energy difference(Δd-p),which is found to be a sufficient descriptor for both the p-d hybridization strength and the NRR performance.The maximum free energy change(ΔG_(max))andΔd-p have a volcanic relationship with OsC_(4)(Se)_(4)located at the apex of the volcanic curve,showing the best NRR performance.The asymmetrical coordination environment could regulate the band structure subtly in terms of band overlap and positions.This work may shed new light on the application of orbital engineering in electrocatalytic NRR activity and especially promotes the rational design for SACs.
基金supported by the National Natural Science Foundation of China (Nos. 10732020 and 11072008)the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality (PHRIHLB)
文摘This paper presents an analysis on the nonlinear dynamics and multi-pulse chaotic motions of a simply-supported symmetric cross-ply composite laminated rectangular thin plate with the parametric and forcing excitations. Firstly, based on the Reddy's third-order shear deformation plate theory and the model of the yon Karman type geometric nonlinearity, the nonlinear governing partial differential equations of motion for the composite laminated rectangular thin plate are derived by using the Hamilton's principle. Then, using the second-order Galerkin dis- cretization, the partial differential governing equations of motion are transformed to nonlinear ordinary differential equations. The case of the primary parametric resonance and 1:1 internal resonance is considered. Four-dimensional averaged equation is obtained by using the method of multiple scales. From the averaged equation obtained here, the theory of normal form is used to give the explicit expressions of normal form. Based on normal form, the energy phase method is utilized to analyze the global bifurcations and multi-pulse chaotic dynamics of the composite laminated rectangular thin plate. The theoretic results obtained above illustrate the existence of the chaos for the Smale horseshoe sense in a parametrical and forcing excited composite laminated thin plate. The chaotic motions of the composite laminated rectangular thin plate are also found by using numerical simulation, which also indicate that there exist different shapes of the multi-pulse chaotic motions for the composite laminated rectangular thin plate.
基金Supported by the Mettapracharak grantThai Government Budget grant+1 种基金Health Systems Research Institute grantNational Science and Technology Development Agency grant.
文摘AIM:To compare the exposure rate,infection rate,percentage of enhancement,and success rate between Medpor and the three-dimensional printed polyethylene(3DP-PE)orbital implant in a preliminary report.METHODS:This prospective,randomized,equivalence,controlled trial was conducted at two institutes.The equivalent margin was±10%.The sample size for the equivalence trial was 174 participants per group.Patients who were eligible for enucleations received either Medpor or 3DP-PE implants based on a randomized block of six.The surgeries were performed by five oculoplastic surgeons.The assessor and patients were masked.The magnetic resonance imaging(MRI)of the orbit was performed at least 6mo after operation and the fibrovascular ingrowth was analyzed using the Image J software.Follow-up continued at least 1y after surgery.The intention to treat and per protocol approaches were used.RESULTS:Totally 128 patients met the criteria in the report.Fifty Medpor and 553DP-PE cases completed the trial.The most common cause of blindness was trauma.The mean follow-up times of Medpor and 3DP-PE were 33 and 40mo respectively.The exposure rate was not statistically significant between two groups(6.0%and 7.3%),P<0.05,95%CI(-9.8%,+12.0%).The success rates were 94%(Medpor)and 92.7%(3DP-PE).No postoperative infection was reported.Nine patients had MRI tests and two had implant exposures with 66.3% enhancement at 75mo(Medpor)and 58% enhancement at 57mo(3DP-PE)postoperatively.CONCLUSION:There is no statistically significant difference in exposure rate and success rate between Medpor and 3DP-PE in enucleation in the report.However,we cannot conclude that they are equivalent in terms of the exposure rate and success rate because the 95%CI is wider than±10%.The infection rate is equivalent in both groups.
基金supported by the National Natural Science Foundation of China (Grant Nos.12174338 and 11874321)。
文摘Fractional orbital angular momentum(OAM) vortex beams present a promising way to increase the data throughput in optical communication systems. Nevertheless, high-precision recognition of fractional OAM with different propagation distances remains a significant challenge. We develop a convolutional neural network(CNN)method to realize high-resolution recognition of OAM modalities, leveraging asymmetric Bessel beams imbued with fractional OAM. Experimental results prove that our method achieves a recognition accuracy exceeding 94.3% for OAM modes, with an interval of 0.05, and maintains a high recognition accuracy above 92% across varying propagation distances. The findings of our research will be poised to significantly contribute to the deployment of fractional OAM beams within the domain of optical communications.
基金Supported by Beijing Natural Science Foundation(No.7222025)Beijing Science and Technology Rising Star Program Cross-cooperation(No.20220484218).
文摘AIM:To assess the clinical presentations and outcomes of idiopathic orbital inflammatory pseudotumor(IOIP)patients with orbital wall bone destruction(OWBD)and to propose an expanded classification system that includes bone destruction.METHODS:The study retrospectively reviewed clinical presentations,imaging findings,treatment modalities,and outcomes of six patients diagnosed histopathologically with IOIP and OWBD at the Beijing Tongren Hospital,Capital Medical University between October 2018 and June 2021.RESULTS:Over two years,6(10%)of 60 IOIP patients at our hospital exhibited OWBD,but this may overrepresent severe cases.The cohort consisted of three men and three women,aged 17 to 60y(mean 35.5±16.1y).Presenting symptoms included proptosis,eyelid swelling,decreased visual acuity with pain,and palpable mass.Imaging revealed multiple anatomical structures involved with the medial wall being the most common site of bone destruction.Histopathological examination showed classic type in five patients and sclerosing type in one patient.All patients underwent surgical resection followed by methylprednisolone treatment.Follow-up(mean 30.3±3.1mo)indicated three patients had no recurrence,while others had varying degrees of symptom persistence or recurrence.CONCLUSION:IOIP with bone destruction is a rare but significant subtype that mimics malignancy,leading to potential diagnostic and therapeutic challenges.Our findings suggest that complete surgical resection combined with adjunctive glucocorticoid therapy can yield favorable outcomes.However,larger-scale studies are needed to further optimize therapeutic approaches.
基金supported by the National Key Research and Development Program of China(Grant Nos.2018YFE0202700 and 2023YFA1406500)the National Natural Science Foundation of China(Grant Nos.11974422 and 12104504)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB30000000)Fundamental Research Funds for the Central Universities,and Research Funds of Renmin University,China(Grant No.22XNKJ30)supported by the Outstanding Innovative Talents Cultivation Funded Programs 2023 of Renmin University,China。
文摘Two-dimensional(2D)van der Waals magnetic materials have promising and versatile electronic and magnetic properties in the 2D limit,indicating a considerable potential to advance spintronic applications.Theoretical predictions thus far have not ascertained whether monolayer VCl_(3) is a ferromagnetic(FM)or anti-FM monolayer;this also remains to be experimentally verified.We theoretically investigate the influence of potential factors,including C_(3) symmetry breaking,orbital ordering,epitaxial strain,and charge doping,on the magnetic ground state.Utilizing first-principles calculations,we predict a collinear type-Ⅲ FM ground state in monolayer VCl_(3) with a broken C_(3) symmetry,wherein only the former two of three t_(2g)orbitals(a_(1g),e_(g2)^(π)and e_(g1)^(π))are occupied.The atomic layer thickness and bond angles of monolayer VCl_(3) undergo abrupt changes driven by an orbital ordering switch,resulting in concomitant structural and magnetic phase transitions.Introducing doping to the underlying Cl atoms of monolayer VCl_(3) without C_(3) symmetry simultaneously induces in-and out-of-plane polarizations.This can achieve a multiferroic phase transition if combined with the discovered adjustments of magnetic ground state and polarization magnitude under strain.The establishment of an orbital-ordering driven regulatory mechanism can facilitate deeper exploration and comprehension of magnetic properties of strongly correlated systems in monolayer VCl_(3).
基金Supported by National Natural Science Foundation of China(No.82160195,No.82460203)Jiangxi Double-Thousand Plan High-Level Talent Project of Science and Technology Innovation(No.jxsq2023201036)Key R&D Program of Jiangxi Province(No.20223BBH80014).
文摘Non-specific orbital inflammation(NSOI)is a noninfectious orbital inflammation.Although it is often considered the most common diagnosis in orbital biopsies,it is an exclusionary diagnosis that requires ruling out systemic disease or other possible causes.Its characteristics include acute orbital signs and symptoms,including pain,proptosis,periorbital edema,chemosis,diplopia,and visual impairment.The clinical manifestations and histological findings of NSOI are heterogeneous,without specific diagnostic criteria or treatment guidelines,which poses significant challenges for diagnosis and treatment.This guideline provides a detailed description of the definition,classification,diagnosis,and treatment of NSOI.
文摘AIM:To determine the frequency of patients’vision survival and prognostic factors and evaluate clinical features in rhino-orbital mucormycosis.METHODS:Forty-three eyes of 43 patients followed up with orbital mucormycosis infections were included in the study.Demographic characteristics of the patients,symptoms at admission,ophthalmologic and non-ophthalmologic examination findings,clinical findings during follow-up,medical and surgical procedures,and complications were recorded.Patient survival was determined by assessing the incidence of mortality,and vision survival was defined as achieving a final visual acuity of at least light perception.RESULTS:Twenty-seven(62.8%)patients were male,and 16(37.2%)were female.When the underlying disease status of the patients was examined,it was observed that all patients had an underlying disease and diabetes constituted the majority(65.2%).Periorbital swelling(69.8%)and ophthalmoplegia(53.5%)were the most common symptoms and findings at the admission of patients with mucormycosis infection.The disease resulted in death in 22(51.2%)patients.The presence of fever and shorter duration of antifungal therapy were associated with lower patient survival.Exenteration surgery was not found to be associated with the survival of the patients.Frozen eye,loss of pupillary light reflex,and development of central retinal artery occlusion were associated with lower vision survival.CONCLUSION:This study presents one of the most extensive patient series in the literature on rhino-orbital mucormycosis.Knowing the patients’symptoms at the time of admission and the clinical findings during the infection process will increase awareness about the disease.
基金Supported by the Jiangxi Provincial Natural Science Foundation(No.20232ACB206030)。
文摘●AIM:To explore the combined application of surgical navigation nasal endoscopy(NNE)and three-dimensional printing technology(3DPT)for the adjunctive treatment of orbital blowout fractures(OBF).●METHODS:Retrospective analysis was conducted on the data of patients with OBF who underwent surgical treatment at the Affiliated Eye Hospital of Nanchang University between July 2012 and November 2022.The control group consisted of patients who received traditional surgical treatment(n=43),while the new surgical group(n=52)consisted of patients who received NNE with 3DPT.The difference in therapeutic effects between the two groups was evaluated by comparing the duration of the operation,best corrected visual acuity(BCVA),enophthalmos difference,recovery rate of eye movement disorder,recovery rate of diplopia,and incidence of postoperative complications.●RESULTS:The study included 95 cases(95 eyes),with 63 men and 32 women.The patients’age ranged from 5 to 67y(35.21±15.75y).The new surgical group and the control group exhibited no statistically significant differences in the duration of the operation,BCVA and enophthalmos difference.The recovery rates of diplopia in the new surgical group were significantly higher than those in the control group at 1mo[OR=0.03,95%CI(0.01–0.15),P<0.0000]and 3mo[OR=0.11,95%CI(0.03–0.36),P<0.0000]postoperation.Additionally,the recovery rates of eye movement disorders at 1 and 3mo after surgery were OR=0.08,95%CI(0.03–0.24),P<0.0000;and OR=0.01,95%CI(0.00–0.18),P<0.0000.The incidence of postoperative complications was lower in the new surgical group compared to the control group[OR=4.86,95%CI(0.95–24.78),P<0.05].●CONCLUSION:The combination of NNE and 3DPT can shorten the recovery time of diplopia and eye movement disorder in patients with OBF.
基金supported by the National Natural Science Foundation of China (12272168)the Foundation of Science and Technology on Space Intelligent Control Laboratory (HTKJ2023KL502015)。
文摘Angles-only relative orbit determination for space non-cooperative targets based on passive sensor is subject to weakly observable problem of the relative state between two spacecraft. Previously, the evidence for angles-only observability was found by using cylindrical dynamics, however, the solution of orbit determination is still not provided. This study develops a relative orbit determination algorithm with the cylindrical dynamics based on differential evolution. Firstly, the relative motion dynamics and line-of-sight measurement model for nearcircular orbit are established in cylindrical coordinate system.Secondly, the observability is qualitatively analyzed by using the dynamics and measurement model where the unobservable geometry is found. Then, the angles-only relative orbit determination problem is modeled into an optimal searching frame and an improved differential evolution algorithm is introduced to solve the problem. Finally, the proposed algorithm is verified and tested by a set of numerical simulations in the context of highEarth and low-Earth cases. The results show that initial relative orbit determination(IROD) solution with an appropriate accuracy in a relative short span is achieved, which can be used to initialize the navigation filter.
基金supported by the National Natural Science Foundation of China(Grant Nos.62375140 and 61871234)the Open Research Fund of National Laboratory of Solid State Microstructures(Grant No.M36055).
文摘Orbital angular momentum(OAM)holography has become a promising technique in information encryption,data storage and opto-electronic computing,owing to the infinite topological charge of one single OAM mode and the orthogonality of different OAM modes.In this paper,we propose a novel OAM hologram generation method based on a densely connected U-net(DCU),where the densely connected convolution blocks(DCB)replace the convolution blocks of the U-net.Importantly,the reconstruction process of the OAM hologram is integrated into DCU as its output layer,so as to eliminate the requirement to prepare training data for the OAM hologram,which is required by conventional neural networks through an iterative algorithm.The experimental and simulation results show that the OAM hologram can rapidly be generated with the well-trained DCU,and the reconstructed image's quality from the generated OAM hologram is significantly improved in comparison with those from the Gerchberg-Saxton generation method,the Gerchberg-Saxton based generation method and the U-net method.In addition,a 10-bit OAM multiplexing hologram scheme is numerically demonstrated to have a high capacity with OAM hologram.
文摘We theoretically studied the dynamic properties of the skyrmion driven by electromagnetic(EM)waves with spin angular momentum(SAM)and orbital angular momentum(OAM)using micromagnetic simulations.First,the guiding centers of the skyrmion driven by EM waves with SAM,i.e.,left-handed and right-handed circularly polarized EM waves,present circular trajectories,while present elliptical trajectories under linear EM waves driving due to the superposition of oppositely polarized wave components.Second,the trajectories of the skyrmion driven by EM waves with OAM demonstrate similar behavior to that driven by linearly polarized EM waves.Because the wave vector intensity varies with the phase for both linearly polarized EM waves and EM waves with OAM,the angular momentum is transferred to the skyrmion non-uniformly,while the angular momentum is transferred to the skyrmion uniformly for left-handed and right-handed circularly polarized EM driving.Third,the dynamic properties of the skyrmion driven by EM waves with both SAM and OAM are investigated.It is found that the dynamic trajectories exhibit more complex behavior due to the contributions or competition of SAM and OAM.We investigate the characteristics of intrinsic gyration modes and frequency-dependent trajectories.Our research may provide insight into the dynamic properties of skyrmion manipulated by EM waves with SAM or OAM and provide a method for controlling skyrmion in spintronic devices.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.62375140 and 62001249)the Open Research Fund of the National Laboratory of Solid State Microstructures (Grant No.M36055)。
文摘Orbital angular momentum(OAM), as a new degree of freedom, has recently been applied in holography technology.Due to the infinite helical mode index of OAM mode, a large number of holographic images can be reconstructed from an OAM-multiplexing hologram. However, the traditional design of an OAM hologram is constrained by the helical mode index of the selected OAM mode, for a larger helical mode index OAM mode has a bigger sampling distance, and the crosstalk is produced for different sampling distances for different OAM modes. In this paper, we present the design of the OAM hologram based on a Bessel–Gaussian beam, which is non-diffractive and has a self-healing property during its propagation. The Fourier transform of the Bessel–Gaussian beam is the perfect vortex mode that has the fixed ring radius for different OAM modes. The results of simulation and experiment have demonstrated the feasibility of the generation of the OAM hologram with the Bessel–Gaussian beam. The quality of the reconstructed holographic image is increased, and the security is enhanced. Additionally, the anti-interference property is improved owing to its self-healing property of the Bessel-OAM holography.
基金supported by a graduate fellowship from the Department of Mathematical Sciences at the University of Wisconsin-Milwaukee.
文摘The presence of the debris in the Earth’s orbit poses a significant risk to human activity in outer space.This debris population continues to grow due to ground launches,the loss of external parts from space ships,and uncontrollable collisions between objects.A computationally feasible continuum model for the growth of the debris population and its spatial distribution is therefore critical.Here we propose a diffusion-collision model for the evolution of the debris density in the low-Earth orbit and its dependence on the ground-launch policy.We parametrize this model and test it against data from publicly available object catalogs to examine timescales for the uncontrolled growth.Finally,we consider sensible launch policies and cleanup strategies and how they reduce the future risk of collisions with active satellites or space ships.
基金financially supported by the National Natural Science Foundation of China(21972068,22072067,22232004)the High-level Talents Project of Jinling Institute of Technology(jit-b-202164)。
文摘Precisely refining the electronic structure of electrocatalysts represents a powerful approach to further optimize the electrocatalytic performance.Herein,we demonstrate an ingenious d-d orbital hybridization concept to construct Mo-doped Co_(9)S_(8) nanorod arrays aligned on carbon cloth(CC)substrate(abbreviated as Mo-Co_(9)S_(8)@CC hereafter)as a high-efficiency bifunctional electrocatalyst toward water electrolysis.It has experimentally and theoretically validated that the 4d-3d orbital coupling between Mo dopant and Co site can effectively optimize the H_(2)O activation energy and lower H^(*)adsorption energy barrier,thereby leading to enhanced hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)activities.Thanks to the unique electronic and geometrical advantages,the optimized Mo-Co_(9)S_(8)@CC with appropriate Mo content exhibits outstanding bifunctional performance in alkaline solution,with the overpotentials of 75 and 234 mV for the delivery of a current density of 10 mA cm^(-2),small Tafel slopes of 53.8 and 39.9 mV dec~(-1)and long-term stabilities for at least 32 and 30 h for HER and OER,respectively.More impressively,a water splitting electrolylzer assembled by the self-supported Mo-Co_(9)S_(8)@CC electrode requires a low cell voltage of 1.53 V at 10 mA cm^(-2)and shows excellent stability and splendid reversibility,demonstrating a huge potential for affordable and scalable electrochemical H_(2) production.The innovational orbital hybridization strategy for electronic regulation herein provides an inspirable avenue for developing progressive electrocatalysts toward new energy systems.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11974215,21933002,and 12274264)。
文摘With an extended Su–Schrieffer–Heeger model and Green's function method, the spin–orbit coupling(SOC) effects on spin admixture of electronic states and quantum transport in organic devices are investigated. The role of lattice distortion induced by the strong electron–lattice interaction in organics is clarified in contrast with a uniform chain. The results demonstrate an enhanced SOC effect on the spin admixture of frontier eigenstates by the lattice distortion at a larger SOC,which is explained by the perturbation theory. The quantum transport under the SOC is calculated for both nonmagnetic and ferromagnetic electrodes. A more notable SOC effect on total transmission and current is observed for ferromagnetic electrodes, where spin filtering induced by spin-flipped transmission and suppression of magnetoresistance are obtained.Unlike the spin admixture, a stronger SOC effect on transmission exists for the uniform chain rather than the organic lattices with distortion. The reason is attributed to the modified spin-polarized conducting states in the electrodes by lattice configuration, and hence the spin-flip transmission, instead of the spin admixture of eigenstates. This work is helpful to understand the SOC effect in organic spin valves in the presence of lattice distortion.