Three-quasiparticle excitations from v(g9/2)^(-3) or π(g9/2)^(2)v(g9/2)^(-1) configuration are expected to dominate the low-lying level schemes of the even-Z N=47 nuclei.On the other hand,the N=47 nuclei in...Three-quasiparticle excitations from v(g9/2)^(-3) or π(g9/2)^(2)v(g9/2)^(-1) configuration are expected to dominate the low-lying level schemes of the even-Z N=47 nuclei.On the other hand,the N=47 nuclei in the A■90 mass region,100Sn,are particularly suited to study neutron-proton(np)interactions.展开更多
Antiferromagnetic spin fluctuation is regarded as the leading driving force for electron pairing in high-Tc superconductors.In iron-based superconductors,spin excitations at low energy range,especially the spin-resona...Antiferromagnetic spin fluctuation is regarded as the leading driving force for electron pairing in high-Tc superconductors.In iron-based superconductors,spin excitations at low energy range,especially the spin-resonance mode at ER~5kBTc,are important for understanding the superconductivity.Here,we use inelastic neutron scattering(INS)to investigate the symmetry and in-plane wave-vector dependence of low-energy spin excitations in uniaxial-strain detwinned Fe Se.The low-energy spin excitations(E<10 meV)appear mainly at Q=(±1,0)in the superconducting state(T9K)and the nematic state(T90 K),confirming the constant C_(2) rotational symmetry and ruling out the C_(4) mode at E≈3 meV reported in a prior INS study.Moreover,our results reveal an isotropic spin resonance in the superconducting state,which is consistent with the s±wave pairing symmetry.At slightly higher energy,low-energy spin excitations become highly anisotropic.The full width at half maximum of spin excitations is elongated along the transverse direction.The Q-space isotropic spin resonance and highly anisotropic low-energy spin excitations could arise from dyz intra-orbital selective Fermi surface nesting between the hole pocket aroundΓpoint and the electron pockets centered at MX point.展开更多
While the geodetic excitationχ(t)of polar motion p(t)is essential to improve our understanding of global mass redistributions and relative motions with respect to the terrestrial frame,the widely adopted method to de...While the geodetic excitationχ(t)of polar motion p(t)is essential to improve our understanding of global mass redistributions and relative motions with respect to the terrestrial frame,the widely adopted method to deriveχ(t)from p(t)has biases in both amplitude and phase responses.This study has developed a new simple but more accurate method based on the combination of the frequency-and time-domain Liouville's equation(FTLE).The FTLE method has been validated not only with 6-h sampled synthetic excitation series but also with daily and 6-h sampled polar motion measurements as well asχ(t)produced by the interactive webpage tool of the International Earth Rotation and Reference Systems Service(IERS).Numerical comparisons demonstrate thatχ(t)derived from the FTLE method has superior performances in both the time and frequency domains with respect to that obtained from the widely adopted method or the IERS webpage tool,provided that the input p(t)series has a length around or more than 25 years,which presents no practical limitations since the necessary polar motion data are readily available.The FTLE code is provided in the form of Mat Lab function.展开更多
The level structures of 93 Mo are investigated using Large Scale Shell Model calculations,and reasonable agreement is obtained between the experimental and calculated values.The calculated results show that the lower-...The level structures of 93 Mo are investigated using Large Scale Shell Model calculations,and reasonable agreement is obtained between the experimental and calculated values.The calculated results show that the lower-lying states are mainly dominated by proton excitations from the If5/2,2 p3/2,and 2 p1/2 orbitals into the higher orbitals across the Z=38 or Z=40 subshell closure.For the higher-spin states,multi-particle excitations,including the excitation of 2 d5/2 neutrons across the N=56 subshell closure into the high-j intruder 1 h11/2 orbital,are essential.Moreover,the previously unknown spin-parity assignments of the six higher excited states in 93 Mo are inferred from the shell model calculations.展开更多
High-spin states in 145Tb have been populated using the 118Sn (32S, 1p4n) reaction at beam energy of 165 MeV. The level scheme of 145Tb has been established up to Ex ≈7.4 MeV. The level scheme shows characteristics o...High-spin states in 145Tb have been populated using the 118Sn (32S, 1p4n) reaction at beam energy of 165 MeV. The level scheme of 145Tb has been established up to Ex ≈7.4 MeV. The level scheme shows characteristics of a spherical or slightly oblate nucleus. Based on the systematic trends of the level structure in the neighboring N = 80 isotones, the level structure in 145Tb below 2 MeV excitation is well explained by coupling an h11/2valence proton to the even-even 144Gd core. Above 2 MeV excitation, most of the yrast levels are interpreted with multi-quasiparticle shell-model configurations.展开更多
Typically, the unambiguous determination of the quantum numbers of nuclear states is a challenging task. Recently, it has been proposed to utilize to this aim vortex photons in the MeV energy region and, potentially, ...Typically, the unambiguous determination of the quantum numbers of nuclear states is a challenging task. Recently, it has been proposed to utilize to this aim vortex photons in the MeV energy region and, potentially, this could revolutionize nuclear spectroscopy because of the new and enhanced selectivity of this probe. Moreover, nuclei may become diagnostic tools for vortex photons. Still, some open questions have to be dealt with.Nuclei exhibit intricate excitation spectra. Indeed, not all states within these spectra are equally significant. Some are not sensitive to specific terms in the nuclear Hamiltonian or do not display novel features, so that investigating them is not helpful to enhance our overall understanding of nuclear structure. On the other hand, there are states that manifest themselves as prominent peaks, e.g., in the inelastic scattering spectra. Among the best examples are the so-called Giant Resonances that lie at energies of the order of tens of MeV [1].展开更多
Hysteresis widely exists in civil structures,and dissipates the mechanical energy of systems.Research on the random vibration of hysteretic systems,however,is still insufficient,particularly when the excitation is non...Hysteresis widely exists in civil structures,and dissipates the mechanical energy of systems.Research on the random vibration of hysteretic systems,however,is still insufficient,particularly when the excitation is non-Gaussian.In this paper,the radial basis function(RBF)neural network(RBF-NN)method is adopted as a numerical method to investigate the random vibration of the Bouc-Wen hysteretic system under the Poisson white noise excitations.The solution to the reduced generalized Fokker-PlanckKolmogorov(GFPK)equation is expressed in terms of the RBF-NNs with the Gaussian activation functions,whose weights are determined by minimizing the loss function of the reduced GFPK equation residual and constraint associated with the normalization condition.A steel fiber reinforced ceramsite concrete(SFRCC)column loaded by the Poisson white noise is studied as an example to illustrate the solution process.The effects of several important parameters of both the system and the excitation on the stochastic response are evaluated,and the obtained results are compared with those obtained by the Monte Carlo simulations(MCSs).The numerical results show that the RBF-NN method can accurately predict the stationary response with a considerable high computational efficiency.展开更多
We demonstrate the flexible tunability of excitation transport in Rydberg atoms,under the interplay of controlled dissipation and interaction-induced synthetic flux.Considering a minimum four-site setup,i.e.,a triangu...We demonstrate the flexible tunability of excitation transport in Rydberg atoms,under the interplay of controlled dissipation and interaction-induced synthetic flux.Considering a minimum four-site setup,i.e.,a triangular configuration with an additional output site,we study the transport of a single excitation.展开更多
Excitation and inhibition are at the core of brain function and malfunction.To sustain the activity of neuronal networks over time and space,glutamatergic excitation is balanced by GABAergic inhibition.The equipoise o...Excitation and inhibition are at the core of brain function and malfunction.To sustain the activity of neuronal networks over time and space,glutamatergic excitation is balanced by GABAergic inhibition.The equipoise of excitation and inhibition,known as the excitation/inhibition(E/I)balance,is crucial for proper brain function.The E/I balance is highly dynamic and shifts across different brain states:wakefulness primarily augments excitatory activity,while sleep promotes a decrease in excitation and an increase in inhibition(Bridi et al.,2020).Neuronal activity during various brain states is primarily regulated by neurotransmitters(Schiemann et al.,2015),alongside non-synaptic mechanisms that operate on a slower timescale.The non-synaptic mechanisms are many,with the ionic composition of the extracellular space playing a significant role;altering extracellular ion concentrations affects sleep,arousal,electroencephalogram patterns,and behavioral states(Ding et al.,2016).展开更多
Quantum excitation is usually regarded as a transient process occurring instantaneously,leaving the underlying physics shrouded in mystery.Recent research shows that Rydberg-state excitation with ultrashort laser puls...Quantum excitation is usually regarded as a transient process occurring instantaneously,leaving the underlying physics shrouded in mystery.Recent research shows that Rydberg-state excitation with ultrashort laser pulses can be investigated and manipulated with state-of-the-art few-cycle pulses.We theoretically find that the efficiency of Rydberg state excitation can be enhanced with a short laser pulse and modulated by varying the laser intensities.We also uncover new facets of the excitation dynamics,including the launching of an electron wave packet through strong-field ionization,the re-entry of the electron into the atomic potential and the crucial step where the electron makes a U-turn,resulting in twin captures into Rydberg orbitals.By tuning the laser intensity,we show that the excitation of the Rydberg state can be coherently controlled on a sub-optical-cycle timescale.Our work paves the way toward ultrafast control and coherent manipulation of Rydberg states,thus benefiting Rydberg-state-based quantum technology.展开更多
Strong empirical and phenomenological indications exist for large sea-quark admixtures in the low-lying excited baryons.Investigating the low-lying excited baryon ∑^(*)(1/2^(-))is important for determining the nature...Strong empirical and phenomenological indications exist for large sea-quark admixtures in the low-lying excited baryons.Investigating the low-lying excited baryon ∑^(*)(1/2^(-))is important for determining the nature of the low-lying excited baryons.We review the experimental and theoretical progress on the studies of the ∑^(*)(1/2^(-)).展开更多
Cross-sections for electronic excitation and de-excitation among the ground state and lowest-lying seven electronic excited states of carbon monoxide(CO)by low-energy electron impact are computed using the R-matrix me...Cross-sections for electronic excitation and de-excitation among the ground state and lowest-lying seven electronic excited states of carbon monoxide(CO)by low-energy electron impact are computed using the R-matrix method.The excitation cross-sections from the ground state to the electronic states a^(3)Π,a'^(3)Σ^(+)+and A^(1)Πagree with previous experimental and theoretical results.In addition,the cross-sections for the I^(1)Σ^(+)-and D^(1)Δstates of CO,which will cascade to CO a'^(3)Σ^(+)+and A^(1)Πstates,are calculated.Furthermore,in contrast to the typical increase in electronic excitation cross-sections with collision energy,the de-excitation cross-sections show a negative trend with increasing energy.展开更多
The SiS molecule,which plays a significant role in space,has attracted a great deal of attention for many years.Due to complex interactions among its low-lying electronic states,precise information regarding the molec...The SiS molecule,which plays a significant role in space,has attracted a great deal of attention for many years.Due to complex interactions among its low-lying electronic states,precise information regarding the molecular structure of SiS is limited.To obtain accurate information about the structure of its excited states,the high-precision multireference configuration interaction(MRCI)method has been utilized.This method is used to calculate the potential energy curves(PECs)of the 18Λ–S states corresponding to the lowest dissociation limit of SiS.The core–valence correlation effect,Davidson’s correction and the scalar relativistic effect are also included to guarantee the precision of the MRCI calculation.Based on the calculated PECs,the spectroscopic constants of quasi-bound and bound electronic states are calculated and they are in accordance with previous experimental results.The transition dipole moments(TDMs)and dipole moments(DMs)are determined by the MRCI method.In addition,the abrupt variations of the DMs for the 1^(5)Σ^(+)and 2^(5)Σ^(+)states at the avoided crossing point are attributed to the variation of the electronic configuration.The opacity of SiS at a pressure of 100 atms is presented across a series of temperatures.With increasing temperature,the expanding population of excited states blurs the band boundaries.展开更多
The evolution process of magnetic domains in response to external fields is crucial for the modern understanding and application of spintronics.In this study,we investigated the domain rotation in stripe domain films ...The evolution process of magnetic domains in response to external fields is crucial for the modern understanding and application of spintronics.In this study,we investigated the domain rotation in stripe domain films of varying thicknesses by examining their response to microwave excitation in four different orientations.The resonance spectra indicate that the rotation field of stripe domain film under an applied magnetic field approaches the field where the resonance mode of sample changes.The saturation field of the stripe domain film corresponds to the field where the resonance mode disappears when measured in the stripe direction parallel to the microwave magnetic field.The results are reproducible and consistent with micromagnetic simulations,providing additional approaches and techniques for comprehending the microscopic mechanisms of magnetic domains and characterizing their rotation.展开更多
Rydberg state excitation(RSE) is a highly non-linear physical phenomenon that is induced by the ionization of atoms or molecules in strong femtosecond laser fields. Here we observe that both parent and fragments(S, C,...Rydberg state excitation(RSE) is a highly non-linear physical phenomenon that is induced by the ionization of atoms or molecules in strong femtosecond laser fields. Here we observe that both parent and fragments(S, C, OC) of the triatomic molecule carbonyl sulfide(OCS) can survive strong 800 nm or 400 nm laser fields in high Rydberg states. The dependence of parent and fragment RSE yields on laser intensity and ellipticity is investigated in both laser fields, and the results are compared with those for strong-field ionization. Distinctly different tendencies for laser intensity and ellipticity are observed for fragment RSE compared with the corresponding ions. The mechanisms of RSE and strong-field ionization of OCS molecules in different laser fields are discussed based on the experimental results. Our study sheds some light on the strong-field excitation and ionization of molecules irradiated by femtosecond NIR and UV laser fields.展开更多
With the rapid development of large megawatt wind turbines,the operation environment of wind turbine towers(WTTs)has become increasingly complex.In particular,seismic excitation can create a resonance response and cau...With the rapid development of large megawatt wind turbines,the operation environment of wind turbine towers(WTTs)has become increasingly complex.In particular,seismic excitation can create a resonance response and cause excessive vibration of the WTT.To investigate the vibration attenuation performance of the WTT under seismic excitations,a novel passive vibration control device,called a prestressed tuned mass damper(PS-TMD),is presented in this study.First,a mathematical model is established based on structural dynamics under seismic excitation.Then,the mathematical analytical expression of the dynamic coefficient is deduced,and the parameter design method is obtained by system tuning optimization.Next,based on a theoretical analysis and parameter design,the numerical results showed that the PS-TMD was able to effectively mitigate the resonance under the harmonic basal acceleration.Finally,the time-history analysis method is used to verify the effectiveness of the traditional pendulum tuned mass damper(PTMD)and the novel PS-TMD device,and the results indicate that the vibration attenuation performance of the PS-TMD is better than the PTMD.In addition,the PS-TMD avoids the nonlinear effect due to the large oscillation angle,and has the potential to dissipate hysteretic energy under seismic excitation.展开更多
Manganese-based perovskite is popular for research on ferromagnetic materials,and its spectroscopic studies are essential for understanding its electronic structure,dielectric,electrical,and magnetic properties.In thi...Manganese-based perovskite is popular for research on ferromagnetic materials,and its spectroscopic studies are essential for understanding its electronic structure,dielectric,electrical,and magnetic properties.In this paper,the M-edge spectra of La ions and the M-edge,L-edge,and K-edge spectra of Mn ions in LaMnO3 are calculated by considering both the free-ion multiplet calculation and the crystal field effects.We analyze spectral shapes,identify peak origins,and estimate the oxidation states of La and Mn ions in LaMnO3 theoretically.It is concluded that La ions in LaMnO3 predominantly exist in the trivalent state,while Mn ions exist primarily in the trivalent state with a minor presence of tetravalent ions.Furthermore,the calculated spectra are in better conformity with the experimental spectra when the proportion of Mn3+is 90%and Mn4+is 10%.This article enhances our comprehension of the oxidation states of La and Mn within the crystal and also provides a valuable guidance for spectroscopic investigations of other manganates.展开更多
The auto-parametric resonance of a continuous-beam bridge model subjected to a two-point periodic excitation is experimentally and numerically investigated in this study.An auto-parametric resonance experiment of the ...The auto-parametric resonance of a continuous-beam bridge model subjected to a two-point periodic excitation is experimentally and numerically investigated in this study.An auto-parametric resonance experiment of the test model is conducted to observe and measure the auto-parametric resonance of a continuous beam under a two-point excitation on columns.The parametric vibration equation is established for the test model using the finite-element method.The auto-parametric resonance stability of the structure is analyzed by using Newmark's method and the energy-growth exponent method.The effects of the phase difference of the two-point excitation on the stability boundaries of auto-parametric resonance are studied for the test model.Compared with the experiment,the numerical instability predictions of auto-parametric resonance are consistent with the test phenomena,and the numerical stability boundaries of auto-parametric resonance agree with the experimental ones.For a continuous beam bridge,when the ratio of multipoint excitation frequency(applied to the columns)to natural frequency of the continuous girder is approximately equal to 2,the continuous beam may undergo a strong auto-parametric resonance.Combined with the present experiment and analysis,a hypothesis of Volgograd Bridge's serpentine vibration is discussed.展开更多
The dynamic load distribution within in-service axlebox bearings of high-speed trains is crucial for the fatigue reliability assessment and forward design of axlebox bearings. This paper presents an in situ measuremen...The dynamic load distribution within in-service axlebox bearings of high-speed trains is crucial for the fatigue reliability assessment and forward design of axlebox bearings. This paper presents an in situ measurement of the dynamic load distribution in the four rows of two axlebox bearings on a bogie wheelset of a high-speed train under polygonal wheel–rail excitation. The measurement employed an improved strain-based method to measure the dynamic radial load distribution of roller bearings. The four rows of two axlebox bearings on a wheelset exhibited different ranges of loaded zones and different means of distributed loads. Besides, the mean value and standard deviation of measured roller–raceway contact loads showed non-monotonic variations with the frequency of wheel–rail excitation. The fatigue life of the four bearing rows under polygonal wheel–rail excitation was quantitatively predicted by compiling the measured roller–raceway contact load spectra of the most loaded position and considering the load spectra as input.展开更多
The semiclassical non-perturbative atomic orbital close-coupling approach has been employed to study the electron capture and excitation processes in He^(2+)-H(1s)and He^(2+)-H(2s)collision systems.In order to ensure ...The semiclassical non-perturbative atomic orbital close-coupling approach has been employed to study the electron capture and excitation processes in He^(2+)-H(1s)and He^(2+)-H(2s)collision systems.In order to ensure the accuracy of our calculated cross sections,a large number of high excited states and pseudostates are included in the expansion basis sets which are centered on the target and projectile,respectively.The total and partial charge transfer and excitation cross sections are obtained for a wide-energy domain ranging from 1 keV/amu to 200 keV/amu.The present calculations are also compared with the results from other theoretical methods.These cross section data are useful for the investigation of astrophysics and laboratory plasma.展开更多
基金National Natural Science Foundation of China(U1632137)。
文摘Three-quasiparticle excitations from v(g9/2)^(-3) or π(g9/2)^(2)v(g9/2)^(-1) configuration are expected to dominate the low-lying level schemes of the even-Z N=47 nuclei.On the other hand,the N=47 nuclei in the A■90 mass region,100Sn,are particularly suited to study neutron-proton(np)interactions.
基金Beijing Normal University was supported by the Fundamental Research Funds for the Central Universitiesthe National Key Projects for Research and Development of China(No.2021YFA1400400)+1 种基金the National Natural Science Foundation of China(Grant Nos.12174029 and 11922402)the neutron beamtimes from J-PARC(Proposal No.2019A0002)。
文摘Antiferromagnetic spin fluctuation is regarded as the leading driving force for electron pairing in high-Tc superconductors.In iron-based superconductors,spin excitations at low energy range,especially the spin-resonance mode at ER~5kBTc,are important for understanding the superconductivity.Here,we use inelastic neutron scattering(INS)to investigate the symmetry and in-plane wave-vector dependence of low-energy spin excitations in uniaxial-strain detwinned Fe Se.The low-energy spin excitations(E<10 meV)appear mainly at Q=(±1,0)in the superconducting state(T9K)and the nematic state(T90 K),confirming the constant C_(2) rotational symmetry and ruling out the C_(4) mode at E≈3 meV reported in a prior INS study.Moreover,our results reveal an isotropic spin resonance in the superconducting state,which is consistent with the s±wave pairing symmetry.At slightly higher energy,low-energy spin excitations become highly anisotropic.The full width at half maximum of spin excitations is elongated along the transverse direction.The Q-space isotropic spin resonance and highly anisotropic low-energy spin excitations could arise from dyz intra-orbital selective Fermi surface nesting between the hole pocket aroundΓpoint and the electron pockets centered at MX point.
基金supported by the National Natural Science Foundation of China(grant numbers 41874025 and 41474022)。
文摘While the geodetic excitationχ(t)of polar motion p(t)is essential to improve our understanding of global mass redistributions and relative motions with respect to the terrestrial frame,the widely adopted method to deriveχ(t)from p(t)has biases in both amplitude and phase responses.This study has developed a new simple but more accurate method based on the combination of the frequency-and time-domain Liouville's equation(FTLE).The FTLE method has been validated not only with 6-h sampled synthetic excitation series but also with daily and 6-h sampled polar motion measurements as well asχ(t)produced by the interactive webpage tool of the International Earth Rotation and Reference Systems Service(IERS).Numerical comparisons demonstrate thatχ(t)derived from the FTLE method has superior performances in both the time and frequency domains with respect to that obtained from the widely adopted method or the IERS webpage tool,provided that the input p(t)series has a length around or more than 25 years,which presents no practical limitations since the necessary polar motion data are readily available.The FTLE code is provided in the form of Mat Lab function.
基金Supported by the National Natural Science Foundation of China (11775098,U1867210,11405072)Jilin Scientific and Technological Development Programs(20190201137JC,20180520195JH)+4 种基金the 13th Five-Year Plan of Scientific Research of Jilin Province (JJKH20180117KJ)China Postdoctoral Science Foundation(2015M571354,2013M541285)the National Basic Research Programme of China (2007CB815005)the Fundamental Research Funds for the Central Universitiesthe Graduate Innovation Fund of Jilin University。
文摘The level structures of 93 Mo are investigated using Large Scale Shell Model calculations,and reasonable agreement is obtained between the experimental and calculated values.The calculated results show that the lower-lying states are mainly dominated by proton excitations from the If5/2,2 p3/2,and 2 p1/2 orbitals into the higher orbitals across the Z=38 or Z=40 subshell closure.For the higher-spin states,multi-particle excitations,including the excitation of 2 d5/2 neutrons across the N=56 subshell closure into the high-j intruder 1 h11/2 orbital,are essential.Moreover,the previously unknown spin-parity assignments of the six higher excited states in 93 Mo are inferred from the shell model calculations.
基金This work was supported by the National Natural Science Foundation of China(Grant No.10005012)the Major State Basic Research Development Program of China(Contract No.TG2000077402).
文摘High-spin states in 145Tb have been populated using the 118Sn (32S, 1p4n) reaction at beam energy of 165 MeV. The level scheme of 145Tb has been established up to Ex ≈7.4 MeV. The level scheme shows characteristics of a spherical or slightly oblate nucleus. Based on the systematic trends of the level structure in the neighboring N = 80 isotones, the level structure in 145Tb below 2 MeV excitation is well explained by coupling an h11/2valence proton to the even-even 144Gd core. Above 2 MeV excitation, most of the yrast levels are interpreted with multi-quasiparticle shell-model configurations.
文摘Typically, the unambiguous determination of the quantum numbers of nuclear states is a challenging task. Recently, it has been proposed to utilize to this aim vortex photons in the MeV energy region and, potentially, this could revolutionize nuclear spectroscopy because of the new and enhanced selectivity of this probe. Moreover, nuclei may become diagnostic tools for vortex photons. Still, some open questions have to be dealt with.Nuclei exhibit intricate excitation spectra. Indeed, not all states within these spectra are equally significant. Some are not sensitive to specific terms in the nuclear Hamiltonian or do not display novel features, so that investigating them is not helpful to enhance our overall understanding of nuclear structure. On the other hand, there are states that manifest themselves as prominent peaks, e.g., in the inelastic scattering spectra. Among the best examples are the so-called Giant Resonances that lie at energies of the order of tens of MeV [1].
基金the National Natural Science Foundation of China(No.12072118)the Natural Science Funds for Distinguished Young Scholar of Fujian Province of China(No.2021J06024)the Project for Youth Innovation Fund of Xiamen of China(No.3502Z20206005)。
文摘Hysteresis widely exists in civil structures,and dissipates the mechanical energy of systems.Research on the random vibration of hysteretic systems,however,is still insufficient,particularly when the excitation is non-Gaussian.In this paper,the radial basis function(RBF)neural network(RBF-NN)method is adopted as a numerical method to investigate the random vibration of the Bouc-Wen hysteretic system under the Poisson white noise excitations.The solution to the reduced generalized Fokker-PlanckKolmogorov(GFPK)equation is expressed in terms of the RBF-NNs with the Gaussian activation functions,whose weights are determined by minimizing the loss function of the reduced GFPK equation residual and constraint associated with the normalization condition.A steel fiber reinforced ceramsite concrete(SFRCC)column loaded by the Poisson white noise is studied as an example to illustrate the solution process.The effects of several important parameters of both the system and the excitation on the stochastic response are evaluated,and the obtained results are compared with those obtained by the Monte Carlo simulations(MCSs).The numerical results show that the RBF-NN method can accurately predict the stationary response with a considerable high computational efficiency.
基金supported by the National Natural Science Foundation of China(Grant Nos.11974331 and 12374479)。
文摘We demonstrate the flexible tunability of excitation transport in Rydberg atoms,under the interplay of controlled dissipation and interaction-induced synthetic flux.Considering a minimum four-site setup,i.e.,a triangular configuration with an additional output site,we study the transport of a single excitation.
文摘Excitation and inhibition are at the core of brain function and malfunction.To sustain the activity of neuronal networks over time and space,glutamatergic excitation is balanced by GABAergic inhibition.The equipoise of excitation and inhibition,known as the excitation/inhibition(E/I)balance,is crucial for proper brain function.The E/I balance is highly dynamic and shifts across different brain states:wakefulness primarily augments excitatory activity,while sleep promotes a decrease in excitation and an increase in inhibition(Bridi et al.,2020).Neuronal activity during various brain states is primarily regulated by neurotransmitters(Schiemann et al.,2015),alongside non-synaptic mechanisms that operate on a slower timescale.The non-synaptic mechanisms are many,with the ionic composition of the extracellular space playing a significant role;altering extracellular ion concentrations affects sleep,arousal,electroencephalogram patterns,and behavioral states(Ding et al.,2016).
基金supported by the National Key Research and Development Program of China(Grant No.2019YFA0307703)the National Natural Science Foundation of China(Grant Nos.12234020,11874066,12274461,and 11974426)the Science and Technology Innovation Program of Hunan Province(Grant No.2022RC1193).
文摘Quantum excitation is usually regarded as a transient process occurring instantaneously,leaving the underlying physics shrouded in mystery.Recent research shows that Rydberg-state excitation with ultrashort laser pulses can be investigated and manipulated with state-of-the-art few-cycle pulses.We theoretically find that the efficiency of Rydberg state excitation can be enhanced with a short laser pulse and modulated by varying the laser intensities.We also uncover new facets of the excitation dynamics,including the launching of an electron wave packet through strong-field ionization,the re-entry of the electron into the atomic potential and the crucial step where the electron makes a U-turn,resulting in twin captures into Rydberg orbitals.By tuning the laser intensity,we show that the excitation of the Rydberg state can be coherently controlled on a sub-optical-cycle timescale.Our work paves the way toward ultrafast control and coherent manipulation of Rydberg states,thus benefiting Rydberg-state-based quantum technology.
基金partly supported by the National Key R&D Program of China(Grant No.2023YFA1606700)partly supported by the National Key R&D Program of China(Grant No.2024YFE0105200)+6 种基金supported by the Natural Science Foundation of Henan(Grant Nos.232300421140 and 222300420554)the National Natural Science Foundation of China(Grant Nos.12475086,12192263,12205075,12175239,12221005,12075288,and 12361141819)the Open Project of Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology(Grant No.NLK2021-08)the Central Government Guidance Funds for Local Scientific and Technological Development,China(Grant No.ZY22096024)the National Key Research and Development Program of China(Grant No.2020YFA0406400)the Chinese Academy of Sciences(Grant No.YSBR-101)the Youth Innovation Promotion Association of CAS。
文摘Strong empirical and phenomenological indications exist for large sea-quark admixtures in the low-lying excited baryons.Investigating the low-lying excited baryon ∑^(*)(1/2^(-))is important for determining the nature of the low-lying excited baryons.We review the experimental and theoretical progress on the studies of the ∑^(*)(1/2^(-)).
基金Project supported by the National Natural Science Foundation of China (Grant No.11974253)。
文摘Cross-sections for electronic excitation and de-excitation among the ground state and lowest-lying seven electronic excited states of carbon monoxide(CO)by low-energy electron impact are computed using the R-matrix method.The excitation cross-sections from the ground state to the electronic states a^(3)Π,a'^(3)Σ^(+)+and A^(1)Πagree with previous experimental and theoretical results.In addition,the cross-sections for the I^(1)Σ^(+)-and D^(1)Δstates of CO,which will cascade to CO a'^(3)Σ^(+)+and A^(1)Πstates,are calculated.Furthermore,in contrast to the typical increase in electronic excitation cross-sections with collision energy,the de-excitation cross-sections show a negative trend with increasing energy.
基金Project supported by the Natural Science Foundation of Heilongjiang Province,China(Grant No.LH2022A026)the National Key Research and Development Program of China(Grant No.2022YFA1602500)+2 种基金the National Natural Science Foundation of China(Grant No.11934004)Fundamental Research Funds in Heilongjiang Province Universities,China(Grant No.145109309)Foundation of National Key Laboratory of Computational Physics(Grant No.6142A05QN22006)。
文摘The SiS molecule,which plays a significant role in space,has attracted a great deal of attention for many years.Due to complex interactions among its low-lying electronic states,precise information regarding the molecular structure of SiS is limited.To obtain accurate information about the structure of its excited states,the high-precision multireference configuration interaction(MRCI)method has been utilized.This method is used to calculate the potential energy curves(PECs)of the 18Λ–S states corresponding to the lowest dissociation limit of SiS.The core–valence correlation effect,Davidson’s correction and the scalar relativistic effect are also included to guarantee the precision of the MRCI calculation.Based on the calculated PECs,the spectroscopic constants of quasi-bound and bound electronic states are calculated and they are in accordance with previous experimental results.The transition dipole moments(TDMs)and dipole moments(DMs)are determined by the MRCI method.In addition,the abrupt variations of the DMs for the 1^(5)Σ^(+)and 2^(5)Σ^(+)states at the avoided crossing point are attributed to the variation of the electronic configuration.The opacity of SiS at a pressure of 100 atms is presented across a series of temperatures.With increasing temperature,the expanding population of excited states blurs the band boundaries.
基金the Natural Science Foundation of Shandong Province(Grant No.ZR2022MA053),the National Natural Science Foundation of China(Grant Nos.11704211,11847233,52301255,12205157,and 12205093)the Funda-mental Research Funds for the Central Universities(Grant No.lzujbky-2022-kb01)+2 种基金China and Germany Postdoctoral Exchange Program(Helmholtz-OCPC)China Postdoctoral Science Foundation(Grant No.2018M632608)Applied Basic Research Project of Qingdao(Grant No.18-2-2-16-jcb).
文摘The evolution process of magnetic domains in response to external fields is crucial for the modern understanding and application of spintronics.In this study,we investigated the domain rotation in stripe domain films of varying thicknesses by examining their response to microwave excitation in four different orientations.The resonance spectra indicate that the rotation field of stripe domain film under an applied magnetic field approaches the field where the resonance mode of sample changes.The saturation field of the stripe domain film corresponds to the field where the resonance mode disappears when measured in the stripe direction parallel to the microwave magnetic field.The results are reproducible and consistent with micromagnetic simulations,providing additional approaches and techniques for comprehending the microscopic mechanisms of magnetic domains and characterizing their rotation.
基金Project supported by the National Key Program for S&T Research and Development(Grant No.2019YFA0307700)the National Natural Science Foundation of China(Grant Nos.12174148,11874179,12074144,and 12074146)。
文摘Rydberg state excitation(RSE) is a highly non-linear physical phenomenon that is induced by the ionization of atoms or molecules in strong femtosecond laser fields. Here we observe that both parent and fragments(S, C, OC) of the triatomic molecule carbonyl sulfide(OCS) can survive strong 800 nm or 400 nm laser fields in high Rydberg states. The dependence of parent and fragment RSE yields on laser intensity and ellipticity is investigated in both laser fields, and the results are compared with those for strong-field ionization. Distinctly different tendencies for laser intensity and ellipticity are observed for fragment RSE compared with the corresponding ions. The mechanisms of RSE and strong-field ionization of OCS molecules in different laser fields are discussed based on the experimental results. Our study sheds some light on the strong-field excitation and ionization of molecules irradiated by femtosecond NIR and UV laser fields.
基金Fundamental Research Funds for the National Natural Science Foundation of China under Grant No.52078084the Natural Science Foundation of Chongqing (cstc2021jcyj-msxmX0623)+2 种基金the 111 project of the Ministry of Educationthe Bureau of Foreign Experts of China under Grant No.B18062China Postdoctoral Science Foundation under Grant No.2021M690838。
文摘With the rapid development of large megawatt wind turbines,the operation environment of wind turbine towers(WTTs)has become increasingly complex.In particular,seismic excitation can create a resonance response and cause excessive vibration of the WTT.To investigate the vibration attenuation performance of the WTT under seismic excitations,a novel passive vibration control device,called a prestressed tuned mass damper(PS-TMD),is presented in this study.First,a mathematical model is established based on structural dynamics under seismic excitation.Then,the mathematical analytical expression of the dynamic coefficient is deduced,and the parameter design method is obtained by system tuning optimization.Next,based on a theoretical analysis and parameter design,the numerical results showed that the PS-TMD was able to effectively mitigate the resonance under the harmonic basal acceleration.Finally,the time-history analysis method is used to verify the effectiveness of the traditional pendulum tuned mass damper(PTMD)and the novel PS-TMD device,and the results indicate that the vibration attenuation performance of the PS-TMD is better than the PTMD.In addition,the PS-TMD avoids the nonlinear effect due to the large oscillation angle,and has the potential to dissipate hysteretic energy under seismic excitation.
基金Project supported by the National Natural Science Foundation of China(Grant No.11974253).
文摘Manganese-based perovskite is popular for research on ferromagnetic materials,and its spectroscopic studies are essential for understanding its electronic structure,dielectric,electrical,and magnetic properties.In this paper,the M-edge spectra of La ions and the M-edge,L-edge,and K-edge spectra of Mn ions in LaMnO3 are calculated by considering both the free-ion multiplet calculation and the crystal field effects.We analyze spectral shapes,identify peak origins,and estimate the oxidation states of La and Mn ions in LaMnO3 theoretically.It is concluded that La ions in LaMnO3 predominantly exist in the trivalent state,while Mn ions exist primarily in the trivalent state with a minor presence of tetravalent ions.Furthermore,the calculated spectra are in better conformity with the experimental spectra when the proportion of Mn3+is 90%and Mn4+is 10%.This article enhances our comprehension of the oxidation states of La and Mn within the crystal and also provides a valuable guidance for spectroscopic investigations of other manganates.
基金National Natural Science Foundation of China under Grant No.51879191。
文摘The auto-parametric resonance of a continuous-beam bridge model subjected to a two-point periodic excitation is experimentally and numerically investigated in this study.An auto-parametric resonance experiment of the test model is conducted to observe and measure the auto-parametric resonance of a continuous beam under a two-point excitation on columns.The parametric vibration equation is established for the test model using the finite-element method.The auto-parametric resonance stability of the structure is analyzed by using Newmark's method and the energy-growth exponent method.The effects of the phase difference of the two-point excitation on the stability boundaries of auto-parametric resonance are studied for the test model.Compared with the experiment,the numerical instability predictions of auto-parametric resonance are consistent with the test phenomena,and the numerical stability boundaries of auto-parametric resonance agree with the experimental ones.For a continuous beam bridge,when the ratio of multipoint excitation frequency(applied to the columns)to natural frequency of the continuous girder is approximately equal to 2,the continuous beam may undergo a strong auto-parametric resonance.Combined with the present experiment and analysis,a hypothesis of Volgograd Bridge's serpentine vibration is discussed.
基金supported by the National Natural Science Foundation of China (Grant No. 12302238)the National Key Research and Development Program of China (Grant Nos. 2021YFB3400701, 2022YFB3402904)。
文摘The dynamic load distribution within in-service axlebox bearings of high-speed trains is crucial for the fatigue reliability assessment and forward design of axlebox bearings. This paper presents an in situ measurement of the dynamic load distribution in the four rows of two axlebox bearings on a bogie wheelset of a high-speed train under polygonal wheel–rail excitation. The measurement employed an improved strain-based method to measure the dynamic radial load distribution of roller bearings. The four rows of two axlebox bearings on a wheelset exhibited different ranges of loaded zones and different means of distributed loads. Besides, the mean value and standard deviation of measured roller–raceway contact loads showed non-monotonic variations with the frequency of wheel–rail excitation. The fatigue life of the four bearing rows under polygonal wheel–rail excitation was quantitatively predicted by compiling the measured roller–raceway contact load spectra of the most loaded position and considering the load spectra as input.
基金supported by the National Key Research and Development Program of China (Grant No.2022YFA 1602500)the National Natural Science Foundation of China (Grant Nos.11934004 and 12241410).
文摘The semiclassical non-perturbative atomic orbital close-coupling approach has been employed to study the electron capture and excitation processes in He^(2+)-H(1s)and He^(2+)-H(2s)collision systems.In order to ensure the accuracy of our calculated cross sections,a large number of high excited states and pseudostates are included in the expansion basis sets which are centered on the target and projectile,respectively.The total and partial charge transfer and excitation cross sections are obtained for a wide-energy domain ranging from 1 keV/amu to 200 keV/amu.The present calculations are also compared with the results from other theoretical methods.These cross section data are useful for the investigation of astrophysics and laboratory plasma.