In this study,a human-sensitive frequency band vibration isolator(HFBVI)with quasi-zero stiffness(QZS)characteristics for heavy-duty truck seats is designed to improve the comfort of heavy-duty truck drivers on uneven...In this study,a human-sensitive frequency band vibration isolator(HFBVI)with quasi-zero stiffness(QZS)characteristics for heavy-duty truck seats is designed to improve the comfort of heavy-duty truck drivers on uneven roads.First,the analytical expressions for the force and displacement of the HFBVI are derived with the Lagrange equation and d'Alembert's principle,and are validated through the prototype restoring force testing.Second,the harmonic balance method(HBM)is used to obtain the dynamic responses under harmonic excitation,and further the influence of pre-stretching on the dynamic characteristics and transmissibility is discussed.Finally,the experimental prototype of the HFBVI is fabricated,and vibration experiments are conducted under harmonic excitation to verify the vibration isolation performance(VIP)of the proposed vibration isolator.The experimental results indicate that the HFBVI can effectively suppress the frequency band(4-8 Hz)to which the human body is sensitive to vertical vibration.In addition,under real random road spectrum excitation,the HFBVI can achieve low-frequency vibration isolation close to 2 Hz,providing new prospects for ensuring the health of heavy-duty truck drivers.展开更多
During seismic data acquisition, a high-sensitivity geophone with a high inherent frequency can increase high frequency energy by suppressing low frequency signals. This could cause a worse response at low frequencies...During seismic data acquisition, a high-sensitivity geophone with a high inherent frequency can increase high frequency energy by suppressing low frequency signals. This could cause a worse response at low frequencies. If the advantages of high-sensitivity data and conventional data are combined, the effective bandwidth will be broadened. Considering this, we propose a partial frequency band match filtering method which can combine the advantages of both high frequency and conventional frequency ranges. By introducing Ricker wavelets with different dominant frequencies and amplitudes, we established a theoretical model which possesses characteristics of both types of seismic data and demonstrates the feasibility of the partial frequency band match filtering method. A test using single shot records shows the effectiveness of this method for widening the effective frequency band.展开更多
Appropriate candidate frequency bands are extremely important for the development of future 5G systems. In this work, the researches on 5G spectrum around the world are summarized. Then the potential candidate frequen...Appropriate candidate frequency bands are extremely important for the development of future 5G systems. In this work, the researches on 5G spectrum around the world are summarized. Then the potential candidate frequency bands for 5G systems are investigated based on practical utilization of spectrum in China. For spectrum below 6GHz, the feasibility of possible frequency bands for 5G system are analyzed, which mainly come from 2G/3G/4G spectrum re-farming, the spectrum identified by footnotes for IMT systems in Regulations on the Radio Frequency Allocation of China, and potential candidate bands from WRC-15 Agenda Item 1.1. Moreover, propagation characteristics of WRC-15 candidate frequency bands proposed by China are measured and modeled to verify their effectiveness. For spectrum above 6GHz, the potential candidate frequency bands for 5G systems are selected based on the preliminary analysis of spectrum allocation, allotment and the current usage in China. Suggestions are provided for further studies on 5G spectrum.展开更多
This paper aims to examine the architecture design of a distributed antenna based Gbps wireless communication system using the high frequency band.In order to analyze the feasibility of the higher frequency band appli...This paper aims to examine the architecture design of a distributed antenna based Gbps wireless communication system using the high frequency band.In order to analyze the feasibility of the higher frequency band applications,the cumulative distribution of simulated user throughput in a cellular is investigated firstly.It shows that capacity improvement can be obtained using higher operating frequency band,especially in hotspot scenarios.Secondly,the architecture of the distributed antenna system(DAS) is introduced to overcome the disadvantages of weak coverage and rank deficient for the traditional multiple-input multiple-output(MIMO) systems using higher frequency bands in line-of-sight(LOS)environments.In addition,a software-defined-radio(SDR) based Gbps wireless transmission system with scalable hardware architecture is designed and implemented.Finally,a demo of outdoor DAS coverage for high data throughput application is given.Field trials show that 1 Gbps data rate and a large coverage in outdoor environments can be achieved over 6.05 GHz.It is proved that the Gbps DAS system at a higher frequency band can be a successful model for future wireless broadband coverage in hotspot scenarios.展开更多
Central nerve signal evoked by thoughts can be directly used to control a robot or prosthetic devices without the involvement of the peripheral nerve and muscles.This is a new strategy of human-computer interaction.A ...Central nerve signal evoked by thoughts can be directly used to control a robot or prosthetic devices without the involvement of the peripheral nerve and muscles.This is a new strategy of human-computer interaction.A method of electroencephalogram(EEG) phase synchronization combined with band energy was proposed to construct a feature vector for pattern recognition of brain-computer interaction based on EEG induced by motor imagery in this paper,rhythm and beta rhythm were first extracted from EEG by band pass filter and then the frequency band energy was calculated by the sliding time window;the instantaneous phase values were obtained using Hilbert transform and then the phase synchronization feature was calculated by the phase locking value(PLV) and the best time interval for extracting the phase synchronization feature was searched by the distribution of the PLV value in the time domain.Finally,discrimination of motor imagery patterns was performed by the support vector machine(SVM).The results showed that the phase synchronization feature more effective in4s-7s and the correct classification rate was 91.4%.Compared with the results achieved by a single EEG feature related to motor imagery,the correct classification rate was improved by 3.5 and4.3 percentage points by combining phase synchronization with band energy.These indicate that the proposed method is effective and it is expected that the study provides a way to improve the performance of the online real-time brain-computer interaction control system based on EEG related to motor imagery.展开更多
This paper investigates the jamming sensing performance of the simultaneous transmit and receive based cognitive anti-jamming(SCAJ) receiver impaired by phase noise in local oscillators(LO) over fading channels. First...This paper investigates the jamming sensing performance of the simultaneous transmit and receive based cognitive anti-jamming(SCAJ) receiver impaired by phase noise in local oscillators(LO) over fading channels. Firstly, energy detection(ED)based on the jamming to noise ratio(JNR) of the high frequency bands SCAJ receiver with phase noise under different channels is analyzed. Then, the probabilities of jamming detection and false alarm in closed-form for the SCAJ receiver are derived. Finally,the modified Bayesian Cramer-Rao bound(BCRB) of jamming sensing for the SCAJ receiver is presented. Simulation results show that the performance degradation of the SCAJ system due to phase noise is more severe than that due to the channel fading in the circumstances where the signal bandwidth(BW) is kept a constant. Moreover, the signal BW has an effect on the phase noise in LO, and the jamming detection probability of the wideband SCAJ receiver with lower phase noise outperforms that of the narrowband receiver using the same center frequency. Furthermore,an accurate phase noise estimation and compensation scheme can improve the jamming detection capability of the SCAJ receiver in high frequency bands and approach to the upper bound.展开更多
A novel metamaterial plate with subwavelength lever-type resonators is proposed to obtain low frequency broadband band gaps and good sound insulation performance.The band structure is theoretically derived,and the val...A novel metamaterial plate with subwavelength lever-type resonators is proposed to obtain low frequency broadband band gaps and good sound insulation performance.The band structure is theoretically derived,and the validity of the theoretical method is verified by the finite element method.The formation mechanisms of the band gaps are illustrated by the analysis of the effective dynamic mass density and group velocity.The effect of the lever ratio on the band gaps is analyzed.The results indicate that as the lever ratio increases,the first band gap shifts to lower frequencies,while the bandwidth is widened.Moreover,the sound insulation performance of the proposed metamaterial plate is evaluated via examining the sound transmission loss(STL).Compared with the metamaterial plates without lever accessories,the proposed metamaterial plates with a suitable lever ratio have better sound insulation performance at low frequencies.展开更多
As the earliest invented and utilized communication approach, shortwave, known as high frequency(HF) communication now experience the deterioration of HF electromagnetic environment. Finding quality frequency in effic...As the earliest invented and utilized communication approach, shortwave, known as high frequency(HF) communication now experience the deterioration of HF electromagnetic environment. Finding quality frequency in efficient manner becomes one of the key challenges in HF communication. Spectrum prediction infers the future spectrum status from history spectrum data by exploring the inherent correlations and regularities. The investigation of HF electromagnetic environment data reveals the correlations and predictability of HF frequency band in both time and frequency domain. To solve this problem, we develop a Spectrum Prediction-based Frequency Band Pre-selection(SP-FBP) for HF communications. The pre-selection of HF frequency band mainly incorporated in prediction of HF spectrum occupancy and prediction of HF usable frequency, which provide the frequency band ranking of spectrum occupancy and alternative frequency for spectrum sensing, respectively. Performance evaluation via real-world HF spectrum data shows that SP-FBP significantly improves the efficiency of finding quality frequency in HF communications.展开更多
Cell voltage is a widely used signal that can be measured online from an industrial aluminum electrolysis cell.A variety of parameters for the analysis and control of industrial cells are calculated using the cell vol...Cell voltage is a widely used signal that can be measured online from an industrial aluminum electrolysis cell.A variety of parameters for the analysis and control of industrial cells are calculated using the cell voltage.In this paper,the frequency segmentation of cell voltage is used as the basis for designing filters to obtain these parameters.Based on the qualitative analysis of the cell voltage,the sub-band instantaneous energy spectrum(SIEP)is first proposed,which is then used to quantitatively represent the characteristics of the designated frequency bands of the cell voltage under various cell conditions.Ultimately,a cell condition-sensitive frequency segmentation method is given.The proposed frequency segmentation method divides the effective frequency band into the[0,0.001]Hz band of lowfrequency signals and the[0.001,0.050]Hz band of low-frequency noise,and subdivides the lowfrequency noise into the[0.001,0.010]Hz band of metal pad abnormal rolling and the[0.01,0.05]Hz band of sub-low-frequency noise.Compared with the instantaneous energy spectrum based on empirical mode decomposition,the SIEP more finely represents the law of energy change with time in any designated frequency band within the effective frequency band of the cell voltage.The proposed frequency segmentation method is more sensitive to cell condition changes and can obtain more elaborate details of online cell condition information,thus providing a more reliable and accurate online basis for cell condition monitoring and control decisions.展开更多
The frequency in middle of magnon energy band in a five-layer ferromagnetic superlattice is studied by using the linear spin-wave approach and Green's function technique. It is found that four energy gaps and corresp...The frequency in middle of magnon energy band in a five-layer ferromagnetic superlattice is studied by using the linear spin-wave approach and Green's function technique. It is found that four energy gaps and corresponding four frequencie in middle of energy gaps exist in the magnon band along Kx direction perpendicular to the superlattice plane. The spin quantum numbers and the interlayer exchange couplings all affect the four frequencies in middle of the energy gaps. When all interlayer exchange couplings are same, the effect of spin quantum numbers on the frequency wg1 in middle of the energy gap Δw12 is complicated, and the frequency wg1 depends on the match of spin quantum numbers in each layer. Meanwhile, the frequencies wg2, wg3, and wg4 in middle of other energy gaps increase monotonously with increasing spin quantum numbers. When the spin quantum numbers in each layer are same, the frequencies wg1, wg2, wg3, and wg4 all increase monotonously with increasing interlayer exchange couplings.展开更多
We propose an ultrathin wide-band metamaterial absorber (MA) based on a Minkowski (MIK) fractal frequency selective surface and resistive film. This absorber consists of a periodic arrangement of dielectric substr...We propose an ultrathin wide-band metamaterial absorber (MA) based on a Minkowski (MIK) fractal frequency selective surface and resistive film. This absorber consists of a periodic arrangement of dielectric substrates sandwiched with an MIK fractal loop structure electric resonator and a resistive film. The finite element method is used to simulate and analyze the absorption of the MA. Compared with the MA-backed copper film, the designed MA-backed resistive film exhibits an absorption of 90% at a frequency region of 2 GHz-20 GHz. The power loss density distribution of the MA is further illustrated to explain the mechanism of the proposed MA. Simulated absorptions at different incidence cases indicate that this absorber is polarization-insensitive and wide-angled. Finally, further simulated results indicate that the surface resistance of the resistive film and the dielectric constant of the substrate can affect the absorbing property of the MA. This absorber may be used in many military fields.展开更多
Due to the very high demand for Internet data capacity from mobile and fixed customers as well as the saturation of conventional frequency bands by numerous services, many countries have opened the E band, for broadca...Due to the very high demand for Internet data capacity from mobile and fixed customers as well as the saturation of conventional frequency bands by numerous services, many countries have opened the E band, for broadcasting services. E-band involves the creation of a significant number of links in a given area. The present work addressed the problem that arises in the context of transmission is that of assigning the frequencies of this band to these multiple transmission links. The aim of this work is to study and plan the radio links of the 80 GHz frequency and to implement them in a tool in order to define an optimal distribution on the telecommunications network by guaranteeing maximum flow of data traffic while minimizing the interference. The contribution of this work is part of its unique subject: the planning of E-band frequencies for improving the quality of service of transmission in the network of telecommunications operators. Also, it intends to contribute to the resolution of unsatisfied situations of poor planning of E-band radio frequencies in telecommunications networks. With the aim of opening several opportunities for alternative high-speed data transport solutions, our work has helped prove that E-band transmission links are very efficient with capacities in the gigabyte range.展开更多
The need for wide-band clock and data recovery (CDR) circuits is discussed. A 2 Gbps to 12 Gbps continuous-rate CDR circuit employing a multi-mode voltage-control oscillator (VCO), a frequency detector, and a phas...The need for wide-band clock and data recovery (CDR) circuits is discussed. A 2 Gbps to 12 Gbps continuous-rate CDR circuit employing a multi-mode voltage-control oscillator (VCO), a frequency detector, and a phase detector (FD&PD) is described. A new automatic frequency band selection (FBS) without external reference clock is proposed to select the appropriate mode and also solve the instability problem when the circuit is powering on. The multi-mode VCO and FD/PD circuits which can operate at full-rate and half-rate modes facilitate CDR with six operation modes. The proposed CDR structure has been modeled with MATLAB and the simulated results validate its feasibility.展开更多
Traditional multi-band frequency selective surface (FSS) approaches are hard to achieve a perfect resonance response in a wide band due to the limit of the onset grating lobe frequency determined by the array. To so...Traditional multi-band frequency selective surface (FSS) approaches are hard to achieve a perfect resonance response in a wide band due to the limit of the onset grating lobe frequency determined by the array. To solve this problem, an approach of combining elements in different period to build a hybrid array is presented. The results of series of numerical simulation show that multi-periodicity combined element FSS, which are designed using this approach, usually have much weaker grating lobes than the traditional FSS. Furthermore, their frequency response can be well predicted through the properties of their member element FSS. A prediction method for estimating the degree of expected grating lobe energy loss in designing multi-band FSS using this approach is provided.展开更多
Theoretical calculations predict transition frequencies in the terahertz range for the field-effect transistors based on carbon nanotubes, and this shows their suitability for being used in high frequency applications...Theoretical calculations predict transition frequencies in the terahertz range for the field-effect transistors based on carbon nanotubes, and this shows their suitability for being used in high frequency applications. In this paper, we have designed a field-effect transistor based on carbon nanotube with high transition frequency suitable for ultra-wide band applications. We did this by optimizing nanotube diameter, gate insulator thickness and dielectric constant. As a result, we achieved the transition frequency about 7.45 THz. The environment of open source software FETToy is used to simulate the device. Also a suitable model for calculating the transition frequency is presented.展开更多
BACKGROUND Major depressive disorder(MDD)tends to have a high incidence and high suicide risk.Electroconvulsive therapy(ECT)is currently a relatively effective treatment for MDD.However,the mechanism of efficacy of EC...BACKGROUND Major depressive disorder(MDD)tends to have a high incidence and high suicide risk.Electroconvulsive therapy(ECT)is currently a relatively effective treatment for MDD.However,the mechanism of efficacy of ECT is still unclear.AIM To investigate the changes in the amplitude of low-frequency fluctuations in specific frequency bands in patients with MDD after ECT.METHODS Twenty-two MDD patients and fifteen healthy controls(HCs)were recruited to this study.MDD patients received 8 ECT sessions with bitemporal placement.Resting-state functional magnetic resonance imaging was adopted to examine regional cerebellar blood flow in both the MDD patients and HCs.The MDD patients were scanned twice(before the first ECT session and after the eighth ECT session)to acquire data.Then,the amplitude of low-frequency fluctuations(ALFF)was computed to characterize the intrinsic neural oscillations in different bands(typical frequency,slow-5,and slow-4 bands).RESULTS Compared to before ECT(pre-ECT),we found that MDD patients after the eighth ECT(post-ECT)session had a higher ALFF in the typical band in the right middle frontal gyrus,posterior cingulate,right supramarginal gyrus,left superior frontal gyrus,and left angular gyrus.There was a lower ALFF in the right superior temporal gyrus.Compared to pre-ECT values,the ALFF in the slow-5 band was significantly increased in the right limbic lobe,cerebellum posterior lobe,right middle orbitofrontal gyrus,and frontal lobe in post-ECT patients,whereas the ALFF in the slow-5 band in the left sublobar region,right angular gyrus,and right frontal lobe was lower.In contrast,significantly higher ALFF in the slow-4 band was observed in the frontal lobe,superior frontal gyrus,parietal lobe,right inferior parietal lobule,and left angular gyrus.CONCLUSION Our results suggest that the abnormal ALFF in pre-and post-ECT MDD patients may be associated with specific frequency bands.展开更多
This paper designs a simulation experiment model of the overall structure of time-division multiplexing digital optimal frequency band transmission system based on MATLAB simulation platform. The parameters of each mo...This paper designs a simulation experiment model of the overall structure of time-division multiplexing digital optimal frequency band transmission system based on MATLAB simulation platform. The parameters of each module in the simulation model are set. The working process and performance of the time-division multiplexing digital optimal band transmission system are simulated. The simulation results show that the digital optimal band transmission system achieves the best transmission receiving conditions and performance, and the designed time-division multiplexing optimal digital band transmission simulation system achieves its functions. The research in this paper will help to improve the level of digital communication technology and to understand the structure of time-division multiplexing digital optimal band transmission system.展开更多
A new technique of designing a dual-band frequency selective surface with large band separation is presented.This technique is based on a delicately designed topology of L-and Ku-band microwave filters.The two band-pa...A new technique of designing a dual-band frequency selective surface with large band separation is presented.This technique is based on a delicately designed topology of L-and Ku-band microwave filters.The two band-pass responses are generated by a capacitively-loaded square-loop frequency selective surface and an aperture-coupled frequency selective surface,respectively.A Faraday cage is located between the two frequency selective surface structures to eliminate undesired couplings.Based on this technique,a dual-band frequency selective surface with large band separation is designed,which possesses large band separation,high selectivity,and stable performance under various incident angles and different polarizations.展开更多
Based on the substrate integrated waveguide technology, we present a dual-band frequency selective surface (FSS) with a quasi-elliptic bandpass response. The characteristics of the quasi-elliptic bandpass response a...Based on the substrate integrated waveguide technology, we present a dual-band frequency selective surface (FSS) with a quasi-elliptic bandpass response. The characteristics of the quasi-elliptic bandpass response are realized by shunting two substrate integrated waveguide cavities of different sizes, with the same slots on both sides of the metal surfaces. Four cavities of different sizes and two slots of different sizes are used to design the novel FSS. Every bandpass response with sharp sidebands is induced by two transmission nulls that are generated by the coupling between the slot aperture resonance and the cavity resonance. The simulation results show that such dual-band FSS has the advantages of high selectivity and stable performance at different oblique incident angles. Moreover, it is easy to fabricate.展开更多
An adjustable mixer for surface acoustic wave( SAW)-less radio frequency( RF) front-end is presented in this paper. Through changing the bias voltage,the presented mixer with reconfigurable voltage conversion gain( VC...An adjustable mixer for surface acoustic wave( SAW)-less radio frequency( RF) front-end is presented in this paper. Through changing the bias voltage,the presented mixer with reconfigurable voltage conversion gain( VCG) is suitable for multi-mode multi-standard( MMMS) applications. An equivalent local oscillator( LO) frequency-tunable high-Q band-pass filter( BPF) at low noise amplifier( LNA) output is used to reject the out-of-band interference signals. Base-band( BB) capacitor of the mixer is variable to obtain 15 kinds of intermediate frequency( IF) bandwidth( BW). The proposed passive mixer with LNA is implemented in TSMC 0. 18μm RF CMOS process and operates from 0. 5 to 2. 5 GHz with measured maximum out-of-band rejection larger than 40 d B. The measured VCG of the front-end can be changed from 5 to 17 d B; the maximum input intercept point( IIP3) is0 d Bm and the minimum noise figure( NF) is 3. 7 d B. The chip occupies an area of 0. 44 mm^2 including pads.展开更多
基金supported by the National Natural Science Foundation of China(No.12172226)。
文摘In this study,a human-sensitive frequency band vibration isolator(HFBVI)with quasi-zero stiffness(QZS)characteristics for heavy-duty truck seats is designed to improve the comfort of heavy-duty truck drivers on uneven roads.First,the analytical expressions for the force and displacement of the HFBVI are derived with the Lagrange equation and d'Alembert's principle,and are validated through the prototype restoring force testing.Second,the harmonic balance method(HBM)is used to obtain the dynamic responses under harmonic excitation,and further the influence of pre-stretching on the dynamic characteristics and transmissibility is discussed.Finally,the experimental prototype of the HFBVI is fabricated,and vibration experiments are conducted under harmonic excitation to verify the vibration isolation performance(VIP)of the proposed vibration isolator.The experimental results indicate that the HFBVI can effectively suppress the frequency band(4-8 Hz)to which the human body is sensitive to vertical vibration.In addition,under real random road spectrum excitation,the HFBVI can achieve low-frequency vibration isolation close to 2 Hz,providing new prospects for ensuring the health of heavy-duty truck drivers.
基金financially supported by the National Natural Science Foundation of China(No.41104072)College Students Science and Technology Innovation Activity Plan in Zhejiang Province(No. 2012R401214)
文摘During seismic data acquisition, a high-sensitivity geophone with a high inherent frequency can increase high frequency energy by suppressing low frequency signals. This could cause a worse response at low frequencies. If the advantages of high-sensitivity data and conventional data are combined, the effective bandwidth will be broadened. Considering this, we propose a partial frequency band match filtering method which can combine the advantages of both high frequency and conventional frequency ranges. By introducing Ricker wavelets with different dominant frequencies and amplitudes, we established a theoretical model which possesses characteristics of both types of seismic data and demonstrates the feasibility of the partial frequency band match filtering method. A test using single shot records shows the effectiveness of this method for widening the effective frequency band.
基金supported by the National Science and Technology Major Project under Grants No.2013ZX03003016 and No.2015ZX03002008National High-tech R&D Program(863 Program)under Grants No.2014AA01A706
文摘Appropriate candidate frequency bands are extremely important for the development of future 5G systems. In this work, the researches on 5G spectrum around the world are summarized. Then the potential candidate frequency bands for 5G systems are investigated based on practical utilization of spectrum in China. For spectrum below 6GHz, the feasibility of possible frequency bands for 5G system are analyzed, which mainly come from 2G/3G/4G spectrum re-farming, the spectrum identified by footnotes for IMT systems in Regulations on the Radio Frequency Allocation of China, and potential candidate bands from WRC-15 Agenda Item 1.1. Moreover, propagation characteristics of WRC-15 candidate frequency bands proposed by China are measured and modeled to verify their effectiveness. For spectrum above 6GHz, the potential candidate frequency bands for 5G systems are selected based on the preliminary analysis of spectrum allocation, allotment and the current usage in China. Suggestions are provided for further studies on 5G spectrum.
基金supported in part by the National Natural Science Foundation of China(No.61402044)863 plan program of China(No.2015AA01 A706)+2 种基金Science Foundation of Beijing Education Commission(No.KM201511232011)Science Fundation of Beijing Information Science & Technology University(No.5211524100)Beijing Nova Program(No.Z161100004916086)
文摘This paper aims to examine the architecture design of a distributed antenna based Gbps wireless communication system using the high frequency band.In order to analyze the feasibility of the higher frequency band applications,the cumulative distribution of simulated user throughput in a cellular is investigated firstly.It shows that capacity improvement can be obtained using higher operating frequency band,especially in hotspot scenarios.Secondly,the architecture of the distributed antenna system(DAS) is introduced to overcome the disadvantages of weak coverage and rank deficient for the traditional multiple-input multiple-output(MIMO) systems using higher frequency bands in line-of-sight(LOS)environments.In addition,a software-defined-radio(SDR) based Gbps wireless transmission system with scalable hardware architecture is designed and implemented.Finally,a demo of outdoor DAS coverage for high data throughput application is given.Field trials show that 1 Gbps data rate and a large coverage in outdoor environments can be achieved over 6.05 GHz.It is proved that the Gbps DAS system at a higher frequency band can be a successful model for future wireless broadband coverage in hotspot scenarios.
基金supported by the National Natural Science Foundation of China(81470084,61463024)the Research Project for Application Foundation of Yunnan Province(2013FB026)+2 种基金the Cultivation Program of Talents of Yunnan Province(KKSY201303048)the Focal Program for Education Department of Yunnan Province(2013Z130)the Brain Information Processing and Brain-computer Interaction Fusion Control of Kunming University Scienceand Technology(Fund of Discipline Direction Team)
文摘Central nerve signal evoked by thoughts can be directly used to control a robot or prosthetic devices without the involvement of the peripheral nerve and muscles.This is a new strategy of human-computer interaction.A method of electroencephalogram(EEG) phase synchronization combined with band energy was proposed to construct a feature vector for pattern recognition of brain-computer interaction based on EEG induced by motor imagery in this paper,rhythm and beta rhythm were first extracted from EEG by band pass filter and then the frequency band energy was calculated by the sliding time window;the instantaneous phase values were obtained using Hilbert transform and then the phase synchronization feature was calculated by the phase locking value(PLV) and the best time interval for extracting the phase synchronization feature was searched by the distribution of the PLV value in the time domain.Finally,discrimination of motor imagery patterns was performed by the support vector machine(SVM).The results showed that the phase synchronization feature more effective in4s-7s and the correct classification rate was 91.4%.Compared with the results achieved by a single EEG feature related to motor imagery,the correct classification rate was improved by 3.5 and4.3 percentage points by combining phase synchronization with band energy.These indicate that the proposed method is effective and it is expected that the study provides a way to improve the performance of the online real-time brain-computer interaction control system based on EEG related to motor imagery.
基金supported by the Program of the Aeronautical Science Foundation of China(2013ZC15003)
文摘This paper investigates the jamming sensing performance of the simultaneous transmit and receive based cognitive anti-jamming(SCAJ) receiver impaired by phase noise in local oscillators(LO) over fading channels. Firstly, energy detection(ED)based on the jamming to noise ratio(JNR) of the high frequency bands SCAJ receiver with phase noise under different channels is analyzed. Then, the probabilities of jamming detection and false alarm in closed-form for the SCAJ receiver are derived. Finally,the modified Bayesian Cramer-Rao bound(BCRB) of jamming sensing for the SCAJ receiver is presented. Simulation results show that the performance degradation of the SCAJ system due to phase noise is more severe than that due to the channel fading in the circumstances where the signal bandwidth(BW) is kept a constant. Moreover, the signal BW has an effect on the phase noise in LO, and the jamming detection probability of the wideband SCAJ receiver with lower phase noise outperforms that of the narrowband receiver using the same center frequency. Furthermore,an accurate phase noise estimation and compensation scheme can improve the jamming detection capability of the SCAJ receiver in high frequency bands and approach to the upper bound.
基金Project supported by the National Natural Science Foundation of China(No.11972050)。
文摘A novel metamaterial plate with subwavelength lever-type resonators is proposed to obtain low frequency broadband band gaps and good sound insulation performance.The band structure is theoretically derived,and the validity of the theoretical method is verified by the finite element method.The formation mechanisms of the band gaps are illustrated by the analysis of the effective dynamic mass density and group velocity.The effect of the lever ratio on the band gaps is analyzed.The results indicate that as the lever ratio increases,the first band gap shifts to lower frequencies,while the bandwidth is widened.Moreover,the sound insulation performance of the proposed metamaterial plate is evaluated via examining the sound transmission loss(STL).Compared with the metamaterial plates without lever accessories,the proposed metamaterial plates with a suitable lever ratio have better sound insulation performance at low frequencies.
基金the Project of National Natural Science Foundation of China (Grant No. 61471395, No. 61301161, and No. 61501510)partly supported by Natural Science Foundation of Jiangsu Province (Grant No. BK20161125 and No. BK20150717)
文摘As the earliest invented and utilized communication approach, shortwave, known as high frequency(HF) communication now experience the deterioration of HF electromagnetic environment. Finding quality frequency in efficient manner becomes one of the key challenges in HF communication. Spectrum prediction infers the future spectrum status from history spectrum data by exploring the inherent correlations and regularities. The investigation of HF electromagnetic environment data reveals the correlations and predictability of HF frequency band in both time and frequency domain. To solve this problem, we develop a Spectrum Prediction-based Frequency Band Pre-selection(SP-FBP) for HF communications. The pre-selection of HF frequency band mainly incorporated in prediction of HF spectrum occupancy and prediction of HF usable frequency, which provide the frequency band ranking of spectrum occupancy and alternative frequency for spectrum sensing, respectively. Performance evaluation via real-world HF spectrum data shows that SP-FBP significantly improves the efficiency of finding quality frequency in HF communications.
基金This work was supported by the Program of the National Natural Science Foundation of China(61988101,61773405,and 61751312).
文摘Cell voltage is a widely used signal that can be measured online from an industrial aluminum electrolysis cell.A variety of parameters for the analysis and control of industrial cells are calculated using the cell voltage.In this paper,the frequency segmentation of cell voltage is used as the basis for designing filters to obtain these parameters.Based on the qualitative analysis of the cell voltage,the sub-band instantaneous energy spectrum(SIEP)is first proposed,which is then used to quantitatively represent the characteristics of the designated frequency bands of the cell voltage under various cell conditions.Ultimately,a cell condition-sensitive frequency segmentation method is given.The proposed frequency segmentation method divides the effective frequency band into the[0,0.001]Hz band of lowfrequency signals and the[0.001,0.050]Hz band of low-frequency noise,and subdivides the lowfrequency noise into the[0.001,0.010]Hz band of metal pad abnormal rolling and the[0.01,0.05]Hz band of sub-low-frequency noise.Compared with the instantaneous energy spectrum based on empirical mode decomposition,the SIEP more finely represents the law of energy change with time in any designated frequency band within the effective frequency band of the cell voltage.The proposed frequency segmentation method is more sensitive to cell condition changes and can obtain more elaborate details of online cell condition information,thus providing a more reliable and accurate online basis for cell condition monitoring and control decisions.
基金Supported by the Natural Science Foundation of Liaoning Province of China under Grant No. 20062040
文摘The frequency in middle of magnon energy band in a five-layer ferromagnetic superlattice is studied by using the linear spin-wave approach and Green's function technique. It is found that four energy gaps and corresponding four frequencie in middle of energy gaps exist in the magnon band along Kx direction perpendicular to the superlattice plane. The spin quantum numbers and the interlayer exchange couplings all affect the four frequencies in middle of the energy gaps. When all interlayer exchange couplings are same, the effect of spin quantum numbers on the frequency wg1 in middle of the energy gap Δw12 is complicated, and the frequency wg1 depends on the match of spin quantum numbers in each layer. Meanwhile, the frequencies wg2, wg3, and wg4 in middle of other energy gaps increase monotonously with increasing spin quantum numbers. When the spin quantum numbers in each layer are same, the frequencies wg1, wg2, wg3, and wg4 all increase monotonously with increasing interlayer exchange couplings.
基金supported by the National Natural Science Foundation of China (Grant No. 51207060)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20090142110004)
文摘We propose an ultrathin wide-band metamaterial absorber (MA) based on a Minkowski (MIK) fractal frequency selective surface and resistive film. This absorber consists of a periodic arrangement of dielectric substrates sandwiched with an MIK fractal loop structure electric resonator and a resistive film. The finite element method is used to simulate and analyze the absorption of the MA. Compared with the MA-backed copper film, the designed MA-backed resistive film exhibits an absorption of 90% at a frequency region of 2 GHz-20 GHz. The power loss density distribution of the MA is further illustrated to explain the mechanism of the proposed MA. Simulated absorptions at different incidence cases indicate that this absorber is polarization-insensitive and wide-angled. Finally, further simulated results indicate that the surface resistance of the resistive film and the dielectric constant of the substrate can affect the absorbing property of the MA. This absorber may be used in many military fields.
文摘Due to the very high demand for Internet data capacity from mobile and fixed customers as well as the saturation of conventional frequency bands by numerous services, many countries have opened the E band, for broadcasting services. E-band involves the creation of a significant number of links in a given area. The present work addressed the problem that arises in the context of transmission is that of assigning the frequencies of this band to these multiple transmission links. The aim of this work is to study and plan the radio links of the 80 GHz frequency and to implement them in a tool in order to define an optimal distribution on the telecommunications network by guaranteeing maximum flow of data traffic while minimizing the interference. The contribution of this work is part of its unique subject: the planning of E-band frequencies for improving the quality of service of transmission in the network of telecommunications operators. Also, it intends to contribute to the resolution of unsatisfied situations of poor planning of E-band radio frequencies in telecommunications networks. With the aim of opening several opportunities for alternative high-speed data transport solutions, our work has helped prove that E-band transmission links are very efficient with capacities in the gigabyte range.
基金supported by the Hubei Natural Science Foundation of China underGrant No. 2010CDB02706the Fundamental Research Funds for the Central Universities under Grant No. C2009Q060
文摘The need for wide-band clock and data recovery (CDR) circuits is discussed. A 2 Gbps to 12 Gbps continuous-rate CDR circuit employing a multi-mode voltage-control oscillator (VCO), a frequency detector, and a phase detector (FD&PD) is described. A new automatic frequency band selection (FBS) without external reference clock is proposed to select the appropriate mode and also solve the instability problem when the circuit is powering on. The multi-mode VCO and FD/PD circuits which can operate at full-rate and half-rate modes facilitate CDR with six operation modes. The proposed CDR structure has been modeled with MATLAB and the simulated results validate its feasibility.
基金supported by the National Natural Science Foundation of China(90305026).
文摘Traditional multi-band frequency selective surface (FSS) approaches are hard to achieve a perfect resonance response in a wide band due to the limit of the onset grating lobe frequency determined by the array. To solve this problem, an approach of combining elements in different period to build a hybrid array is presented. The results of series of numerical simulation show that multi-periodicity combined element FSS, which are designed using this approach, usually have much weaker grating lobes than the traditional FSS. Furthermore, their frequency response can be well predicted through the properties of their member element FSS. A prediction method for estimating the degree of expected grating lobe energy loss in designing multi-band FSS using this approach is provided.
文摘Theoretical calculations predict transition frequencies in the terahertz range for the field-effect transistors based on carbon nanotubes, and this shows their suitability for being used in high frequency applications. In this paper, we have designed a field-effect transistor based on carbon nanotube with high transition frequency suitable for ultra-wide band applications. We did this by optimizing nanotube diameter, gate insulator thickness and dielectric constant. As a result, we achieved the transition frequency about 7.45 THz. The environment of open source software FETToy is used to simulate the device. Also a suitable model for calculating the transition frequency is presented.
基金Supported by the Natural Science Foundation of China,No.81901373the Intelligent Medicine Research Project of Chongqing Medical University,No.ZHYX202126.
文摘BACKGROUND Major depressive disorder(MDD)tends to have a high incidence and high suicide risk.Electroconvulsive therapy(ECT)is currently a relatively effective treatment for MDD.However,the mechanism of efficacy of ECT is still unclear.AIM To investigate the changes in the amplitude of low-frequency fluctuations in specific frequency bands in patients with MDD after ECT.METHODS Twenty-two MDD patients and fifteen healthy controls(HCs)were recruited to this study.MDD patients received 8 ECT sessions with bitemporal placement.Resting-state functional magnetic resonance imaging was adopted to examine regional cerebellar blood flow in both the MDD patients and HCs.The MDD patients were scanned twice(before the first ECT session and after the eighth ECT session)to acquire data.Then,the amplitude of low-frequency fluctuations(ALFF)was computed to characterize the intrinsic neural oscillations in different bands(typical frequency,slow-5,and slow-4 bands).RESULTS Compared to before ECT(pre-ECT),we found that MDD patients after the eighth ECT(post-ECT)session had a higher ALFF in the typical band in the right middle frontal gyrus,posterior cingulate,right supramarginal gyrus,left superior frontal gyrus,and left angular gyrus.There was a lower ALFF in the right superior temporal gyrus.Compared to pre-ECT values,the ALFF in the slow-5 band was significantly increased in the right limbic lobe,cerebellum posterior lobe,right middle orbitofrontal gyrus,and frontal lobe in post-ECT patients,whereas the ALFF in the slow-5 band in the left sublobar region,right angular gyrus,and right frontal lobe was lower.In contrast,significantly higher ALFF in the slow-4 band was observed in the frontal lobe,superior frontal gyrus,parietal lobe,right inferior parietal lobule,and left angular gyrus.CONCLUSION Our results suggest that the abnormal ALFF in pre-and post-ECT MDD patients may be associated with specific frequency bands.
文摘This paper designs a simulation experiment model of the overall structure of time-division multiplexing digital optimal frequency band transmission system based on MATLAB simulation platform. The parameters of each module in the simulation model are set. The working process and performance of the time-division multiplexing digital optimal band transmission system are simulated. The simulation results show that the digital optimal band transmission system achieves the best transmission receiving conditions and performance, and the designed time-division multiplexing optimal digital band transmission simulation system achieves its functions. The research in this paper will help to improve the level of digital communication technology and to understand the structure of time-division multiplexing digital optimal band transmission system.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60871027,60901029 and 61071058)the National Basic Research Program of China(Grant No.2009CB623306)+2 种基金the Research Fund of Shaanxi Key Laboratory of Electronic Information System Integration,China(Grant No.201114Y11)the Postdoctoral Science Foundation of China(Grant No.20100481327)the Natural Science Foundation of Shaanxi Province,China(Grant No.2011JQ8031)
文摘A new technique of designing a dual-band frequency selective surface with large band separation is presented.This technique is based on a delicately designed topology of L-and Ku-band microwave filters.The two band-pass responses are generated by a capacitively-loaded square-loop frequency selective surface and an aperture-coupled frequency selective surface,respectively.A Faraday cage is located between the two frequency selective surface structures to eliminate undesired couplings.Based on this technique,a dual-band frequency selective surface with large band separation is designed,which possesses large band separation,high selectivity,and stable performance under various incident angles and different polarizations.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60871027, 60901029, and 61071058)the National Basic Research Program of China (Grant No. 2009CB623306)+1 种基金the Research Fund of Shaanxi Key Laboratory of Electronic Information System Integration, China (Grant No. 201114Y11)the Postdoctoral Science Foundation of China (Grant No. 20100481327)
文摘Based on the substrate integrated waveguide technology, we present a dual-band frequency selective surface (FSS) with a quasi-elliptic bandpass response. The characteristics of the quasi-elliptic bandpass response are realized by shunting two substrate integrated waveguide cavities of different sizes, with the same slots on both sides of the metal surfaces. Four cavities of different sizes and two slots of different sizes are used to design the novel FSS. Every bandpass response with sharp sidebands is induced by two transmission nulls that are generated by the coupling between the slot aperture resonance and the cavity resonance. The simulation results show that such dual-band FSS has the advantages of high selectivity and stable performance at different oblique incident angles. Moreover, it is easy to fabricate.
基金Supported by the National Basic Research Program of China(No.2010CB327404)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘An adjustable mixer for surface acoustic wave( SAW)-less radio frequency( RF) front-end is presented in this paper. Through changing the bias voltage,the presented mixer with reconfigurable voltage conversion gain( VCG) is suitable for multi-mode multi-standard( MMMS) applications. An equivalent local oscillator( LO) frequency-tunable high-Q band-pass filter( BPF) at low noise amplifier( LNA) output is used to reject the out-of-band interference signals. Base-band( BB) capacitor of the mixer is variable to obtain 15 kinds of intermediate frequency( IF) bandwidth( BW). The proposed passive mixer with LNA is implemented in TSMC 0. 18μm RF CMOS process and operates from 0. 5 to 2. 5 GHz with measured maximum out-of-band rejection larger than 40 d B. The measured VCG of the front-end can be changed from 5 to 17 d B; the maximum input intercept point( IIP3) is0 d Bm and the minimum noise figure( NF) is 3. 7 d B. The chip occupies an area of 0. 44 mm^2 including pads.