To fully utilize the diversity of multi-radio, a new parallel transmission method for wireless mesh network is proposed. Compared with conventional packet transmission which follows “one flow on one radio”, it uses ...To fully utilize the diversity of multi-radio, a new parallel transmission method for wireless mesh network is proposed. Compared with conventional packet transmission which follows “one flow on one radio”, it uses the radio diversity to transmit the packets on different radios simultaneously. Three components are presented to achieve parallel-transmission, which are control module, selection module and schedule module. A localized selecting algorithm selects the right radios based on the quality of wireless links. Two kinds of distributed scheduling algorithms are implemented to transmit packets on the selected radios. Finally, a parallel-adaptive routing metric is presented. Simulation results by NS2 show that this parallel-transmission scheme could enhance the average throughput of network by more than 10%.展开更多
Wolbachia are maternally inherited endosymbiotic bacteria infecting a wide range of arthropods and filarial nematodes. They can induce various reproduction alterations in their hosts, including thelytokous parthenogen...Wolbachia are maternally inherited endosymbiotic bacteria infecting a wide range of arthropods and filarial nematodes. They can induce various reproduction alterations in their hosts, including thelytokous parthenogenesis, cytoplasmic incompatibility (CI), feminization of genetic males and male killing. Here we investigated diversity and prevalence patterns of Wolbachia infection in 43 geographical populations of the Asian corn borer, Ostriniafurnacalis, in China and one population in North Korea. Based on Wolbachia surface protein gene (wsp) sequences, nine strains of Wolbachia (wFurl-wFur9), belonging to supergroups A and B, were identified in populations of O. furnacalis with an average infection rate of 10.5%. Superinfection commonly appeared in individuals of O. furnacalis and coinfection patterns were very complex. There was no specific pattern for the prevalence and distribution of the nine Wolbachia strains suggesting an intricate evolutionary history of Wolbachia infection in this species. The genetic similarity of the wFurl-wFur9 strains with those detected in two parasitoids of O. furnacalis, Macrocentrus cingulum and Lydella grisescens, strongly suggests host-parasitoid horizontal transmission.展开更多
The hallmark of HIV-1 is its extensive genetic diversity that emanates mainly from high mutations. Phylogenetically, HIV can be classified into geographically confined groups, types, subtypes and circulating recombina...The hallmark of HIV-1 is its extensive genetic diversity that emanates mainly from high mutations. Phylogenetically, HIV can be classified into geographically confined groups, types, subtypes and circulating recombinant forms (CRFs) that are however subject to change over time. HIV genetic diversity may partially explain the observed heterogeneity in HIV prevalence and has also been reported to impact on viral transmissibility and differential rates of disease progression. The aim of this review is to present a simple overview of the principles and concepts of HIV diversity and classification. Tracking the presence of new HIV strains is not only important for surveillance purposes but is also critical in facilitating personalized targeted therapy as well as forming the basis for development of the much anticipated effective vaccines against this scourge.展开更多
Influenza A virus(IAV)shows an extensive host range and rapid genomic variations,leading to continuous emergence of novel viruses with significant antigenic variations and the potential for cross-species transmission....Influenza A virus(IAV)shows an extensive host range and rapid genomic variations,leading to continuous emergence of novel viruses with significant antigenic variations and the potential for cross-species transmission.This causes global pandemics and seasonal flu outbreaks,posing sustained threats worldwide.Thus,studying all IAVs'evolutionary patterns and underlying mechanisms is crucial for effective prevention and control.We developed FluTyping to identify IAV genotypes,to explore overall genetic diversity patterns and their restriction factors.FluTyping groups isolates based on genetic distance and phylogenetic relationships using whole genomes,enabling identification of each isolate's genotype.Three distinct genetic diversity patterns were observed:one genotype domination pattern comprising only H1N1 and H3N2 seasonal influenza subtypes,multi-genotypes cocirculation pattern including majority avian influenza subtypes and swine influenza H1N2,and hybrid-circulation pattern involving H7N9 and three H5 subtypes of influenza viruses.Furthermore,the IAVs in multi-genotypes cocirculation pattern showed region-specific dominant genotypes,implying the restriction of virus transmission is a key factor contributing to distinct genetic diversity patterns,and the genomic evolution underlying different patterns was more influenced by host-specific factors.In summary,a comprehensive picture of the evolutionary patterns of overall IAVs is provided by the FluTyping's identified genotypes,offering important theoretical foundations for future prevention and control of these viruses.展开更多
IEEE 802.11 WLAN cannot guarantee the QoS of applications, thus admission control has been proposed as an essen-tial solution to enhance the QoS. Packet delay and throughput are commonly employed as assessment criteri...IEEE 802.11 WLAN cannot guarantee the QoS of applications, thus admission control has been proposed as an essen-tial solution to enhance the QoS. Packet delay and throughput are commonly employed as assessment criterions to determine whether a new connection can be admitted into the WLAN. Considering the real network condition, the analytical model is presented in this paper, which is aimed to evaluate the packet delay and throughput performance of IEEE 802.11 WLAN in nonsaturated conditions, taking into account diverse transmission rates and diverse traffic flows (i.e. flows with different packet sizes and arrival rates) simultaneously. This model is based on Markov chain and the theoretical predictions are verified by simulation in OPNET 14.5. We also analyze the influences of transmission rate diversity and traffic flow diversity on throughput performance. It is observed that, the presence of even one station with lower transmission rate can cause a considerable degradation in throughput performance of all the stations when they have the same packet size and arrival rate. Higher system throughput can be achieved if lower transmission rate stations transmit packets with smaller size or arrival rate.展开更多
Several space-time coding based transmit diversity techniques for wideband code division multiple access (WCDMA) systems with four transmitter antennas are investigated. Performances of the rake receivers are analyzed...Several space-time coding based transmit diversity techniques for wideband code division multiple access (WCDMA) systems with four transmitter antennas are investigated. Performances of the rake receivers are analyzed and compared with those of the multi-antenna receive diversity techniques. Theoretical analysis shows that the multi-antenna transmit diversity techniques provide considerable performance gain at the mobile receiver in the wireless channel with less inherent multipath diversity, especially the G4 coding based scheme. Compared with the multi-antenna receive diversity techniques with the same diversity order, the transmit diversity techniques introduce much more multi-access plus multipath interference and require measures of interference suppression in the multi-user environments.展开更多
Different viruses transmit among hosts with different degrees of efficiency. A basic reproductive number(R0) indicates an average number of cases getting infected from a single infected case. R0 can vary widely from a...Different viruses transmit among hosts with different degrees of efficiency. A basic reproductive number(R0) indicates an average number of cases getting infected from a single infected case. R0 can vary widely from a little over 1 to more than 10. Low R0 is usually found among rapidly evolving viruses that are often under a strong positive selection pressure, while high R0 is often found among viruses that are highly stable. The reason for the difference between antigenically diverse viruses with low R0, such as influenza A virus, and antigenically stable viruses with high R0, such as measles virus, is not clear and has been a subject of great interest. Optimization of transmissibility fitness considering intra-host dynamics and inter-host transmissibility was shown to result in strategies for tradeoff between transmissibility and diversity. The nature of transmission, targeting either a na?ve children population or an adult population with partial immunity, has been proposed as a contributing factor for the difference in the strategies used by the two groups of viruses. The R0 determines the levels of threshold heard immunity. Lower R0 requires lowerherd immunity to terminate an outbreak. Therefore, it can be assumed that the outbreak saturation can be reached more readily when the R0 is low. In addition, one may assume that when the outbreak saturation is reached, herd immunity may provide a strong positive selection pressure that could possibly result in an occurrence of escape mutants. Studies of these hypotheses will give us an important insight into viral evolution. This review discusses the above hypotheses as well as some possible mechanistic explanation for the difference in transmission efficiency of展开更多
Magnetotactic bacteria(MTB)are morphologically and phylogenetically diverse prokaryotes commonly able to produce magnetic nanocrystals within intracellular membrane-bound organelles(i.e.,magnetosomes)and to swim along...Magnetotactic bacteria(MTB)are morphologically and phylogenetically diverse prokaryotes commonly able to produce magnetic nanocrystals within intracellular membrane-bound organelles(i.e.,magnetosomes)and to swim along geomagnetic field lines.We studied the diversity of MTB in the samples collected from a mangrove area in the Sanya River,Hainan,South China,using microscopic and microbial phylogenetic methods.Results of microanalysis and observation in microscopy and energy dispersive X-ray spectroscopy(EDXS)reveal a highly morphological diversity of MTB including unicellular cocci,vibrios,rod-shaped bacteria,and three morphotypes of multicellular magnetotactic prokaryotes(MMPs).In addition,analysis of the 16S rRNA gene showed that these MTB were clustered into 16 operational taxonomic units affi liated to the Alpha-,Delta-,and Gamma-proteobacteria classes within the Proteobacteria phylum.Meanwhile,by using the coupled fluorescence and transmission electron microscopy analysis,rodshaped bacteria,vibrio,and cocci were phylogenetically and structurally identified at the single-cell level.This study demonstrated highly diverse MTB communities in the mangrove ecosystem and provide a new insight into the overall diversity of MTB.展开更多
Bats are reservoirs for multiple coronaviruses(Co Vs).However,the phylogenetic diversity and transmission of global bat-borne Co Vs remain poorly understood.Here,we performed a Bayesian phylogeographic analysis based ...Bats are reservoirs for multiple coronaviruses(Co Vs).However,the phylogenetic diversity and transmission of global bat-borne Co Vs remain poorly understood.Here,we performed a Bayesian phylogeographic analysis based on 3,594 bat Co V Rd Rp gene sequences to study the phylogenetic diversity and transmission of bat-borne Co Vs and the underlying driving factors.We found that host-switching events occurred more frequently forα-Co Vs than forβ-Co Vs,and the latter was highly constrained by bat phylogeny.Bat species in the families Molossidae,Rhinolophidae,Miniopteridae,and Vespertilionidae had larger contributions to the cross-species transmission of bat Co Vs.Regions of eastern and southern Africa,southern South America,Western Europe,and Southeast Asia were more frequently involved in cross-region transmission events of bat Co Vs than other regions.Phylogenetic and geographic distances were the most important factors limiting Co V transmission.Bat taxa and global geographic hotspots associated with bat Co V phylogenetic diversity were identified,and bat species richness,mean annual temperature,global agricultural cropland,and human population density were strongly correlated with the phylogenetic diversity of bat Co Vs.These findings provide insight into bat Co Vevolution and ecological transmission among bat taxa.The identified hotspots of bat Co V evolution and transmission will guide early warnings of bat-borne Co V zoonotic diseases.展开更多
In free-space optical(FSO) communications, the performance of the communication systems is severely degraded by atmospheric turbulence. Channel coding and diversity techniques are commonly used to combat channel fadin...In free-space optical(FSO) communications, the performance of the communication systems is severely degraded by atmospheric turbulence. Channel coding and diversity techniques are commonly used to combat channel fading induced by atmospheric turbulence. In this paper, we present the generalized block Markov superposition transmission(GBMST) of repetition codes to improve time diversity. In the GBMST scheme, information sub-blocks are transmitted in the block Markov superposition manner, with possibly different transmission memories. Based on analyzing an equivalent system, a lower bound on the bit-error-rate(BER) of the proposed scheme is presented. Simulation results demonstrate that, under a wide range of turbulence conditions, the proposed scheme improves diversity gain with only a slight reduction of transmission rate. In particular, with encoding memory sequence(0, 0, 8) and transmission rate 1/3, a diversity order of eleven is achieved under moderate turbulence conditions. Numerical results also show that, the GBMST systems with appropriate settings can approach the derived lower bound, implying that full diversity is achievable.展开更多
Invertebrate species are a natural reservoir of viral genetic diversity,and invertebrate pests are widely distributed in crop fields.However,information on viruses infecting invertebrate pests of crops is limited.In t...Invertebrate species are a natural reservoir of viral genetic diversity,and invertebrate pests are widely distributed in crop fields.However,information on viruses infecting invertebrate pests of crops is limited.In this report,we describe the deep metatranscriptomic sequencing of 88 invertebrate samples covering all major invertebrate pests in rice fields.We identified 296 new RNA viruses and 13 known RNA viruses.These viruses clustered within 31 families,with many highly divergent viruses constituting potentially new families and genera.Of the identified viruses,13 RNA viruses clustered within the Fiersviridae family of bacteriophages,and 48 RNA viruses clustered within families and genera of mycoviruses.We detected known rice viruses in novel invertebrate hosts at high abundances.Furthermore,some novel RNA viruses have genome structures closely matching to known plant viruses and clustered within genera of several plant virus species.Fortyfive potential insect pathogenic RNA viruses were detected in invertebrate species.Our analysis revealed that host taxonomy plays a major role and geographical location plays an important role in structuring viral diversity.Cross-species transmission of RNA viruses was detected between invertebrate hosts.Newly identified viral genomes showed extensive variation for invertebrate viral families or genera.Together,the large-scale metatranscriptomic analysis greatly expands our understanding of RNA viruses in rice invertebrate species,the results provide valuable information for developing efficient strategies to manage insect pests and virus-mediated crop diseases.展开更多
文摘To fully utilize the diversity of multi-radio, a new parallel transmission method for wireless mesh network is proposed. Compared with conventional packet transmission which follows “one flow on one radio”, it uses the radio diversity to transmit the packets on different radios simultaneously. Three components are presented to achieve parallel-transmission, which are control module, selection module and schedule module. A localized selecting algorithm selects the right radios based on the quality of wireless links. Two kinds of distributed scheduling algorithms are implemented to transmit packets on the selected radios. Finally, a parallel-adaptive routing metric is presented. Simulation results by NS2 show that this parallel-transmission scheme could enhance the average throughput of network by more than 10%.
基金funded by China Agriculture Research System(CARS-02)
文摘Wolbachia are maternally inherited endosymbiotic bacteria infecting a wide range of arthropods and filarial nematodes. They can induce various reproduction alterations in their hosts, including thelytokous parthenogenesis, cytoplasmic incompatibility (CI), feminization of genetic males and male killing. Here we investigated diversity and prevalence patterns of Wolbachia infection in 43 geographical populations of the Asian corn borer, Ostriniafurnacalis, in China and one population in North Korea. Based on Wolbachia surface protein gene (wsp) sequences, nine strains of Wolbachia (wFurl-wFur9), belonging to supergroups A and B, were identified in populations of O. furnacalis with an average infection rate of 10.5%. Superinfection commonly appeared in individuals of O. furnacalis and coinfection patterns were very complex. There was no specific pattern for the prevalence and distribution of the nine Wolbachia strains suggesting an intricate evolutionary history of Wolbachia infection in this species. The genetic similarity of the wFurl-wFur9 strains with those detected in two parasitoids of O. furnacalis, Macrocentrus cingulum and Lydella grisescens, strongly suggests host-parasitoid horizontal transmission.
文摘The hallmark of HIV-1 is its extensive genetic diversity that emanates mainly from high mutations. Phylogenetically, HIV can be classified into geographically confined groups, types, subtypes and circulating recombinant forms (CRFs) that are however subject to change over time. HIV genetic diversity may partially explain the observed heterogeneity in HIV prevalence and has also been reported to impact on viral transmissibility and differential rates of disease progression. The aim of this review is to present a simple overview of the principles and concepts of HIV diversity and classification. Tracking the presence of new HIV strains is not only important for surveillance purposes but is also critical in facilitating personalized targeted therapy as well as forming the basis for development of the much anticipated effective vaccines against this scourge.
基金supported by the National Key Plan for Scientific Research and Development of China(2021YFC2301305 and 2021YFC2302001)the National Natural Science Foundation of China(32370703,92169106,9216910042 and 32070678)+2 种基金the CAMS Innovation Fund for Medical Science(2022-I2M-1-021,2021-I2M-1-051)the Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences(2021-PT180-001)the Emergency Key Program of Guangzhou Laboratory(grant EKPG21-12).
文摘Influenza A virus(IAV)shows an extensive host range and rapid genomic variations,leading to continuous emergence of novel viruses with significant antigenic variations and the potential for cross-species transmission.This causes global pandemics and seasonal flu outbreaks,posing sustained threats worldwide.Thus,studying all IAVs'evolutionary patterns and underlying mechanisms is crucial for effective prevention and control.We developed FluTyping to identify IAV genotypes,to explore overall genetic diversity patterns and their restriction factors.FluTyping groups isolates based on genetic distance and phylogenetic relationships using whole genomes,enabling identification of each isolate's genotype.Three distinct genetic diversity patterns were observed:one genotype domination pattern comprising only H1N1 and H3N2 seasonal influenza subtypes,multi-genotypes cocirculation pattern including majority avian influenza subtypes and swine influenza H1N2,and hybrid-circulation pattern involving H7N9 and three H5 subtypes of influenza viruses.Furthermore,the IAVs in multi-genotypes cocirculation pattern showed region-specific dominant genotypes,implying the restriction of virus transmission is a key factor contributing to distinct genetic diversity patterns,and the genomic evolution underlying different patterns was more influenced by host-specific factors.In summary,a comprehensive picture of the evolutionary patterns of overall IAVs is provided by the FluTyping's identified genotypes,offering important theoretical foundations for future prevention and control of these viruses.
文摘IEEE 802.11 WLAN cannot guarantee the QoS of applications, thus admission control has been proposed as an essen-tial solution to enhance the QoS. Packet delay and throughput are commonly employed as assessment criterions to determine whether a new connection can be admitted into the WLAN. Considering the real network condition, the analytical model is presented in this paper, which is aimed to evaluate the packet delay and throughput performance of IEEE 802.11 WLAN in nonsaturated conditions, taking into account diverse transmission rates and diverse traffic flows (i.e. flows with different packet sizes and arrival rates) simultaneously. This model is based on Markov chain and the theoretical predictions are verified by simulation in OPNET 14.5. We also analyze the influences of transmission rate diversity and traffic flow diversity on throughput performance. It is observed that, the presence of even one station with lower transmission rate can cause a considerable degradation in throughput performance of all the stations when they have the same packet size and arrival rate. Higher system throughput can be achieved if lower transmission rate stations transmit packets with smaller size or arrival rate.
基金TheNationalNaturalScienceFoundationofChina (No .60 3 90 5 40 ) .
文摘Several space-time coding based transmit diversity techniques for wideband code division multiple access (WCDMA) systems with four transmitter antennas are investigated. Performances of the rake receivers are analyzed and compared with those of the multi-antenna receive diversity techniques. Theoretical analysis shows that the multi-antenna transmit diversity techniques provide considerable performance gain at the mobile receiver in the wireless channel with less inherent multipath diversity, especially the G4 coding based scheme. Compared with the multi-antenna receive diversity techniques with the same diversity order, the transmit diversity techniques introduce much more multi-access plus multipath interference and require measures of interference suppression in the multi-user environments.
基金Supported by The Office of the Higher Education Commission and Mahidol University under the National Research Universities Initiative
文摘Different viruses transmit among hosts with different degrees of efficiency. A basic reproductive number(R0) indicates an average number of cases getting infected from a single infected case. R0 can vary widely from a little over 1 to more than 10. Low R0 is usually found among rapidly evolving viruses that are often under a strong positive selection pressure, while high R0 is often found among viruses that are highly stable. The reason for the difference between antigenically diverse viruses with low R0, such as influenza A virus, and antigenically stable viruses with high R0, such as measles virus, is not clear and has been a subject of great interest. Optimization of transmissibility fitness considering intra-host dynamics and inter-host transmissibility was shown to result in strategies for tradeoff between transmissibility and diversity. The nature of transmission, targeting either a na?ve children population or an adult population with partial immunity, has been proposed as a contributing factor for the difference in the strategies used by the two groups of viruses. The R0 determines the levels of threshold heard immunity. Lower R0 requires lowerherd immunity to terminate an outbreak. Therefore, it can be assumed that the outbreak saturation can be reached more readily when the R0 is low. In addition, one may assume that when the outbreak saturation is reached, herd immunity may provide a strong positive selection pressure that could possibly result in an occurrence of escape mutants. Studies of these hypotheses will give us an important insight into viral evolution. This review discusses the above hypotheses as well as some possible mechanistic explanation for the difference in transmission efficiency of
基金Supported by the Project of Academy Locality Science and Technology Cooperation of Sanya City,China(No.2014YD02)the National Natural Science Foundation of China(No.41920104009)。
文摘Magnetotactic bacteria(MTB)are morphologically and phylogenetically diverse prokaryotes commonly able to produce magnetic nanocrystals within intracellular membrane-bound organelles(i.e.,magnetosomes)and to swim along geomagnetic field lines.We studied the diversity of MTB in the samples collected from a mangrove area in the Sanya River,Hainan,South China,using microscopic and microbial phylogenetic methods.Results of microanalysis and observation in microscopy and energy dispersive X-ray spectroscopy(EDXS)reveal a highly morphological diversity of MTB including unicellular cocci,vibrios,rod-shaped bacteria,and three morphotypes of multicellular magnetotactic prokaryotes(MMPs).In addition,analysis of the 16S rRNA gene showed that these MTB were clustered into 16 operational taxonomic units affi liated to the Alpha-,Delta-,and Gamma-proteobacteria classes within the Proteobacteria phylum.Meanwhile,by using the coupled fluorescence and transmission electron microscopy analysis,rodshaped bacteria,vibrio,and cocci were phylogenetically and structurally identified at the single-cell level.This study demonstrated highly diverse MTB communities in the mangrove ecosystem and provide a new insight into the overall diversity of MTB.
基金supported by the National Natural Science Foundation of China(32192420)the Special Foundation for National Science and Technology Basic Research Program of China(2021FY100304)。
文摘Bats are reservoirs for multiple coronaviruses(Co Vs).However,the phylogenetic diversity and transmission of global bat-borne Co Vs remain poorly understood.Here,we performed a Bayesian phylogeographic analysis based on 3,594 bat Co V Rd Rp gene sequences to study the phylogenetic diversity and transmission of bat-borne Co Vs and the underlying driving factors.We found that host-switching events occurred more frequently forα-Co Vs than forβ-Co Vs,and the latter was highly constrained by bat phylogeny.Bat species in the families Molossidae,Rhinolophidae,Miniopteridae,and Vespertilionidae had larger contributions to the cross-species transmission of bat Co Vs.Regions of eastern and southern Africa,southern South America,Western Europe,and Southeast Asia were more frequently involved in cross-region transmission events of bat Co Vs than other regions.Phylogenetic and geographic distances were the most important factors limiting Co V transmission.Bat taxa and global geographic hotspots associated with bat Co V phylogenetic diversity were identified,and bat species richness,mean annual temperature,global agricultural cropland,and human population density were strongly correlated with the phylogenetic diversity of bat Co Vs.These findings provide insight into bat Co Vevolution and ecological transmission among bat taxa.The identified hotspots of bat Co V evolution and transmission will guide early warnings of bat-borne Co V zoonotic diseases.
基金partially supported by the Basic Research Project of Guangdong Provincial Natural Science Foundation (No.2016A030308008)the National Natural Science Foundation of China (No.91438101 and No.61501206)the National Basic Research Program of China (973 Program) (No.2012CB316100)
文摘In free-space optical(FSO) communications, the performance of the communication systems is severely degraded by atmospheric turbulence. Channel coding and diversity techniques are commonly used to combat channel fading induced by atmospheric turbulence. In this paper, we present the generalized block Markov superposition transmission(GBMST) of repetition codes to improve time diversity. In the GBMST scheme, information sub-blocks are transmitted in the block Markov superposition manner, with possibly different transmission memories. Based on analyzing an equivalent system, a lower bound on the bit-error-rate(BER) of the proposed scheme is presented. Simulation results demonstrate that, under a wide range of turbulence conditions, the proposed scheme improves diversity gain with only a slight reduction of transmission rate. In particular, with encoding memory sequence(0, 0, 8) and transmission rate 1/3, a diversity order of eleven is achieved under moderate turbulence conditions. Numerical results also show that, the GBMST systems with appropriate settings can approach the derived lower bound, implying that full diversity is achievable.
基金This work was supported by the National Natural Science Foundation of China(31972983,32072487)the Key Technology R&D Program of Zhejiang Province(2021C02006)the Central Public-interest Scientific Institution Basal Research Fund(CPSIBRF-CNRRI-202115).
文摘Invertebrate species are a natural reservoir of viral genetic diversity,and invertebrate pests are widely distributed in crop fields.However,information on viruses infecting invertebrate pests of crops is limited.In this report,we describe the deep metatranscriptomic sequencing of 88 invertebrate samples covering all major invertebrate pests in rice fields.We identified 296 new RNA viruses and 13 known RNA viruses.These viruses clustered within 31 families,with many highly divergent viruses constituting potentially new families and genera.Of the identified viruses,13 RNA viruses clustered within the Fiersviridae family of bacteriophages,and 48 RNA viruses clustered within families and genera of mycoviruses.We detected known rice viruses in novel invertebrate hosts at high abundances.Furthermore,some novel RNA viruses have genome structures closely matching to known plant viruses and clustered within genera of several plant virus species.Fortyfive potential insect pathogenic RNA viruses were detected in invertebrate species.Our analysis revealed that host taxonomy plays a major role and geographical location plays an important role in structuring viral diversity.Cross-species transmission of RNA viruses was detected between invertebrate hosts.Newly identified viral genomes showed extensive variation for invertebrate viral families or genera.Together,the large-scale metatranscriptomic analysis greatly expands our understanding of RNA viruses in rice invertebrate species,the results provide valuable information for developing efficient strategies to manage insect pests and virus-mediated crop diseases.