On the basis of input-output table of Henan Province and China in 2007, this paper advances a simple method of constructing two-region input-output model using MRIO model, to research the economic link between the ind...On the basis of input-output table of Henan Province and China in 2007, this paper advances a simple method of constructing two-region input-output model using MRIO model, to research the economic link between the industries of Henan Province and the industries of other regions. I summarize the characteristics of this method based on this as follows: when researching inter-regional economic link, the multi-region or two-region input-output model has prominent superiority, and we can conduct preliminary estimation on the multi-region input-output model using location quotient approach.展开更多
Virtual water trade(VWT)provides a new perspective for alleviating water crisis and has thus attracted widespread attention.However,the heterogeneity of virtual water trade inside and outside the river basin and its i...Virtual water trade(VWT)provides a new perspective for alleviating water crisis and has thus attracted widespread attention.However,the heterogeneity of virtual water trade inside and outside the river basin and its influencing factors remains further study.In this study,for better investigating the pattern and heterogeneity of virtual water trade inside and outside provincial regions along the Yellow River Basin in 2015 using the input-output model(MRIO),we proposed two new concepts,i.e.,virtual water surplus and virtual water deficit,and then used the Logarithmic Mean Divisia Index(LMDI)model to identify the inherent mechanism of the imbalance of virtual water trade between provincial regions along the Yellow River Basin and the other four regions in China.The results show that:1)in provincial regions along the Yellow River Basin,the less developed the economy was,the larger the contribution of the agricultural sector in virtual water trade,while the smaller the contribution of the industrial sector.2)Due to the large output of agricultural products,the upstream and midstream provincial regions of the Yellow River Basin had a virtual water surplus,with a net outflow of virtual water of 2.7×10^(8) m^(3) and 0.9×10^(8) m^(3),respectively.3)provincial regions along the Yellow River Basin were in a virtual water deficit with the rest of China,and the decisive factor was the active degree of trade with the outside.This study would be beneficial to illuminate the trade-related water use issues in provincial regions along the Yellow River Basin,which has farreaching practical signific-ance for alleviating water scarcity.展开更多
This study combines multi-regional inputoutput(MRIO)model with linear programming(LP)model to explore economic structure adjustment strategies for the reduction of carbon dioxide(CO_(2))emissions.A particular feature ...This study combines multi-regional inputoutput(MRIO)model with linear programming(LP)model to explore economic structure adjustment strategies for the reduction of carbon dioxide(CO_(2))emissions.A particular feature of this study is the identification of the optimal regulation sequence of final products in various regions to reduce CO_(2)emissions with the minimum loss in gross domestic product(GDP).By using China's MRIO tables 2017 with 28 regions and 42 economic sectors,results show that reduction in final demand leads to simultaneous reductions in GDP and CO_(2)emissions.Nevertheless,certain demand side regulation strategy can be adopted to lower CO_(2)emissions at the smallest loss of economic growth.Several key final products,such as metallurgy,nonmetal,metal,and chemical products,should first be regulated to reduce CO_(2)emissions at the minimum loss in GDP.Most of these key products concentrate in the coastal developed regions in China.The proposed MRIO-LP model considers the inter-relationship among various sectors and regions,and can aid policy makers in designing effective policy for industrial structure adjustment at the regional level to achieve the national environmental and economic targets.展开更多
Given that it was a once-in-a-century emergency event,the confinement measures related to the coronavirus disease 2019(COVID-19)pandemic caused diverse disruptions and changes in life and work patterns.These changes s...Given that it was a once-in-a-century emergency event,the confinement measures related to the coronavirus disease 2019(COVID-19)pandemic caused diverse disruptions and changes in life and work patterns.These changes significantly affected water consumption both during and after the pandemic,with direct and indirect consequences on biodiversity.However,there has been a lack of holistic evaluation of these responses.Here,we propose a novel framework to study the impacts of this unique global emergency event by embedding an environmentally extended supply-constrained global multi-regional input-output model(MRIO)into the drivers-pressure-state-impact-response(DPSIR)framework.This framework allowed us to develop scenarios related to COVID-19 confinement measures to quantify country-sector-specific changes in freshwater consumption and the associated changes in biodiversity for the period of 2020-2025.The results suggest progressively diminishing impacts due to the implementation of COVID-19 vaccines and the socio-economic system’s self-adjustment to the new normal.In 2020,the confinement measures were estimated to decrease global water consumption by about 5.7% on average across all scenarios when compared with the baseline level with no confinement measures.Further,such a decrease is estimated to lead to a reduction of around 5% in the related pressure on biodiversity.Given the interdependencies and interactions across global supply chains,even those countries and sectors that were not directly affected by the COVID-19 shocks experienced significant impacts:Our results indicate that the supply chain propagations contributed to 79% of the total estimated decrease in water consumption and 84%of the reduction in biodiversity loss on average.Our study demonstrates that the MRIO-enhanced DSPIR framework can help quantify resource pressures and the resultant environmental impacts across supply chains when facing a global emergency event.Further,we recommend the development of more locally based water conservation measures—to mitigate the effects of trade disruptions—and the explicit inclusion of water resources in post-pandemic recovery schemes.In addition,innovations that help conserve natural resources are essential for maintaining environmental gains in the post-pandemic world.展开更多
China has huge differences among its regions in terms of socio-economic development, industrial structure, natural resource endowments, and technological advancement. These differences have created complicated linkage...China has huge differences among its regions in terms of socio-economic development, industrial structure, natural resource endowments, and technological advancement. These differences have created complicated linkages between regions in China. In this study, building upon gravity model and location quotient techniques, we develop a sector-specific model to estimate inter-provincial trade flows, which is the base for making a multi-regional input-output table. In the model, we distinguish sectors with less intra-sector input from those with larger intra-sector input, and assume that the former sectors tend to compete among regions while the latter tend to cooperate among regions. Then we apply this new method of inter-regional trade estimation to three sectors: food and tobacco, metal smelting and proc- essing, and electrical equipment. The results show that selection of bandwidth has a significant impact on the assessment of inter-regional trade. Trade flows are more scattered with the increase of bandwidths. As a result, bandwidth reflects the spatial concentration of geo- graphical activities, which should be distinguishable for different industries. We conclude that the sector-specific spatial model can increase the credibility of estimates of inter-regional trade flows.展开更多
This study uses a multi-regional input-output model to measure the consumption-based transfer of embodied air pollution across provinces in China.Revised direct exhaust emissions are compared under regional and indust...This study uses a multi-regional input-output model to measure the consumption-based transfer of embodied air pollution across provinces in China.Revised direct exhaust emissions are compared under regional and industrial standards to reveal the static volume distribution and dynamic transfer paths.The results show that China is characterized by a net inflow of atmospheric pollution pressure.The amount of interprovincial transfer exhibits a two-level divergence.The distribution of net outflow areas exhibits a certain degree of dispersion and uniformity,whereas net inflow areas exhibit local agglomeration.The main transfer paths are from east to west and south to north.Eastern coastal areas are the primary source of embodied pollution transfer,whereas northern coastal areas and the middle reaches of the Yellow River account for the primary concentrations of pollution inflows.The proportion of major industry contributions approximately conforms to the Pareto principle;different resource endowments may provide comparative advantages and thus distinct distributions.展开更多
Optimizing industrial structure is an important research object of human-economic geography, and it is also the object of government departments to strengthen macro-control. This has become even greater problem that C...Optimizing industrial structure is an important research object of human-economic geography, and it is also the object of government departments to strengthen macro-control. This has become even greater problem that China has entered the "new normal" in recent years. The study uses a multi-regional input-output model, with linear programming to build an optimal model of industrial structure as well as a model of optimization degree under the energy constraint. The results of the study revealed that:(1) the degree of optimization of industrial structure in Anhui Province is optimal(0.763), while that of Shanxi Province is the lowest(0.662);(2) the degree of optimization of industrial structure is negatively related to energy consumption per unit output value and the proportion of heavy industry; and(3) overall, central China should maintain or moderately increase the proportions of resource-based industry, greatly increase the proportions of manufacturing, including transport and telecommunications equipment, computers and other electronic equipment, and moderately reduce the proportions of smelting and pressing of metals and non-metal mineral products. In terms of service industries, the region should greatly increase the proportions of the production and supply of natural gas and tap water, moderately reduce or maintain the proportions of transport and storage as well as tourism, and maintain or moderately reduce the proportions of wholesale trade, retail trade and catering services.展开更多
Introduction:The Belt and Road Initiative(BRI)is an important cooperative framework that increasingly affects the global economy,trade,and emission patterns.However,most existing studies pay insufficient attention to ...Introduction:The Belt and Road Initiative(BRI)is an important cooperative framework that increasingly affects the global economy,trade,and emission patterns.However,most existing studies pay insufficient attention to consumption-based emissions,embodied emissions,and non-CO_(2) greenhouse gases(GHGs).This study constructs a GHG emissions database to study the trends and variations in production-based,consumption-based,and embodied emissions associated with BRI countries.Outcome:We find that the per capita GHG emissions of BRI countries are lower than the global average but show significant variation within this group.We also find that trade-embodied emissions between BRI countries and China are growing.As a group,BRI countries are anet exporter of GHGs,with a global share of net export emissions of about 20%.In 2011,nearly 80%of GHG export emissions from BRI countries flowed to non-BRI countries,and nearly 15%flowed to China;about 57%of GHG import emissions were from non-BRI countries,and about 38%were from China.Conclusion:Therefore,this study concludes that the BRI should be used to coordinate climate governance to accelerate and strengthen the dissemination and deployment of low-emissions technologies,strategies,and policies within the BRI so as to avoid a carbon-intensive lock-in effect.展开更多
The construction industry is one of the largest energy consumers in China. It not only uses energy directly but also consumes a large amount of embodied energy hidden in intermediate goods and services from other indu...The construction industry is one of the largest energy consumers in China. It not only uses energy directly but also consumes a large amount of embodied energy hidden in intermediate goods and services from other industries. This paper utilizes the multi-regional input-output(MRIO)model to measure the embodied energy consumption in China's construction industry at the province level. To quantify the backward and forward linkages between the construction industry and other industries, the energy-driven and energy-driving abilities of the construction industry are investigated for 30 provinces. The results show that the values of the energy-driven coefficients are significantly larger than the energy-driving coefficients, indicating that the construction industry is highly dependent on products from other industries and other regions, not vice versa. The construction industries in the southwest and northwest regions of China have the highest energy-driven coefficients, showing that the construction industries in west China heavily rely on indirect energy embodied in goods and services. This particularly applies in Guangxi and Hainan provinces, which have the highest energydriven abilities and the lowest energy-driving abilities. The findings can facilitate the policy-makers to examine the critical energy-saving paths.展开更多
基金Supported by Project of Henan Provincial Department of Science and Technology (112400410017)Project of Henan Provincial Department of Education (2010-QN-008)
文摘On the basis of input-output table of Henan Province and China in 2007, this paper advances a simple method of constructing two-region input-output model using MRIO model, to research the economic link between the industries of Henan Province and the industries of other regions. I summarize the characteristics of this method based on this as follows: when researching inter-regional economic link, the multi-region or two-region input-output model has prominent superiority, and we can conduct preliminary estimation on the multi-region input-output model using location quotient approach.
基金Under the auspices of National Natural Science Foundation of China(No.42201302)‘Double First-Class’University Construction Project of Lanzhou University(No.561120213)。
文摘Virtual water trade(VWT)provides a new perspective for alleviating water crisis and has thus attracted widespread attention.However,the heterogeneity of virtual water trade inside and outside the river basin and its influencing factors remains further study.In this study,for better investigating the pattern and heterogeneity of virtual water trade inside and outside provincial regions along the Yellow River Basin in 2015 using the input-output model(MRIO),we proposed two new concepts,i.e.,virtual water surplus and virtual water deficit,and then used the Logarithmic Mean Divisia Index(LMDI)model to identify the inherent mechanism of the imbalance of virtual water trade between provincial regions along the Yellow River Basin and the other four regions in China.The results show that:1)in provincial regions along the Yellow River Basin,the less developed the economy was,the larger the contribution of the agricultural sector in virtual water trade,while the smaller the contribution of the industrial sector.2)Due to the large output of agricultural products,the upstream and midstream provincial regions of the Yellow River Basin had a virtual water surplus,with a net outflow of virtual water of 2.7×10^(8) m^(3) and 0.9×10^(8) m^(3),respectively.3)provincial regions along the Yellow River Basin were in a virtual water deficit with the rest of China,and the decisive factor was the active degree of trade with the outside.This study would be beneficial to illuminate the trade-related water use issues in provincial regions along the Yellow River Basin,which has farreaching practical signific-ance for alleviating water scarcity.
基金This work is supported by the National Research Foundation,Prime Ministers Office,Singapore under its Campus for Research Excellence and Technological Enterprise(CREATE)programme,and by the Energy and Environmental Sustainability for Megacities(E2S2)Phase II program of the National Research Foundation,Prime Ministers Office,Singapore under its CREATE programme。
文摘This study combines multi-regional inputoutput(MRIO)model with linear programming(LP)model to explore economic structure adjustment strategies for the reduction of carbon dioxide(CO_(2))emissions.A particular feature of this study is the identification of the optimal regulation sequence of final products in various regions to reduce CO_(2)emissions with the minimum loss in gross domestic product(GDP).By using China's MRIO tables 2017 with 28 regions and 42 economic sectors,results show that reduction in final demand leads to simultaneous reductions in GDP and CO_(2)emissions.Nevertheless,certain demand side regulation strategy can be adopted to lower CO_(2)emissions at the smallest loss of economic growth.Several key final products,such as metallurgy,nonmetal,metal,and chemical products,should first be regulated to reduce CO_(2)emissions at the minimum loss in GDP.Most of these key products concentrate in the coastal developed regions in China.The proposed MRIO-LP model considers the inter-relationship among various sectors and regions,and can aid policy makers in designing effective policy for industrial structure adjustment at the regional level to achieve the national environmental and economic targets.
基金supported by Aalto University and the Henan Provincial Key Laboratory of Hydrosphere and Watershed Water SecurityAdditional support was provided by the National Natural Science Foundation of China(42361144001,72304112,72074136,and 72104129)the Key Program of International Cooperation,Bureau of International Cooperation,the Chinese Academy of Sciences(131551KYSB20210030).
文摘Given that it was a once-in-a-century emergency event,the confinement measures related to the coronavirus disease 2019(COVID-19)pandemic caused diverse disruptions and changes in life and work patterns.These changes significantly affected water consumption both during and after the pandemic,with direct and indirect consequences on biodiversity.However,there has been a lack of holistic evaluation of these responses.Here,we propose a novel framework to study the impacts of this unique global emergency event by embedding an environmentally extended supply-constrained global multi-regional input-output model(MRIO)into the drivers-pressure-state-impact-response(DPSIR)framework.This framework allowed us to develop scenarios related to COVID-19 confinement measures to quantify country-sector-specific changes in freshwater consumption and the associated changes in biodiversity for the period of 2020-2025.The results suggest progressively diminishing impacts due to the implementation of COVID-19 vaccines and the socio-economic system’s self-adjustment to the new normal.In 2020,the confinement measures were estimated to decrease global water consumption by about 5.7% on average across all scenarios when compared with the baseline level with no confinement measures.Further,such a decrease is estimated to lead to a reduction of around 5% in the related pressure on biodiversity.Given the interdependencies and interactions across global supply chains,even those countries and sectors that were not directly affected by the COVID-19 shocks experienced significant impacts:Our results indicate that the supply chain propagations contributed to 79% of the total estimated decrease in water consumption and 84%of the reduction in biodiversity loss on average.Our study demonstrates that the MRIO-enhanced DSPIR framework can help quantify resource pressures and the resultant environmental impacts across supply chains when facing a global emergency event.Further,we recommend the development of more locally based water conservation measures—to mitigate the effects of trade disruptions—and the explicit inclusion of water resources in post-pandemic recovery schemes.In addition,innovations that help conserve natural resources are essential for maintaining environmental gains in the post-pandemic world.
基金National Science Foundation for Distinguished Young Scholars of China, No.41125005
文摘China has huge differences among its regions in terms of socio-economic development, industrial structure, natural resource endowments, and technological advancement. These differences have created complicated linkages between regions in China. In this study, building upon gravity model and location quotient techniques, we develop a sector-specific model to estimate inter-provincial trade flows, which is the base for making a multi-regional input-output table. In the model, we distinguish sectors with less intra-sector input from those with larger intra-sector input, and assume that the former sectors tend to compete among regions while the latter tend to cooperate among regions. Then we apply this new method of inter-regional trade estimation to three sectors: food and tobacco, metal smelting and proc- essing, and electrical equipment. The results show that selection of bandwidth has a significant impact on the assessment of inter-regional trade. Trade flows are more scattered with the increase of bandwidths. As a result, bandwidth reflects the spatial concentration of geo- graphical activities, which should be distinguishable for different industries. We conclude that the sector-specific spatial model can increase the credibility of estimates of inter-regional trade flows.
基金supported by the Major Projects of the National Social Science Fund of China(grant no.18ZDA126).
文摘This study uses a multi-regional input-output model to measure the consumption-based transfer of embodied air pollution across provinces in China.Revised direct exhaust emissions are compared under regional and industrial standards to reveal the static volume distribution and dynamic transfer paths.The results show that China is characterized by a net inflow of atmospheric pollution pressure.The amount of interprovincial transfer exhibits a two-level divergence.The distribution of net outflow areas exhibits a certain degree of dispersion and uniformity,whereas net inflow areas exhibit local agglomeration.The main transfer paths are from east to west and south to north.Eastern coastal areas are the primary source of embodied pollution transfer,whereas northern coastal areas and the middle reaches of the Yellow River account for the primary concentrations of pollution inflows.The proportion of major industry contributions approximately conforms to the Pareto principle;different resource endowments may provide comparative advantages and thus distinct distributions.
基金National Natural Science Foundation of China,No.41271146,No.41201171
文摘Optimizing industrial structure is an important research object of human-economic geography, and it is also the object of government departments to strengthen macro-control. This has become even greater problem that China has entered the "new normal" in recent years. The study uses a multi-regional input-output model, with linear programming to build an optimal model of industrial structure as well as a model of optimization degree under the energy constraint. The results of the study revealed that:(1) the degree of optimization of industrial structure in Anhui Province is optimal(0.763), while that of Shanxi Province is the lowest(0.662);(2) the degree of optimization of industrial structure is negatively related to energy consumption per unit output value and the proportion of heavy industry; and(3) overall, central China should maintain or moderately increase the proportions of resource-based industry, greatly increase the proportions of manufacturing, including transport and telecommunications equipment, computers and other electronic equipment, and moderately reduce the proportions of smelting and pressing of metals and non-metal mineral products. In terms of service industries, the region should greatly increase the proportions of the production and supply of natural gas and tap water, moderately reduce or maintain the proportions of transport and storage as well as tourism, and maintain or moderately reduce the proportions of wholesale trade, retail trade and catering services.
基金This work was supported by the National Key Research and Development Program of China[2018YFA0606503]the National Natural Science Foundation of China[71590243,71673162].
文摘Introduction:The Belt and Road Initiative(BRI)is an important cooperative framework that increasingly affects the global economy,trade,and emission patterns.However,most existing studies pay insufficient attention to consumption-based emissions,embodied emissions,and non-CO_(2) greenhouse gases(GHGs).This study constructs a GHG emissions database to study the trends and variations in production-based,consumption-based,and embodied emissions associated with BRI countries.Outcome:We find that the per capita GHG emissions of BRI countries are lower than the global average but show significant variation within this group.We also find that trade-embodied emissions between BRI countries and China are growing.As a group,BRI countries are anet exporter of GHGs,with a global share of net export emissions of about 20%.In 2011,nearly 80%of GHG export emissions from BRI countries flowed to non-BRI countries,and nearly 15%flowed to China;about 57%of GHG import emissions were from non-BRI countries,and about 38%were from China.Conclusion:Therefore,this study concludes that the BRI should be used to coordinate climate governance to accelerate and strengthen the dissemination and deployment of low-emissions technologies,strategies,and policies within the BRI so as to avoid a carbon-intensive lock-in effect.
基金Supported by General Projects of Talent Introduction Project in 2020 of Dalian University of Technology(DUT20RC(3)061)National Natural Science Foundation of China(71801024)National Key R&D Program of China(2018YFD1100203)。
文摘The construction industry is one of the largest energy consumers in China. It not only uses energy directly but also consumes a large amount of embodied energy hidden in intermediate goods and services from other industries. This paper utilizes the multi-regional input-output(MRIO)model to measure the embodied energy consumption in China's construction industry at the province level. To quantify the backward and forward linkages between the construction industry and other industries, the energy-driven and energy-driving abilities of the construction industry are investigated for 30 provinces. The results show that the values of the energy-driven coefficients are significantly larger than the energy-driving coefficients, indicating that the construction industry is highly dependent on products from other industries and other regions, not vice versa. The construction industries in the southwest and northwest regions of China have the highest energy-driven coefficients, showing that the construction industries in west China heavily rely on indirect energy embodied in goods and services. This particularly applies in Guangxi and Hainan provinces, which have the highest energydriven abilities and the lowest energy-driving abilities. The findings can facilitate the policy-makers to examine the critical energy-saving paths.