In micro-blogging contexts such as Twitter,the number of content producers can easily reach tens of thousands,and many users can participate in discussion of any given topic.While many users can introduce diversity,as...In micro-blogging contexts such as Twitter,the number of content producers can easily reach tens of thousands,and many users can participate in discussion of any given topic.While many users can introduce diversity,as not all users are equally influential,it makes it challenging to identify the true influencers,who are generally rated as being interesting and authoritative on a given topic.In this study,the influence of users is measured by performing random walks of the multi-relational data in micro-blogging:retweet,reply,reintroduce,and read.Due to the uncertainty of the reintroduce and read operations,a new method is proposed to determine the transition probabilities of uncertain relational networks.Moreover,we propose a method for performing the combined random walks for the multi-relational influence network,considering both the transition probabilities for intra-and inter-networking.Experiments were conducted on a real Twitter dataset containing about 260 000 users and 2.7million tweets,and the results show that our method is more effective than TwitterRank and other methods used to discover influencers.展开更多
Seal authentication is an important task for verifying the authenticity of stamped seals used in various domains to protect legal documents from tampering and counterfeiting.Stamped seal inspection is commonly audited...Seal authentication is an important task for verifying the authenticity of stamped seals used in various domains to protect legal documents from tampering and counterfeiting.Stamped seal inspection is commonly audited manually to ensure document authenticity.However,manual assessment of seal images is tedious and laborintensive due to human errors,inconsistent placement,and completeness of the seal.Traditional image recognition systems are inadequate enough to identify seal types accurately,necessitating a neural network-based method for seal image recognition.However,neural network-based classification algorithms,such as Residual Networks(ResNet)andVisualGeometryGroup with 16 layers(VGG16)yield suboptimal recognition rates on stamp datasets.Additionally,the fixed training data categories make handling new categories to be a challenging task.This paper proposes amulti-stage seal recognition algorithmbased on Siamese network to overcome these limitations.Firstly,the seal image is pre-processed by applying an image rotation correction module based on Histogram of Oriented Gradients(HOG).Secondly,the similarity between input seal image pairs is measured by utilizing a similarity comparison module based on the Siamese network.Finally,we compare the results with the pre-stored standard seal template images in the database to obtain the seal type.To evaluate the performance of the proposed method,we further create a new seal image dataset that contains two subsets with 210,000 valid labeled pairs in total.The proposed work has a practical significance in industries where automatic seal authentication is essential as in legal,financial,and governmental sectors,where automatic seal recognition can enhance document security and streamline validation processes.Furthermore,the experimental results show that the proposed multi-stage method for seal image recognition outperforms state-of-the-art methods on the two established datasets.展开更多
The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to u...The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets.展开更多
Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the u...Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.展开更多
The article concluded that network pharmacology provides new ideas and insights into the molecular mechanism of traditional Chinese medicine(TCM)treatment of cancer.TCM is a new choice and hot spot in the field of can...The article concluded that network pharmacology provides new ideas and insights into the molecular mechanism of traditional Chinese medicine(TCM)treatment of cancer.TCM is a new choice and hot spot in the field of cancer treatment.We have also previously published studies on TCM and network pharmacology.In this letter,we summarize the new paradigm of network pharmacology in cancer treatment mechanisms.展开更多
Equatorial Plasma Bubbles(EPBs)are ionospheric irregularities that take place near the magnetic equator.EPBs most commonly occur after sunset during the equinox months,although they can also be observed during other s...Equatorial Plasma Bubbles(EPBs)are ionospheric irregularities that take place near the magnetic equator.EPBs most commonly occur after sunset during the equinox months,although they can also be observed during other seasons.The phenomenon significantly disrupts radio wave signals essential to communication and navigation systems.The national network of Global Navigation Satellite System(GNSS)receivers in Indonesia(>30°longitudinal range)provides an opportunity for detailed EPB studies.To explore this,we conducted preliminary 3D tomography of total electron content(TEC)data captured by GNSS receivers following a geomagnetic storm on December 3,2023,when at least four EPB clusters occurred in the Southeast Asian sector.TEC and extracted TEC depletion with a 120-minute running average were then used as inputs for a 3D tomography program.Their 2D spatial distribution consistently captured the four EPB clusters over time.These tomography results were validated through a classical checkerboard test and comparisons with other ionospheric data sources,such as the Global Ionospheric Map(GIM)and International Reference Ionosphere(IRI)profile.Validation of the results demonstrates the capability of the Indonesian GNSS network to measure peak ionospheric density.These findings highlight the potential for future three-dimensional research of plasma bubbles in low-latitude regions using existing GNSS networks,with extensive longitudinal coverage.展开更多
This paper highlights the crucial role of Indonesia’s GNSS receiver network in advancing Equatorial Plasma Bubble(EPB)studies in Southeast and East Asia,as ionospheric irregularities within EPB can disrupt GNSS signa...This paper highlights the crucial role of Indonesia’s GNSS receiver network in advancing Equatorial Plasma Bubble(EPB)studies in Southeast and East Asia,as ionospheric irregularities within EPB can disrupt GNSS signals and degrade positioning accuracy.Managed by the Indonesian Geospatial Information Agency(BIG),the Indonesia Continuously Operating Reference Station(Ina-CORS)network comprises over 300 GNSS receivers spanning equatorial to southern low-latitude regions.Ina-CORS is uniquely situated to monitor EPB generation,zonal drift,and dissipation across Southeast Asia.We provide a practical tool for EPB research,by sharing two-dimensional rate of Total Electron Content(TEC)change index(ROTI)derived from this network.We generate ROTI maps with a 10-minute resolution,and samples from May 2024 are publicly available for further scientific research.Two preliminary findings from the ROTI maps of Ina-CORS are noteworthy.First,the Ina-CORS ROTI maps reveal that the irregularities within a broader EPB structure persist longer,increasing the potential for these irregularities to migrate farther eastward.Second,we demonstrate that combined ROTI maps from Ina-CORS and GNSS receivers in East Asia and Australia can be used to monitor the development of ionospheric irregularities in Southeast and East Asia.We have demonstrated the combined ROTI maps to capture the development of ionospheric irregularities in the Southeast/East Asian sector during the G5 Geomagnetic Storm on May 11,2024.We observed simultaneous ionospheric irregularities in Japan and Australia,respectively propagating northwestward and southwestward,before midnight,whereas Southeast Asia’s equatorial and low-latitude regions exhibited irregularities post-midnight.By sharing ROTI maps from Indonesia and integrating them with regional GNSS networks,researchers can conduct comprehensive EPB studies,enhancing the understanding of EPB behavior across Southeast and East Asia and contributing significantly to ionospheric research.展开更多
Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important a...Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.展开更多
This study directs the discussion of HIV disease with a novel kind of complex dynamical generalized and piecewise operator in the sense of classical and Atangana Baleanu(AB)derivatives having arbitrary order.The HIV i...This study directs the discussion of HIV disease with a novel kind of complex dynamical generalized and piecewise operator in the sense of classical and Atangana Baleanu(AB)derivatives having arbitrary order.The HIV infection model has a susceptible class,a recovered class,along with a case of infection divided into three sub-different levels or categories and the recovered class.The total time interval is converted into two,which are further investigated for ordinary and fractional order operators of the AB derivative,respectively.The proposed model is tested separately for unique solutions and existence on bi intervals.The numerical solution of the proposed model is treated by the piece-wise numerical iterative scheme of Newtons Polynomial.The proposed method is established for piece-wise derivatives under natural order and non-singular Mittag-Leffler Law.The cross-over or bending characteristics in the dynamical system of HIV are easily examined by the aspect of this research having a memory effect for controlling the said disease.This study uses the neural network(NN)technique to obtain a better set of weights with low residual errors,and the epochs number is considered 1000.The obtained figures represent the approximate solution and absolute error which are tested with NN to train the data accurately.展开更多
BACKGROUND Mitochondrial genes are involved in tumor metabolism in ovarian cancer(OC)and affect immune cell infiltration and treatment responses.AIM To predict prognosis and immunotherapy response in patients diagnose...BACKGROUND Mitochondrial genes are involved in tumor metabolism in ovarian cancer(OC)and affect immune cell infiltration and treatment responses.AIM To predict prognosis and immunotherapy response in patients diagnosed with OC using mitochondrial genes and neural networks.METHODS Prognosis,immunotherapy efficacy,and next-generation sequencing data of patients with OC were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus.Mitochondrial genes were sourced from the MitoCarta3.0 database.The discovery cohort for model construction was created from 70% of the patients,whereas the remaining 30% constituted the validation cohort.Using the expression of mitochondrial genes as the predictor variable and based on neural network algorithm,the overall survival time and immunotherapy efficacy(complete or partial response)of patients were predicted.RESULTS In total,375 patients with OC were included to construct the prognostic model,and 26 patients were included to construct the immune efficacy model.The average area under the receiver operating characteristic curve of the prognostic model was 0.7268[95% confidence interval(CI):0.7258-0.7278]in the discovery cohort and 0.6475(95%CI:0.6466-0.6484)in the validation cohort.The average area under the receiver operating characteristic curve of the immunotherapy efficacy model was 0.9444(95%CI:0.8333-1.0000)in the discovery cohort and 0.9167(95%CI:0.6667-1.0000)in the validation cohort.CONCLUSION The application of mitochondrial genes and neural networks has the potential to predict prognosis and immunotherapy response in patients with OC,providing valuable insights into personalized treatment strategies.展开更多
Background:Insomnia is a prevalent clinical condition and Shangxia Liangji formula(SXLJF)is a well-established method of treatment.Nevertheless,the specific mechanism of action of SXLJF remains unclear.Methods:The mou...Background:Insomnia is a prevalent clinical condition and Shangxia Liangji formula(SXLJF)is a well-established method of treatment.Nevertheless,the specific mechanism of action of SXLJF remains unclear.Methods:The mouse model of insomnia was established by intraperitoneal injection of para-chlorophenylalanine.Forty-two mice were randomly divided into a negative control group,model group,SXLJF group(18.72 g/kg/day),and positive control group(diazepam,2 mg/kg)and treated with the corresponding drugs for 7 consecutive days.The open field test and pentobarbital-induced sleeping test were conducted.LC-MS-based untargeted metabolomics and network pharmacology were applied to explore the potential targets of SXLJF for treating insomnia.Finally,key targets were validated using RT-qPCR.Results:Behavioral tests demonstrated that SXLJF reduced the total distance,average velocity,central distance,and sleep latency,and prolonged sleep duration.Metabolomics and network pharmacology revealed potential targets,signaling pathways,metabolic pathways,and metabolites associated with the anti-insomnia effects of SXLJF.Specifically,tyrosine hydroxylase(TH)and tyrosine metabolism emerged as crucial metabolic pathways and targets,respectively.RT-qPCR results supported the role of TH in the mechanism of SXLJF in treating insomnia.Conclusion:In conclusion,TH and tyrosine metabolism may represent significant targets and pathways for SXLJF in treating insomnia.展开更多
In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained f...In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method.展开更多
This study examines the pivotal findings of the network meta-analysis of Zhou et al,which evaluated the efficacy of hepatic arterial infusion chemotherapy and combination therapies for advanced hepatocellular carcinom...This study examines the pivotal findings of the network meta-analysis of Zhou et al,which evaluated the efficacy of hepatic arterial infusion chemotherapy and combination therapies for advanced hepatocellular carcinoma(HCC).This meta-analysis suggests that therapeutic combinations have greater efficacy than do standard treatments.The article highlights the key insights that have the potential to shift current clinical practice and enhance outcomes for patients with advanced HCC.Additionally,this article discusses further research that can be conducted to optimize these treatments and achieve personalized care for patients with HCC.展开更多
Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This st...Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments.展开更多
BACKGROUND Currently,adolescent depression is one of the most significant public health concerns,markedly influencing emotional,cognitive,and social maturation.Despite advancements in distinguish the neurobiological s...BACKGROUND Currently,adolescent depression is one of the most significant public health concerns,markedly influencing emotional,cognitive,and social maturation.Despite advancements in distinguish the neurobiological substrates underlying depression,the intricate patterns of disrupted brain network connectivity in adolescents warrant further exploration.AIM To elucidate the neural correlates of adolescent depression by examining brain network connectivity using resting-state functional magnetic resonance imaging(rs-fMRI).METHODS The study cohort comprised 74 depressed adolescents and 59 healthy controls aged 12 to 17 years.Participants underwent rs-fMRI to evaluate functional connectivity within and across critical brain networks,including the visual,default mode network(DMN),dorsal attention,salience,somatomotor,and frontoparietal control networks.RESULTS Analyses revealed pronounced functional disparities within key neural circuits among adolescents with depression.The results demonstrated existence of hemispheric asymmetries characterized by enhanced activity in the left visual network,which contrasted the diminished activity in the right hemisphere.The DMN facilitated increased activity within the left prefrontal cortex and reduced engagement in the right hemisphere,implicating disrupted self-referential and emotional processing mechanisms.Additionally,an overactive right dorsal attention network and a hypoactive salience network were identified,underscoring significant abnormalities in attentional and emotional regulation in adolescent depression.CONCLUSION The findings from this study underscore distinct neural connectivity disruptions in adolescent depression,underscoring the critical role of specific neurobiological markers for precise early diagnosis of adolescent depression.The observed functional asymmetries and network-specific deviations elucidate the complex neurobiological architecture of adolescent depression,supporting the development of targeted therapeutic strategies.展开更多
Friendship paradox states that individuals are likely to have fewer friends than their friends do,on average.Despite of its wide existence and appealing applications in real social networks,the mathematical understand...Friendship paradox states that individuals are likely to have fewer friends than their friends do,on average.Despite of its wide existence and appealing applications in real social networks,the mathematical understanding of friendship paradox is very limited.Only few works provide theoretical evidence of single-step and multi-step friendship paradoxes,given that the neighbors of interest are onehop and multi-hop away from the target node.However,they consider non-evolving networks,as opposed to the topology of real social networks that are constantly growing over time.We are thus motivated to present a first look into friendship paradox in evolving networks,where newly added nodes preferentially attach themselves to those with higher degrees.Our analytical verification of both single-step and multistep friendship paradoxes in evolving networks,along with comparison to the non-evolving counterparts,discloses that“friendship paradox is even more paradoxical in evolving networks”,primarily from three aspects:1)we demonstrate a strengthened effect of single-step friendship paradox in evolving networks,with a larger probability(more than 0.8)of a random node’s neighbors having higher average degree than the random node itself;2)we unravel higher effectiveness of multi-step friendship paradox in seeking for influential nodes in evolving networks,as the rate of reaching the max degree node can be improved by a factor of at least Θ(t^(2/3))with t being the network size;3)we empirically verify our findings through both synthetic and real datasets,which suggest high agreements of results and consolidate the reasonability of evolving model for real social networks.展开更多
Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network lev...Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery.展开更多
Pollution from heavy metals(HMs)(Cd,As,Cr,and Ni,etc.)has become a serious environmental issue in urban wetland ecosystems with more and more attention.Previous studies conducted in agricultural soils,rivers,and lakes...Pollution from heavy metals(HMs)(Cd,As,Cr,and Ni,etc.)has become a serious environmental issue in urban wetland ecosystems with more and more attention.Previous studies conducted in agricultural soils,rivers,and lakes demonstrated that microbial communities exhibit a response to HM pollution.Yet,little is known about the response of microbial communities to HM pollution in urban wetland ecosystems.We examined how heavy metals affect the stability of the microbial networks in the sediments of Sanyang wetland,Wenzhou,China.Key environmental parameters,including HMs,TC(total carbon),TN(total nitrogen),TP(total phosphorus),S,and pH,varied profoundly between moderately and heavily polluted areas in shaping microbial communities.Specifically,the microbial community composition in moderately polluted sites correlated significantly(P<0.05)with Ni,Cu,Cd and TP,whereas in heavily polluted sites,they correlated significantly with Cd,TN,TP,and S.Results show that the heavily polluted sites demonstrated more intricate and more stable microbial networks than those of the moderately polluted area.The heavily polluted sites exhibited higher values for various network parameters including total nodes,total links,average degree,average clustering coefficient,connectance,relative modularity,robustness,and cohesion.Moreover,the structural equation modeling analysis demonstrated a positive correlation between the stability of microbial networks and Cd,TN,TP,and S in heavily polluted sites.Conversely,in moderately polluted sites,the correlation was positively linked to Cd,Ni,and sediment pH.It implies that Cd could potentially play a crucial role in affecting the stability of microbial networks.This study shall enhance our comprehension of microbial co-occurrence patterns in urban wetland ecosystems and offer insights into the ways in which microbial communities respond to environmental factors in varying levels of HM pollution.展开更多
Wireless sensor network deployment optimization is a classic NP-hard problem and a popular topic in academic research.However,the current research on wireless sensor network deployment problems uses overly simplistic ...Wireless sensor network deployment optimization is a classic NP-hard problem and a popular topic in academic research.However,the current research on wireless sensor network deployment problems uses overly simplistic models,and there is a significant gap between the research results and actual wireless sensor networks.Some scholars have now modeled data fusion networks to make them more suitable for practical applications.This paper will explore the deployment problem of a stochastic data fusion wireless sensor network(SDFWSN),a model that reflects the randomness of environmental monitoring and uses data fusion techniques widely used in actual sensor networks for information collection.The deployment problem of SDFWSN is modeled as a multi-objective optimization problem.The network life cycle,spatiotemporal coverage,detection rate,and false alarm rate of SDFWSN are used as optimization objectives to optimize the deployment of network nodes.This paper proposes an enhanced multi-objective mongoose optimization algorithm(EMODMOA)to solve the deployment problem of SDFWSN.First,to overcome the shortcomings of the DMOA algorithm,such as its low convergence and tendency to get stuck in a local optimum,an encircling and hunting strategy is introduced into the original algorithm to propose the EDMOA algorithm.The EDMOA algorithm is designed as the EMODMOA algorithm by selecting reference points using the K-Nearest Neighbor(KNN)algorithm.To verify the effectiveness of the proposed algorithm,the EMODMOA algorithm was tested at CEC 2020 and achieved good results.In the SDFWSN deployment problem,the algorithm was compared with the Non-dominated Sorting Genetic Algorithm II(NSGAII),Multiple Objective Particle Swarm Optimization(MOPSO),Multi-Objective Evolutionary Algorithm based on Decomposition(MOEA/D),and Multi-Objective Grey Wolf Optimizer(MOGWO).By comparing and analyzing the performance evaluation metrics and optimization results of the objective functions of the multi-objective algorithms,the algorithm outperforms the other algorithms in the SDFWSN deployment results.To better demonstrate the superiority of the algorithm,simulations of diverse test cases were also performed,and good results were obtained.展开更多
Research on the self-similarity of multilayer networks is scarce, when compared to the extensive research conducted on the dynamics of these networks. In this paper, we use entropy to determine the edge weights in eac...Research on the self-similarity of multilayer networks is scarce, when compared to the extensive research conducted on the dynamics of these networks. In this paper, we use entropy to determine the edge weights in each sub-network,and apply the degree–degree distance to unify the weight values of connecting edges between different sub-networks, and unify the edges with different meanings in the multilayer network numerically. At this time, the multilayer network is compressed into a single-layer network, also known as the aggregated network. Furthermore, the self-similarity of the multilayer network is represented by analyzing the self-similarity of the aggregate network. The study of self-similarity was conducted on two classical fractal networks and a real-world multilayer network. The results show that multilayer networks exhibit more pronounced self-similarity, and the intensity of self-similarity in multilayer networks can vary with the connection mode of sub-networks.展开更多
基金supported by National Natural Science Foundation of China under Grants No. 60933005, No. 91124002under Grants No. 012505, No. 2011AA010702, No. 2012AA01A401, No. 2012AA01A402 (863 program)+1 种基金under Grant No.2011A010 (242)NSTM under Grants No.2012BAH38B04, No.2012BAH38B06
文摘In micro-blogging contexts such as Twitter,the number of content producers can easily reach tens of thousands,and many users can participate in discussion of any given topic.While many users can introduce diversity,as not all users are equally influential,it makes it challenging to identify the true influencers,who are generally rated as being interesting and authoritative on a given topic.In this study,the influence of users is measured by performing random walks of the multi-relational data in micro-blogging:retweet,reply,reintroduce,and read.Due to the uncertainty of the reintroduce and read operations,a new method is proposed to determine the transition probabilities of uncertain relational networks.Moreover,we propose a method for performing the combined random walks for the multi-relational influence network,considering both the transition probabilities for intra-and inter-networking.Experiments were conducted on a real Twitter dataset containing about 260 000 users and 2.7million tweets,and the results show that our method is more effective than TwitterRank and other methods used to discover influencers.
基金the National Natural Science Foundation of China(Grant No.62172132)Public Welfare Technology Research Project of Zhejiang Province(Grant No.LGF21F020014)the Opening Project of Key Laboratory of Public Security Information Application Based on Big-Data Architecture,Ministry of Public Security of Zhejiang Police College(Grant No.2021DSJSYS002).
文摘Seal authentication is an important task for verifying the authenticity of stamped seals used in various domains to protect legal documents from tampering and counterfeiting.Stamped seal inspection is commonly audited manually to ensure document authenticity.However,manual assessment of seal images is tedious and laborintensive due to human errors,inconsistent placement,and completeness of the seal.Traditional image recognition systems are inadequate enough to identify seal types accurately,necessitating a neural network-based method for seal image recognition.However,neural network-based classification algorithms,such as Residual Networks(ResNet)andVisualGeometryGroup with 16 layers(VGG16)yield suboptimal recognition rates on stamp datasets.Additionally,the fixed training data categories make handling new categories to be a challenging task.This paper proposes amulti-stage seal recognition algorithmbased on Siamese network to overcome these limitations.Firstly,the seal image is pre-processed by applying an image rotation correction module based on Histogram of Oriented Gradients(HOG).Secondly,the similarity between input seal image pairs is measured by utilizing a similarity comparison module based on the Siamese network.Finally,we compare the results with the pre-stored standard seal template images in the database to obtain the seal type.To evaluate the performance of the proposed method,we further create a new seal image dataset that contains two subsets with 210,000 valid labeled pairs in total.The proposed work has a practical significance in industries where automatic seal authentication is essential as in legal,financial,and governmental sectors,where automatic seal recognition can enhance document security and streamline validation processes.Furthermore,the experimental results show that the proposed multi-stage method for seal image recognition outperforms state-of-the-art methods on the two established datasets.
文摘The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets.
文摘Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.
文摘The article concluded that network pharmacology provides new ideas and insights into the molecular mechanism of traditional Chinese medicine(TCM)treatment of cancer.TCM is a new choice and hot spot in the field of cancer treatment.We have also previously published studies on TCM and network pharmacology.In this letter,we summarize the new paradigm of network pharmacology in cancer treatment mechanisms.
基金the National Institute of Information and Communication Technology International Exchange Program 2024−2025(No.2024−007)for their invaluable support in this research.3D tomography software is available at Prof.Kosuke Heki’s(Hokkaido University,Japan)personal homepage(https://www.ep.sci.hokudai.ac.jp/~heki/software.htm).support from the 2024 Japan Student Services Organization Research Follow-up Fellowship for a 90-day research visit at the Institute for Space−Earth Environmental Research,Nagoya University,Japan.PA also acknowledges the support received from Telkom University under the“Skema Penelitian Terapan Periode I Tahun Anggaran 2024”,and the Memorandum of Understanding for Research Collaboration on Regional Ionospheric Observation(No:092/SAM3/TE-DEK/2021).
文摘Equatorial Plasma Bubbles(EPBs)are ionospheric irregularities that take place near the magnetic equator.EPBs most commonly occur after sunset during the equinox months,although they can also be observed during other seasons.The phenomenon significantly disrupts radio wave signals essential to communication and navigation systems.The national network of Global Navigation Satellite System(GNSS)receivers in Indonesia(>30°longitudinal range)provides an opportunity for detailed EPB studies.To explore this,we conducted preliminary 3D tomography of total electron content(TEC)data captured by GNSS receivers following a geomagnetic storm on December 3,2023,when at least four EPB clusters occurred in the Southeast Asian sector.TEC and extracted TEC depletion with a 120-minute running average were then used as inputs for a 3D tomography program.Their 2D spatial distribution consistently captured the four EPB clusters over time.These tomography results were validated through a classical checkerboard test and comparisons with other ionospheric data sources,such as the Global Ionospheric Map(GIM)and International Reference Ionosphere(IRI)profile.Validation of the results demonstrates the capability of the Indonesian GNSS network to measure peak ionospheric density.These findings highlight the potential for future three-dimensional research of plasma bubbles in low-latitude regions using existing GNSS networks,with extensive longitudinal coverage.
基金JSPS KAKENHI Grant Number16H06286 supports global GNSS ionospheric maps (TEC,ROTI,and detrended TEC maps) developed by the Institute for SpaceEarth Environmental Research (ISEE) of Nagoya Universitysupport of the 2024 JASSO Follow-up Research Fellowship Program for a 90-day visiting research at the Institute for Space-Earth Environmental Research (ISEE),Nagoya University+3 种基金the support received from Telkom University under the“Skema Penelitian Terapan Periode I Tahun Anggaran 2024”the Memorandum of Understanding for Research Collaboration on Regional Ionospheric Observation (No:092/SAM3/TE-DEK/2021)the National Institute of Information and Communications Technology (NICT) International Exchange Program 2024-2025(No.2024-007)support for a one-year visiting research at Hokkaido University
文摘This paper highlights the crucial role of Indonesia’s GNSS receiver network in advancing Equatorial Plasma Bubble(EPB)studies in Southeast and East Asia,as ionospheric irregularities within EPB can disrupt GNSS signals and degrade positioning accuracy.Managed by the Indonesian Geospatial Information Agency(BIG),the Indonesia Continuously Operating Reference Station(Ina-CORS)network comprises over 300 GNSS receivers spanning equatorial to southern low-latitude regions.Ina-CORS is uniquely situated to monitor EPB generation,zonal drift,and dissipation across Southeast Asia.We provide a practical tool for EPB research,by sharing two-dimensional rate of Total Electron Content(TEC)change index(ROTI)derived from this network.We generate ROTI maps with a 10-minute resolution,and samples from May 2024 are publicly available for further scientific research.Two preliminary findings from the ROTI maps of Ina-CORS are noteworthy.First,the Ina-CORS ROTI maps reveal that the irregularities within a broader EPB structure persist longer,increasing the potential for these irregularities to migrate farther eastward.Second,we demonstrate that combined ROTI maps from Ina-CORS and GNSS receivers in East Asia and Australia can be used to monitor the development of ionospheric irregularities in Southeast and East Asia.We have demonstrated the combined ROTI maps to capture the development of ionospheric irregularities in the Southeast/East Asian sector during the G5 Geomagnetic Storm on May 11,2024.We observed simultaneous ionospheric irregularities in Japan and Australia,respectively propagating northwestward and southwestward,before midnight,whereas Southeast Asia’s equatorial and low-latitude regions exhibited irregularities post-midnight.By sharing ROTI maps from Indonesia and integrating them with regional GNSS networks,researchers can conduct comprehensive EPB studies,enhancing the understanding of EPB behavior across Southeast and East Asia and contributing significantly to ionospheric research.
基金the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2024-9/1).
文摘Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.
基金supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(grant number IMSIU-RP23066).
文摘This study directs the discussion of HIV disease with a novel kind of complex dynamical generalized and piecewise operator in the sense of classical and Atangana Baleanu(AB)derivatives having arbitrary order.The HIV infection model has a susceptible class,a recovered class,along with a case of infection divided into three sub-different levels or categories and the recovered class.The total time interval is converted into two,which are further investigated for ordinary and fractional order operators of the AB derivative,respectively.The proposed model is tested separately for unique solutions and existence on bi intervals.The numerical solution of the proposed model is treated by the piece-wise numerical iterative scheme of Newtons Polynomial.The proposed method is established for piece-wise derivatives under natural order and non-singular Mittag-Leffler Law.The cross-over or bending characteristics in the dynamical system of HIV are easily examined by the aspect of this research having a memory effect for controlling the said disease.This study uses the neural network(NN)technique to obtain a better set of weights with low residual errors,and the epochs number is considered 1000.The obtained figures represent the approximate solution and absolute error which are tested with NN to train the data accurately.
基金Supported by National Key Technology Research and Developmental Program of China,No.2022YFC2704400 and No.2022YFC2704405.
文摘BACKGROUND Mitochondrial genes are involved in tumor metabolism in ovarian cancer(OC)and affect immune cell infiltration and treatment responses.AIM To predict prognosis and immunotherapy response in patients diagnosed with OC using mitochondrial genes and neural networks.METHODS Prognosis,immunotherapy efficacy,and next-generation sequencing data of patients with OC were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus.Mitochondrial genes were sourced from the MitoCarta3.0 database.The discovery cohort for model construction was created from 70% of the patients,whereas the remaining 30% constituted the validation cohort.Using the expression of mitochondrial genes as the predictor variable and based on neural network algorithm,the overall survival time and immunotherapy efficacy(complete or partial response)of patients were predicted.RESULTS In total,375 patients with OC were included to construct the prognostic model,and 26 patients were included to construct the immune efficacy model.The average area under the receiver operating characteristic curve of the prognostic model was 0.7268[95% confidence interval(CI):0.7258-0.7278]in the discovery cohort and 0.6475(95%CI:0.6466-0.6484)in the validation cohort.The average area under the receiver operating characteristic curve of the immunotherapy efficacy model was 0.9444(95%CI:0.8333-1.0000)in the discovery cohort and 0.9167(95%CI:0.6667-1.0000)in the validation cohort.CONCLUSION The application of mitochondrial genes and neural networks has the potential to predict prognosis and immunotherapy response in patients with OC,providing valuable insights into personalized treatment strategies.
基金Science Foundation of Hunan Province(2021JJ40510)General Guidance Project of Hunan Health Commission(202203074169)+1 种基金Clinical Medical Technology Innovation Guidance Project of Hunan Province(2021SK51901)and Key Guiding Projects of Hunan Health Commission(20201918)for supporting this study.
文摘Background:Insomnia is a prevalent clinical condition and Shangxia Liangji formula(SXLJF)is a well-established method of treatment.Nevertheless,the specific mechanism of action of SXLJF remains unclear.Methods:The mouse model of insomnia was established by intraperitoneal injection of para-chlorophenylalanine.Forty-two mice were randomly divided into a negative control group,model group,SXLJF group(18.72 g/kg/day),and positive control group(diazepam,2 mg/kg)and treated with the corresponding drugs for 7 consecutive days.The open field test and pentobarbital-induced sleeping test were conducted.LC-MS-based untargeted metabolomics and network pharmacology were applied to explore the potential targets of SXLJF for treating insomnia.Finally,key targets were validated using RT-qPCR.Results:Behavioral tests demonstrated that SXLJF reduced the total distance,average velocity,central distance,and sleep latency,and prolonged sleep duration.Metabolomics and network pharmacology revealed potential targets,signaling pathways,metabolic pathways,and metabolites associated with the anti-insomnia effects of SXLJF.Specifically,tyrosine hydroxylase(TH)and tyrosine metabolism emerged as crucial metabolic pathways and targets,respectively.RT-qPCR results supported the role of TH in the mechanism of SXLJF in treating insomnia.Conclusion:In conclusion,TH and tyrosine metabolism may represent significant targets and pathways for SXLJF in treating insomnia.
基金Supported by the National Natural Science Foundation of China(11971458,11471310)。
文摘In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method.
文摘This study examines the pivotal findings of the network meta-analysis of Zhou et al,which evaluated the efficacy of hepatic arterial infusion chemotherapy and combination therapies for advanced hepatocellular carcinoma(HCC).This meta-analysis suggests that therapeutic combinations have greater efficacy than do standard treatments.The article highlights the key insights that have the potential to shift current clinical practice and enhance outcomes for patients with advanced HCC.Additionally,this article discusses further research that can be conducted to optimize these treatments and achieve personalized care for patients with HCC.
基金Supported by Sichuan Science and Technology Program(2023YFSY0026,2023YFH0004)Supported by the Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korean government(MSIT)(No.RS-2022-00155885,Artificial Intelligence Convergence Innovation Human Resources Development(Hanyang University ERICA)).
文摘Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments.
基金Supported by the Medical Research Project of the Chongqing Municipal Health Commission,No.2024WSJK110.
文摘BACKGROUND Currently,adolescent depression is one of the most significant public health concerns,markedly influencing emotional,cognitive,and social maturation.Despite advancements in distinguish the neurobiological substrates underlying depression,the intricate patterns of disrupted brain network connectivity in adolescents warrant further exploration.AIM To elucidate the neural correlates of adolescent depression by examining brain network connectivity using resting-state functional magnetic resonance imaging(rs-fMRI).METHODS The study cohort comprised 74 depressed adolescents and 59 healthy controls aged 12 to 17 years.Participants underwent rs-fMRI to evaluate functional connectivity within and across critical brain networks,including the visual,default mode network(DMN),dorsal attention,salience,somatomotor,and frontoparietal control networks.RESULTS Analyses revealed pronounced functional disparities within key neural circuits among adolescents with depression.The results demonstrated existence of hemispheric asymmetries characterized by enhanced activity in the left visual network,which contrasted the diminished activity in the right hemisphere.The DMN facilitated increased activity within the left prefrontal cortex and reduced engagement in the right hemisphere,implicating disrupted self-referential and emotional processing mechanisms.Additionally,an overactive right dorsal attention network and a hypoactive salience network were identified,underscoring significant abnormalities in attentional and emotional regulation in adolescent depression.CONCLUSION The findings from this study underscore distinct neural connectivity disruptions in adolescent depression,underscoring the critical role of specific neurobiological markers for precise early diagnosis of adolescent depression.The observed functional asymmetries and network-specific deviations elucidate the complex neurobiological architecture of adolescent depression,supporting the development of targeted therapeutic strategies.
基金supported by NSF China(No.61960206002,62020106005,42050105,62061146002)Shanghai Pilot Program for Basic Research–Shanghai Jiao Tong University.
文摘Friendship paradox states that individuals are likely to have fewer friends than their friends do,on average.Despite of its wide existence and appealing applications in real social networks,the mathematical understanding of friendship paradox is very limited.Only few works provide theoretical evidence of single-step and multi-step friendship paradoxes,given that the neighbors of interest are onehop and multi-hop away from the target node.However,they consider non-evolving networks,as opposed to the topology of real social networks that are constantly growing over time.We are thus motivated to present a first look into friendship paradox in evolving networks,where newly added nodes preferentially attach themselves to those with higher degrees.Our analytical verification of both single-step and multistep friendship paradoxes in evolving networks,along with comparison to the non-evolving counterparts,discloses that“friendship paradox is even more paradoxical in evolving networks”,primarily from three aspects:1)we demonstrate a strengthened effect of single-step friendship paradox in evolving networks,with a larger probability(more than 0.8)of a random node’s neighbors having higher average degree than the random node itself;2)we unravel higher effectiveness of multi-step friendship paradox in seeking for influential nodes in evolving networks,as the rate of reaching the max degree node can be improved by a factor of at least Θ(t^(2/3))with t being the network size;3)we empirically verify our findings through both synthetic and real datasets,which suggest high agreements of results and consolidate the reasonability of evolving model for real social networks.
基金supported by the National Natural Science Foundation of China,Nos.81871836(to MZ),82172554(to XH),and 81802249(to XH),81902301(to JW)the National Key R&D Program of China,Nos.2018YFC2001600(to JX)and 2018YFC2001604(to JX)+3 种基金Shanghai Rising Star Program,No.19QA1409000(to MZ)Shanghai Municipal Commission of Health and Family Planning,No.2018YQ02(to MZ)Shanghai Youth Top Talent Development PlanShanghai“Rising Stars of Medical Talent”Youth Development Program,No.RY411.19.01.10(to XH)。
文摘Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery.
基金Supported by the Major Program of Institute for Eco-environmental Research of Sanyang Wetland(No.SY2022ZD-1001-05)。
文摘Pollution from heavy metals(HMs)(Cd,As,Cr,and Ni,etc.)has become a serious environmental issue in urban wetland ecosystems with more and more attention.Previous studies conducted in agricultural soils,rivers,and lakes demonstrated that microbial communities exhibit a response to HM pollution.Yet,little is known about the response of microbial communities to HM pollution in urban wetland ecosystems.We examined how heavy metals affect the stability of the microbial networks in the sediments of Sanyang wetland,Wenzhou,China.Key environmental parameters,including HMs,TC(total carbon),TN(total nitrogen),TP(total phosphorus),S,and pH,varied profoundly between moderately and heavily polluted areas in shaping microbial communities.Specifically,the microbial community composition in moderately polluted sites correlated significantly(P<0.05)with Ni,Cu,Cd and TP,whereas in heavily polluted sites,they correlated significantly with Cd,TN,TP,and S.Results show that the heavily polluted sites demonstrated more intricate and more stable microbial networks than those of the moderately polluted area.The heavily polluted sites exhibited higher values for various network parameters including total nodes,total links,average degree,average clustering coefficient,connectance,relative modularity,robustness,and cohesion.Moreover,the structural equation modeling analysis demonstrated a positive correlation between the stability of microbial networks and Cd,TN,TP,and S in heavily polluted sites.Conversely,in moderately polluted sites,the correlation was positively linked to Cd,Ni,and sediment pH.It implies that Cd could potentially play a crucial role in affecting the stability of microbial networks.This study shall enhance our comprehension of microbial co-occurrence patterns in urban wetland ecosystems and offer insights into the ways in which microbial communities respond to environmental factors in varying levels of HM pollution.
基金supported by the National Natural Science Foundation of China under Grant Nos.U21A20464,62066005Innovation Project of Guangxi Graduate Education under Grant No.YCSW2024313.
文摘Wireless sensor network deployment optimization is a classic NP-hard problem and a popular topic in academic research.However,the current research on wireless sensor network deployment problems uses overly simplistic models,and there is a significant gap between the research results and actual wireless sensor networks.Some scholars have now modeled data fusion networks to make them more suitable for practical applications.This paper will explore the deployment problem of a stochastic data fusion wireless sensor network(SDFWSN),a model that reflects the randomness of environmental monitoring and uses data fusion techniques widely used in actual sensor networks for information collection.The deployment problem of SDFWSN is modeled as a multi-objective optimization problem.The network life cycle,spatiotemporal coverage,detection rate,and false alarm rate of SDFWSN are used as optimization objectives to optimize the deployment of network nodes.This paper proposes an enhanced multi-objective mongoose optimization algorithm(EMODMOA)to solve the deployment problem of SDFWSN.First,to overcome the shortcomings of the DMOA algorithm,such as its low convergence and tendency to get stuck in a local optimum,an encircling and hunting strategy is introduced into the original algorithm to propose the EDMOA algorithm.The EDMOA algorithm is designed as the EMODMOA algorithm by selecting reference points using the K-Nearest Neighbor(KNN)algorithm.To verify the effectiveness of the proposed algorithm,the EMODMOA algorithm was tested at CEC 2020 and achieved good results.In the SDFWSN deployment problem,the algorithm was compared with the Non-dominated Sorting Genetic Algorithm II(NSGAII),Multiple Objective Particle Swarm Optimization(MOPSO),Multi-Objective Evolutionary Algorithm based on Decomposition(MOEA/D),and Multi-Objective Grey Wolf Optimizer(MOGWO).By comparing and analyzing the performance evaluation metrics and optimization results of the objective functions of the multi-objective algorithms,the algorithm outperforms the other algorithms in the SDFWSN deployment results.To better demonstrate the superiority of the algorithm,simulations of diverse test cases were also performed,and good results were obtained.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61763009 and 72172025)。
文摘Research on the self-similarity of multilayer networks is scarce, when compared to the extensive research conducted on the dynamics of these networks. In this paper, we use entropy to determine the edge weights in each sub-network,and apply the degree–degree distance to unify the weight values of connecting edges between different sub-networks, and unify the edges with different meanings in the multilayer network numerically. At this time, the multilayer network is compressed into a single-layer network, also known as the aggregated network. Furthermore, the self-similarity of the multilayer network is represented by analyzing the self-similarity of the aggregate network. The study of self-similarity was conducted on two classical fractal networks and a real-world multilayer network. The results show that multilayer networks exhibit more pronounced self-similarity, and the intensity of self-similarity in multilayer networks can vary with the connection mode of sub-networks.