We present a hybrid singular spectrum analysis (SSA) and fuzzy entropy method to filter noisy nonlinear time series. With this approach, SSA decomposes the noisy time series into its constituent components including...We present a hybrid singular spectrum analysis (SSA) and fuzzy entropy method to filter noisy nonlinear time series. With this approach, SSA decomposes the noisy time series into its constituent components including both the deterministic behavior and noise, while fuzzy entropy automatically differentiates the optimal dominant components from the noise based on the complexity of each component. We demonstrate the effectiveness of the hybrid approach in reconstructing the Lorenz and Mackey--Class attractors, as well as improving the multi-step prediction quality of these two series in noisy environments.展开更多
The frequency domain division theory of dyadic wavelet decomposition and wavelet packet decomposition (WPD) with orthogonal wavelet base frame are presented. The WPD coefficients of signals are treated as the outputs ...The frequency domain division theory of dyadic wavelet decomposition and wavelet packet decomposition (WPD) with orthogonal wavelet base frame are presented. The WPD coefficients of signals are treated as the outputs of equivalent bandwidth filters with different center frequency. The corresponding WPD entropy values of coefficients increase sharply when the discrete spectrum interferences (DSIs), frequency spectrum of which is centered at several frequency points existing in some frequency region. Based on WPD, an entropy threshold method (ETM) is put forward, in which entropy is used to determine whether partial discharge (PD) signals are interfered by DSIs. Simulation and real data processing demonstrate that ETM works with good efficiency, without pre-knowing DSI information. ETM extracts the phase of PD pulses accurately and can calibrate the quantity of single type discharge.展开更多
The power output state of photovoltaic power generation is affected by the earth’s rotation and solar radiation intensity.On the one hand,its output sequence has daily periodicity;on the other hand,it has discrete ra...The power output state of photovoltaic power generation is affected by the earth’s rotation and solar radiation intensity.On the one hand,its output sequence has daily periodicity;on the other hand,it has discrete randomness.With the development of new energy economy,the proportion of photovoltaic energy increased accordingly.In order to solve the problem of improving the energy conversion efficiency in the grid-connected optical network and ensure the stability of photovoltaic power generation,this paper proposes the short-termprediction of photovoltaic power generation based on the improvedmulti-scale permutation entropy,localmean decomposition and singular spectrum analysis algorithm.Firstly,taking the power output per unit day as the research object,the multi-scale permutation entropy is used to calculate the eigenvectors under different weather conditions,and the cluster analysis is used to reconstruct the historical power generation under typical weather rainy and snowy,sunny,abrupt,cloudy.Then,local mean decomposition(LMD)is used to decompose the output sequence,so as to extract more detail components of the reconstructed output sequence.Finally,combined with the weather forecast of the Meteorological Bureau for the next day,the singular spectrumanalysis algorithm is used to predict the photovoltaic classification of the recombination decomposition sequence under typical weather.Through the verification and analysis of examples,the hierarchical prediction experiments of reconstructed and non-reconstructed output sequences are compared.The results show that the algorithm proposed in this paper is effective in realizing the short-term prediction of photovoltaic generator,and has the advantages of simple structure and high prediction accuracy.展开更多
Laser-induced fluorescence(LIF)spectroscopy is employed for plasma diagnosis,necessitating the utilization of deconvolution algorithms to isolate the Doppler effect from the raw spectral signal.However,direct deconvol...Laser-induced fluorescence(LIF)spectroscopy is employed for plasma diagnosis,necessitating the utilization of deconvolution algorithms to isolate the Doppler effect from the raw spectral signal.However,direct deconvolution becomes invalid in the presence of noise as it leads to infinite amplification of high-frequency noise components.To address this issue,we propose a deconvolution algorithm based on the maximum entropy principle.We validate the effectiveness of the proposed algorithm by utilizing simulated LIF spectra at various noise levels(signal-to-noise ratio,SNR=20–80 d B)and measured LIF spectra with Xe as the working fluid.In the typical measured spectrum(SNR=26.23 d B)experiment,compared with the Gaussian filter and the Richardson–Lucy(R-L)algorithm,the proposed algorithm demonstrates an increase in SNR of 1.39 d B and 4.66 d B,respectively,along with a reduction in the root-meansquare error(RMSE)of 35%and 64%,respectively.Additionally,there is a decrease in the spectral angle(SA)of 0.05 and 0.11,respectively.In the high-quality spectrum(SNR=43.96 d B)experiment,the results show that the running time of the proposed algorithm is reduced by about98%compared with the R-L iterative algorithm.Moreover,the maximum entropy algorithm avoids parameter optimization settings and is more suitable for automatic implementation.In conclusion,the proposed algorithm can accurately resolve Doppler spectrum details while effectively suppressing noise,thus highlighting its advantage in LIF spectral deconvolution applications.展开更多
In this paper,according to the defect of methods which have low identification rate in low SNR,a new individual identification method of radiation source based on information entropy feature and SVM is presented. Firs...In this paper,according to the defect of methods which have low identification rate in low SNR,a new individual identification method of radiation source based on information entropy feature and SVM is presented. Firstly,based on the theory of multi-resolution wavelet analysis,the wavelet power spectrum of noncooperative signal can be gotten. Secondly,according to the information entropy theory,the wavelet power spectrum entropy is defined in this paper. Therefore,the database of signal's wavelet power spectrum entropy can be built in different SNR and signal parameters. Finally,the sorting and identification model based on SVM is built for the individual identification of radiation source signal. The simulation result indicates that this method has a high individual's identification rate in low SNR,when the SNR is greater than 4 dB,the identification rate can reach 100%. Under unstable SNR conditions,when the range of SNR is between 0 dB and 24 dB,the average identification rate is more than 92. 67%. Therefore,this method has a great application value in the complex electromagnetic environment.展开更多
In cognitive radio networks, spectrum sensing is one of the most important functions to identify available spectrum for improving the spectrum utilization. Due to the open characteristic of the wireless electromagneti...In cognitive radio networks, spectrum sensing is one of the most important functions to identify available spectrum for improving the spectrum utilization. Due to the open characteristic of the wireless electromagnetic environment, the wireless network is vulnerable to be attacked by malicious users(MUs), and spectrum sensing data falsification(SSDF) attack is one of the most harmful attacks on spectrum sensing performance. In this article,an algorithm based on the evidence theory and fuzzy entropy is proposed to resist SSDF attacks. In this algorithm, secondary users(SUs) obtain the corresponding degree of membership function and basic probability assignment function based on the local energy detection result. The new conflicting coefficient is calculated based on the evidence distance and classical conflicting coefficient, and the conflicting weight of the evidence is obtained.The fuzzy weight is calculated by the fuzzy entropy. The credibility weight is obtained by updating the credibility. On this basis, the probability assignment function of the evidence is corrected, and the final result is obtained by using the fusion formula. Simulation results show that the proposed algorithm has a higher detection probability and lower false alarm probability than other algorithms.It can effectively defend against SSDF attacks and improve the performance of spectrum sensing.展开更多
The maximum entropy spectral characteristics of seismicity in the seismic enhanced region of 11 great earthquakes is analysed in this paper to seek the difference of seismic period spectral structure between the norm...The maximum entropy spectral characteristics of seismicity in the seismic enhanced region of 11 great earthquakes is analysed in this paper to seek the difference of seismic period spectral structure between the normal and the abnormal stage of seismic activity in this paper. The results show that, during decades or even one hundred years before great earthquakes, only short periods with 6.5~24.3 years appear, and long ones disappear. Otherwise, long periods with 18.5~38.5 years exist chiefly within the normal stages. Decades years after great earthquakes, the period spectra of seismicity are generally about several or ten years. Then the characteristics of great earthquakes is explained physically by applying the strong body seismogenic model, so a method of studying and predicting great earthquakes is offered.展开更多
By considering and using an adiabatic invariant for black holes, the area and entropy spectra of static spherically- symmetric black holes are investigated. Without using quasi-normal modes of black holes, equally-spa...By considering and using an adiabatic invariant for black holes, the area and entropy spectra of static spherically- symmetric black holes are investigated. Without using quasi-normal modes of black holes, equally-spaced area and entropy spectra are derived by only utilizing the adiabatic invariant. The spectra for non-charged and charged black holes are calculated, respectively. All these results are consistent with the original Bekenstein spectra.展开更多
The relationships among an ocean wave spectrum,a fully polarimetric coherence matrix,and radar parameters are deduced with an electromagnetic wave theory.Furthermore,the relationship between the polarimetric entropy a...The relationships among an ocean wave spectrum,a fully polarimetric coherence matrix,and radar parameters are deduced with an electromagnetic wave theory.Furthermore,the relationship between the polarimetric entropy and ocean wave spectrum is established based on the definition of entropy and a twoscale scattering model of the ocean surface.It is the first time that the polarimetric entropy of the ocean surface is presented in theory.Meanwhile,the relationships among the fully polarimetric entropy and the parameters related to radar and ocean are discussed.The study is the basis of further monitoring targets on the ocean surface and deriving oceanic information with the entropy from the ocean surface.The contrast enhancement between human-made targets and the ocean surface with the entropy is presented with quad-pol airborne synthetic aperture radar(AIRSAR) data.展开更多
We investigate the area and entropy spectra of D-dimensional large Schwarzschild black holes. By utilizing the new physical interpretation of quasinormal mode frequency we find that a large Schwarzschild-AdS black hol...We investigate the area and entropy spectra of D-dimensional large Schwarzschild black holes. By utilizing the new physical interpretation of quasinormal mode frequency we find that a large Schwarzschild-AdS black hole has an equally spaced area spectrum and an equidistant entropy spectrum; both are dependent on the spacetime dimension.展开更多
Necessity of XPS spectrum deconvolution, disadvantages of the traditional Fast Fourier Transform decon-volution method (FFT) , principle, method and advantages of Maximum Entropy Deconvolution Method (MEM) are de-scri...Necessity of XPS spectrum deconvolution, disadvantages of the traditional Fast Fourier Transform decon-volution method (FFT) , principle, method and advantages of Maximum Entropy Deconvolution Method (MEM) are de-scribed. Criteria for determing the number of data points sam-pled in MEM are the main point disccussed in the paper,some XPS deconvolution applications of our MEM software show that the MEM makes XPS deconvolution much easier than the traditional FFT method.展开更多
By considering and using an adiabatic invariant for black holes, the area and entropy spectra of static spherically-symmetric black holes are investigated. Without using quasi-normal modes of black holes, equally-spac...By considering and using an adiabatic invariant for black holes, the area and entropy spectra of static spherically-symmetric black holes are investigated. Without using quasi-normal modes of black holes, equally-spaced area and entropy spectra are derived by only utilizing the adiabatic invariant. The spectra for non-charged and charged black holes are calculated, respectively. All these results are consistent with the original Bekenstein spectra.展开更多
针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(sin...针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(singular spectrum analysis,SSA)双重分解的双向长短时记忆网络(bidirectional long and short time memory,BiLSTM)预测模型。首先,采用CEEMDAN对历史负荷进行分解,以得到若干个周期规律更为清晰的子序列;再利用多尺度熵(multiscale entropy,MSE)计算所有子序列的复杂程度,根据不同时间尺度上的样本熵值将相似的子序列重构聚合;然后,利用SSA去噪的功能,对高度复杂的新序列进行二次分解,去除序列中的噪声并提取更为主要的规律,从而进一步提高中长序列预测精度;再将得到的最终一组子序列输入BiLSTM进行预测;最后,考虑到天气、节假日等外部因素对电力负荷的影响,提出了一种误差修正技术。选取了巴拿马某地区的用电负荷进行实验,实验结果表明,经过双重分解可以将均方根误差降低87.4%;预测未来一年的负荷序列时,采用的BiLSTM模型将拟合系数最高提高2.5%;所提出的误差修正技术可将均方根误差降低9.7%。展开更多
文摘We present a hybrid singular spectrum analysis (SSA) and fuzzy entropy method to filter noisy nonlinear time series. With this approach, SSA decomposes the noisy time series into its constituent components including both the deterministic behavior and noise, while fuzzy entropy automatically differentiates the optimal dominant components from the noise based on the complexity of each component. We demonstrate the effectiveness of the hybrid approach in reconstructing the Lorenz and Mackey--Class attractors, as well as improving the multi-step prediction quality of these two series in noisy environments.
基金Funded by the of the Key Teachers Foundation under the State Ministry Education.
文摘The frequency domain division theory of dyadic wavelet decomposition and wavelet packet decomposition (WPD) with orthogonal wavelet base frame are presented. The WPD coefficients of signals are treated as the outputs of equivalent bandwidth filters with different center frequency. The corresponding WPD entropy values of coefficients increase sharply when the discrete spectrum interferences (DSIs), frequency spectrum of which is centered at several frequency points existing in some frequency region. Based on WPD, an entropy threshold method (ETM) is put forward, in which entropy is used to determine whether partial discharge (PD) signals are interfered by DSIs. Simulation and real data processing demonstrate that ETM works with good efficiency, without pre-knowing DSI information. ETM extracts the phase of PD pulses accurately and can calibrate the quantity of single type discharge.
文摘The power output state of photovoltaic power generation is affected by the earth’s rotation and solar radiation intensity.On the one hand,its output sequence has daily periodicity;on the other hand,it has discrete randomness.With the development of new energy economy,the proportion of photovoltaic energy increased accordingly.In order to solve the problem of improving the energy conversion efficiency in the grid-connected optical network and ensure the stability of photovoltaic power generation,this paper proposes the short-termprediction of photovoltaic power generation based on the improvedmulti-scale permutation entropy,localmean decomposition and singular spectrum analysis algorithm.Firstly,taking the power output per unit day as the research object,the multi-scale permutation entropy is used to calculate the eigenvectors under different weather conditions,and the cluster analysis is used to reconstruct the historical power generation under typical weather rainy and snowy,sunny,abrupt,cloudy.Then,local mean decomposition(LMD)is used to decompose the output sequence,so as to extract more detail components of the reconstructed output sequence.Finally,combined with the weather forecast of the Meteorological Bureau for the next day,the singular spectrumanalysis algorithm is used to predict the photovoltaic classification of the recombination decomposition sequence under typical weather.Through the verification and analysis of examples,the hierarchical prediction experiments of reconstructed and non-reconstructed output sequences are compared.The results show that the algorithm proposed in this paper is effective in realizing the short-term prediction of photovoltaic generator,and has the advantages of simple structure and high prediction accuracy.
文摘Laser-induced fluorescence(LIF)spectroscopy is employed for plasma diagnosis,necessitating the utilization of deconvolution algorithms to isolate the Doppler effect from the raw spectral signal.However,direct deconvolution becomes invalid in the presence of noise as it leads to infinite amplification of high-frequency noise components.To address this issue,we propose a deconvolution algorithm based on the maximum entropy principle.We validate the effectiveness of the proposed algorithm by utilizing simulated LIF spectra at various noise levels(signal-to-noise ratio,SNR=20–80 d B)and measured LIF spectra with Xe as the working fluid.In the typical measured spectrum(SNR=26.23 d B)experiment,compared with the Gaussian filter and the Richardson–Lucy(R-L)algorithm,the proposed algorithm demonstrates an increase in SNR of 1.39 d B and 4.66 d B,respectively,along with a reduction in the root-meansquare error(RMSE)of 35%and 64%,respectively.Additionally,there is a decrease in the spectral angle(SA)of 0.05 and 0.11,respectively.In the high-quality spectrum(SNR=43.96 d B)experiment,the results show that the running time of the proposed algorithm is reduced by about98%compared with the R-L iterative algorithm.Moreover,the maximum entropy algorithm avoids parameter optimization settings and is more suitable for automatic implementation.In conclusion,the proposed algorithm can accurately resolve Doppler spectrum details while effectively suppressing noise,thus highlighting its advantage in LIF spectral deconvolution applications.
基金Sponsored by the Nation Nature Science Foundation of China(Grant No.61201237,61301095)the Nature Science Foundation of Heilongjiang Province of China(Grant No.QC2012C069)the Fundamental Research Funds for the Central Universities(Grant No.HEUCFZ1129,HEUCF130817,HEUCF130810)
文摘In this paper,according to the defect of methods which have low identification rate in low SNR,a new individual identification method of radiation source based on information entropy feature and SVM is presented. Firstly,based on the theory of multi-resolution wavelet analysis,the wavelet power spectrum of noncooperative signal can be gotten. Secondly,according to the information entropy theory,the wavelet power spectrum entropy is defined in this paper. Therefore,the database of signal's wavelet power spectrum entropy can be built in different SNR and signal parameters. Finally,the sorting and identification model based on SVM is built for the individual identification of radiation source signal. The simulation result indicates that this method has a high individual's identification rate in low SNR,when the SNR is greater than 4 dB,the identification rate can reach 100%. Under unstable SNR conditions,when the range of SNR is between 0 dB and 24 dB,the average identification rate is more than 92. 67%. Therefore,this method has a great application value in the complex electromagnetic environment.
基金supported by the National Natural Science Foundation of China(61701134,51809056)the Fundamental Research Funds for the Central Universities of China(HEUCFM180802)+1 种基金the National Key Research and Development Program of China(2016YFF0102806)the Natural Science Foundation of Heilongjiang Province,China(F2017004)。
文摘In cognitive radio networks, spectrum sensing is one of the most important functions to identify available spectrum for improving the spectrum utilization. Due to the open characteristic of the wireless electromagnetic environment, the wireless network is vulnerable to be attacked by malicious users(MUs), and spectrum sensing data falsification(SSDF) attack is one of the most harmful attacks on spectrum sensing performance. In this article,an algorithm based on the evidence theory and fuzzy entropy is proposed to resist SSDF attacks. In this algorithm, secondary users(SUs) obtain the corresponding degree of membership function and basic probability assignment function based on the local energy detection result. The new conflicting coefficient is calculated based on the evidence distance and classical conflicting coefficient, and the conflicting weight of the evidence is obtained.The fuzzy weight is calculated by the fuzzy entropy. The credibility weight is obtained by updating the credibility. On this basis, the probability assignment function of the evidence is corrected, and the final result is obtained by using the fusion formula. Simulation results show that the proposed algorithm has a higher detection probability and lower false alarm probability than other algorithms.It can effectively defend against SSDF attacks and improve the performance of spectrum sensing.
文摘The maximum entropy spectral characteristics of seismicity in the seismic enhanced region of 11 great earthquakes is analysed in this paper to seek the difference of seismic period spectral structure between the normal and the abnormal stage of seismic activity in this paper. The results show that, during decades or even one hundred years before great earthquakes, only short periods with 6.5~24.3 years appear, and long ones disappear. Otherwise, long periods with 18.5~38.5 years exist chiefly within the normal stages. Decades years after great earthquakes, the period spectra of seismicity are generally about several or ten years. Then the characteristics of great earthquakes is explained physically by applying the strong body seismogenic model, so a method of studying and predicting great earthquakes is offered.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11045005)the Natural Science Foundation of Zhejiang Province of China (Grant No. Y6090739)
文摘By considering and using an adiabatic invariant for black holes, the area and entropy spectra of static spherically- symmetric black holes are investigated. Without using quasi-normal modes of black holes, equally-spaced area and entropy spectra are derived by only utilizing the adiabatic invariant. The spectra for non-charged and charged black holes are calculated, respectively. All these results are consistent with the original Bekenstein spectra.
基金The National Natural Science Foundation of China under contract No.61001137the Project of Knowledge Innovative Program of the Chinese Academy of Sciences and other projects under contract Nos Y1530151A81530151G4 and Y15102EN00
文摘The relationships among an ocean wave spectrum,a fully polarimetric coherence matrix,and radar parameters are deduced with an electromagnetic wave theory.Furthermore,the relationship between the polarimetric entropy and ocean wave spectrum is established based on the definition of entropy and a twoscale scattering model of the ocean surface.It is the first time that the polarimetric entropy of the ocean surface is presented in theory.Meanwhile,the relationships among the fully polarimetric entropy and the parameters related to radar and ocean are discussed.The study is the basis of further monitoring targets on the ocean surface and deriving oceanic information with the entropy from the ocean surface.The contrast enhancement between human-made targets and the ocean surface with the entropy is presented with quad-pol airborne synthetic aperture radar(AIRSAR) data.
基金Supported by the National Natural Science Foundation of China under Grant No.10275030Cuiying Project of Lanzhou University under Grant No.225000-582404
文摘We investigate the area and entropy spectra of D-dimensional large Schwarzschild black holes. By utilizing the new physical interpretation of quasinormal mode frequency we find that a large Schwarzschild-AdS black hole has an equally spaced area spectrum and an equidistant entropy spectrum; both are dependent on the spacetime dimension.
文摘Necessity of XPS spectrum deconvolution, disadvantages of the traditional Fast Fourier Transform decon-volution method (FFT) , principle, method and advantages of Maximum Entropy Deconvolution Method (MEM) are de-scribed. Criteria for determing the number of data points sam-pled in MEM are the main point disccussed in the paper,some XPS deconvolution applications of our MEM software show that the MEM makes XPS deconvolution much easier than the traditional FFT method.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11045005)the Natural Science Foundation of Zhejiang Province of China (Grant No. Y6090739)
文摘By considering and using an adiabatic invariant for black holes, the area and entropy spectra of static spherically-symmetric black holes are investigated. Without using quasi-normal modes of black holes, equally-spaced area and entropy spectra are derived by only utilizing the adiabatic invariant. The spectra for non-charged and charged black holes are calculated, respectively. All these results are consistent with the original Bekenstein spectra.
文摘针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(singular spectrum analysis,SSA)双重分解的双向长短时记忆网络(bidirectional long and short time memory,BiLSTM)预测模型。首先,采用CEEMDAN对历史负荷进行分解,以得到若干个周期规律更为清晰的子序列;再利用多尺度熵(multiscale entropy,MSE)计算所有子序列的复杂程度,根据不同时间尺度上的样本熵值将相似的子序列重构聚合;然后,利用SSA去噪的功能,对高度复杂的新序列进行二次分解,去除序列中的噪声并提取更为主要的规律,从而进一步提高中长序列预测精度;再将得到的最终一组子序列输入BiLSTM进行预测;最后,考虑到天气、节假日等外部因素对电力负荷的影响,提出了一种误差修正技术。选取了巴拿马某地区的用电负荷进行实验,实验结果表明,经过双重分解可以将均方根误差降低87.4%;预测未来一年的负荷序列时,采用的BiLSTM模型将拟合系数最高提高2.5%;所提出的误差修正技术可将均方根误差降低9.7%。