期刊文献+
共找到609篇文章
< 1 2 31 >
每页显示 20 50 100
Denoising Nonlinear Time Series Using Singular Spectrum Analysis and Fuzzy Entropy 被引量:1
1
作者 江剑 谢洪波 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第10期19-23,共5页
We present a hybrid singular spectrum analysis (SSA) and fuzzy entropy method to filter noisy nonlinear time series. With this approach, SSA decomposes the noisy time series into its constituent components including... We present a hybrid singular spectrum analysis (SSA) and fuzzy entropy method to filter noisy nonlinear time series. With this approach, SSA decomposes the noisy time series into its constituent components including both the deterministic behavior and noise, while fuzzy entropy automatically differentiates the optimal dominant components from the noise based on the complexity of each component. We demonstrate the effectiveness of the hybrid approach in reconstructing the Lorenz and Mackey--Class attractors, as well as improving the multi-step prediction quality of these two series in noisy environments. 展开更多
关键词 of on or in Denoising Nonlinear Time Series Using Singular spectrum Analysis and Fuzzy entropy NLP IS
下载PDF
Wavelet packet decomposition entropy threshold method for discrete spectrum interferences rejection of on-line partial discharge monitoring
2
作者 唐炬 SUN Caixin +1 位作者 SONG Shengli LI Jian 《Journal of Chongqing University》 CAS 2003年第1期9-12,共4页
The frequency domain division theory of dyadic wavelet decomposition and wavelet packet decomposition (WPD) with orthogonal wavelet base frame are presented. The WPD coefficients of signals are treated as the outputs ... The frequency domain division theory of dyadic wavelet decomposition and wavelet packet decomposition (WPD) with orthogonal wavelet base frame are presented. The WPD coefficients of signals are treated as the outputs of equivalent bandwidth filters with different center frequency. The corresponding WPD entropy values of coefficients increase sharply when the discrete spectrum interferences (DSIs), frequency spectrum of which is centered at several frequency points existing in some frequency region. Based on WPD, an entropy threshold method (ETM) is put forward, in which entropy is used to determine whether partial discharge (PD) signals are interfered by DSIs. Simulation and real data processing demonstrate that ETM works with good efficiency, without pre-knowing DSI information. ETM extracts the phase of PD pulses accurately and can calibrate the quantity of single type discharge. 展开更多
关键词 partial discharge(PD) discrete spectrum interference(DSI) wavelet packet decomposition(WPD) entropy
下载PDF
Short-Term Prediction of Photovoltaic Power Generation Based on LMD Permutation Entropy and Singular Spectrum Analysis
3
作者 Wenchao Ma 《Energy Engineering》 EI 2023年第7期1685-1699,共15页
The power output state of photovoltaic power generation is affected by the earth’s rotation and solar radiation intensity.On the one hand,its output sequence has daily periodicity;on the other hand,it has discrete ra... The power output state of photovoltaic power generation is affected by the earth’s rotation and solar radiation intensity.On the one hand,its output sequence has daily periodicity;on the other hand,it has discrete randomness.With the development of new energy economy,the proportion of photovoltaic energy increased accordingly.In order to solve the problem of improving the energy conversion efficiency in the grid-connected optical network and ensure the stability of photovoltaic power generation,this paper proposes the short-termprediction of photovoltaic power generation based on the improvedmulti-scale permutation entropy,localmean decomposition and singular spectrum analysis algorithm.Firstly,taking the power output per unit day as the research object,the multi-scale permutation entropy is used to calculate the eigenvectors under different weather conditions,and the cluster analysis is used to reconstruct the historical power generation under typical weather rainy and snowy,sunny,abrupt,cloudy.Then,local mean decomposition(LMD)is used to decompose the output sequence,so as to extract more detail components of the reconstructed output sequence.Finally,combined with the weather forecast of the Meteorological Bureau for the next day,the singular spectrumanalysis algorithm is used to predict the photovoltaic classification of the recombination decomposition sequence under typical weather.Through the verification and analysis of examples,the hierarchical prediction experiments of reconstructed and non-reconstructed output sequences are compared.The results show that the algorithm proposed in this paper is effective in realizing the short-term prediction of photovoltaic generator,and has the advantages of simple structure and high prediction accuracy. 展开更多
关键词 Photovoltaic power generation short term forecast multiscale permutation entropy local mean decomposition singular spectrum analysis
下载PDF
Research on a deconvolution algorithm for laser-induced fluorescence diagnosis based on the maximum entropy principle
4
作者 雷清雲 杨雄 +4 位作者 程谋森 张帆 郭大伟 李小康 肖文杰 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第7期93-107,共15页
Laser-induced fluorescence(LIF)spectroscopy is employed for plasma diagnosis,necessitating the utilization of deconvolution algorithms to isolate the Doppler effect from the raw spectral signal.However,direct deconvol... Laser-induced fluorescence(LIF)spectroscopy is employed for plasma diagnosis,necessitating the utilization of deconvolution algorithms to isolate the Doppler effect from the raw spectral signal.However,direct deconvolution becomes invalid in the presence of noise as it leads to infinite amplification of high-frequency noise components.To address this issue,we propose a deconvolution algorithm based on the maximum entropy principle.We validate the effectiveness of the proposed algorithm by utilizing simulated LIF spectra at various noise levels(signal-to-noise ratio,SNR=20–80 d B)and measured LIF spectra with Xe as the working fluid.In the typical measured spectrum(SNR=26.23 d B)experiment,compared with the Gaussian filter and the Richardson–Lucy(R-L)algorithm,the proposed algorithm demonstrates an increase in SNR of 1.39 d B and 4.66 d B,respectively,along with a reduction in the root-meansquare error(RMSE)of 35%and 64%,respectively.Additionally,there is a decrease in the spectral angle(SA)of 0.05 and 0.11,respectively.In the high-quality spectrum(SNR=43.96 d B)experiment,the results show that the running time of the proposed algorithm is reduced by about98%compared with the R-L iterative algorithm.Moreover,the maximum entropy algorithm avoids parameter optimization settings and is more suitable for automatic implementation.In conclusion,the proposed algorithm can accurately resolve Doppler spectrum details while effectively suppressing noise,thus highlighting its advantage in LIF spectral deconvolution applications. 展开更多
关键词 maximum entropy spectral deconvolution laser-induced fluorescence spectrum
下载PDF
New Individual Identification Method of Radiation Source Signal Based on Entropy Feature and SVM 被引量:5
5
作者 Yun Lin Xiao-Chun Xu Zi-Cheng Wang 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2014年第1期98-101,共4页
In this paper,according to the defect of methods which have low identification rate in low SNR,a new individual identification method of radiation source based on information entropy feature and SVM is presented. Firs... In this paper,according to the defect of methods which have low identification rate in low SNR,a new individual identification method of radiation source based on information entropy feature and SVM is presented. Firstly,based on the theory of multi-resolution wavelet analysis,the wavelet power spectrum of noncooperative signal can be gotten. Secondly,according to the information entropy theory,the wavelet power spectrum entropy is defined in this paper. Therefore,the database of signal's wavelet power spectrum entropy can be built in different SNR and signal parameters. Finally,the sorting and identification model based on SVM is built for the individual identification of radiation source signal. The simulation result indicates that this method has a high individual's identification rate in low SNR,when the SNR is greater than 4 dB,the identification rate can reach 100%. Under unstable SNR conditions,when the range of SNR is between 0 dB and 24 dB,the average identification rate is more than 92. 67%. Therefore,this method has a great application value in the complex electromagnetic environment. 展开更多
关键词 RADIATION source INDIVIDUAL identification WAVELET power spectrum information entropy support VECTOR machine
下载PDF
An algorithm based on evidence theory and fuzzy entropy to defend against SSDF 被引量:3
6
作者 YE Fang BAI Ping TIAN Yuan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第2期243-251,共9页
In cognitive radio networks, spectrum sensing is one of the most important functions to identify available spectrum for improving the spectrum utilization. Due to the open characteristic of the wireless electromagneti... In cognitive radio networks, spectrum sensing is one of the most important functions to identify available spectrum for improving the spectrum utilization. Due to the open characteristic of the wireless electromagnetic environment, the wireless network is vulnerable to be attacked by malicious users(MUs), and spectrum sensing data falsification(SSDF) attack is one of the most harmful attacks on spectrum sensing performance. In this article,an algorithm based on the evidence theory and fuzzy entropy is proposed to resist SSDF attacks. In this algorithm, secondary users(SUs) obtain the corresponding degree of membership function and basic probability assignment function based on the local energy detection result. The new conflicting coefficient is calculated based on the evidence distance and classical conflicting coefficient, and the conflicting weight of the evidence is obtained.The fuzzy weight is calculated by the fuzzy entropy. The credibility weight is obtained by updating the credibility. On this basis, the probability assignment function of the evidence is corrected, and the final result is obtained by using the fusion formula. Simulation results show that the proposed algorithm has a higher detection probability and lower false alarm probability than other algorithms.It can effectively defend against SSDF attacks and improve the performance of spectrum sensing. 展开更多
关键词 cooperative spectrum SENSING EVIDENCE theory fuzzy entropy spectrum SENSING data falsification(SSDF)
下载PDF
Maximum entropy spectral characteristics of seismic activity for great earthquakes in China 被引量:2
7
作者 宋治平 梅世蓉 +1 位作者 武安绪 薛艳 《Acta Seismologica Sinica(English Edition)》 CSCD 1997年第1期8-15,共8页
The maximum entropy spectral characteristics of seismicity in the seismic enhanced region of 11 great earthquakes is analysed in this paper to seek the difference of seismic period spectral structure between the norm... The maximum entropy spectral characteristics of seismicity in the seismic enhanced region of 11 great earthquakes is analysed in this paper to seek the difference of seismic period spectral structure between the normal and the abnormal stage of seismic activity in this paper. The results show that, during decades or even one hundred years before great earthquakes, only short periods with 6.5~24.3 years appear, and long ones disappear. Otherwise, long periods with 18.5~38.5 years exist chiefly within the normal stages. Decades years after great earthquakes, the period spectra of seismicity are generally about several or ten years. Then the characteristics of great earthquakes is explained physically by applying the strong body seismogenic model, so a method of studying and predicting great earthquakes is offered. 展开更多
关键词 great earthquake maximum entropy spectrum short period long period strong body seismogenic model
下载PDF
Area and entropy spectra of black holes via an adiabatic invariant
8
作者 刘成周 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第7期152-157,共6页
By considering and using an adiabatic invariant for black holes, the area and entropy spectra of static spherically- symmetric black holes are investigated. Without using quasi-normal modes of black holes, equally-spa... By considering and using an adiabatic invariant for black holes, the area and entropy spectra of static spherically- symmetric black holes are investigated. Without using quasi-normal modes of black holes, equally-spaced area and entropy spectra are derived by only utilizing the adiabatic invariant. The spectra for non-charged and charged black holes are calculated, respectively. All these results are consistent with the original Bekenstein spectra. 展开更多
关键词 black hole adiabatic invariant area spectrum entropy spectrum
下载PDF
Polarimetric entropy of the ocean surface with a two-scale scattering model
9
作者 WANG Wenguang LI Haiyan SONG Xingai 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2014年第1期102-108,共7页
The relationships among an ocean wave spectrum,a fully polarimetric coherence matrix,and radar parameters are deduced with an electromagnetic wave theory.Furthermore,the relationship between the polarimetric entropy a... The relationships among an ocean wave spectrum,a fully polarimetric coherence matrix,and radar parameters are deduced with an electromagnetic wave theory.Furthermore,the relationship between the polarimetric entropy and ocean wave spectrum is established based on the definition of entropy and a twoscale scattering model of the ocean surface.It is the first time that the polarimetric entropy of the ocean surface is presented in theory.Meanwhile,the relationships among the fully polarimetric entropy and the parameters related to radar and ocean are discussed.The study is the basis of further monitoring targets on the ocean surface and deriving oceanic information with the entropy from the ocean surface.The contrast enhancement between human-made targets and the ocean surface with the entropy is presented with quad-pol airborne synthetic aperture radar(AIRSAR) data. 展开更多
关键词 entropy ocean wave spectrum polarimetric synthetic aperture radar POLSAR two-scale scattering mode contrast enhancement
下载PDF
Area Spectrum of D-Dimensional Large Schwarzschild-AdS Black Hole from Asymptotic Quasinormal Modes
10
作者 任继荣 宋士雄 魏少文 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第6期1097-1099,共3页
We investigate the area and entropy spectra of D-dimensional large Schwarzschild black holes. By utilizing the new physical interpretation of quasinormal mode frequency we find that a large Schwarzschild-AdS black hol... We investigate the area and entropy spectra of D-dimensional large Schwarzschild black holes. By utilizing the new physical interpretation of quasinormal mode frequency we find that a large Schwarzschild-AdS black hole has an equally spaced area spectrum and an equidistant entropy spectrum; both are dependent on the spacetime dimension. 展开更多
关键词 area spectrum entropy spectrum Schwarzschild-AdS black hole
下载PDF
MAXIMUM ENTROPY DECONVOLUTION OF XPS PEAK
11
作者 王典芬 汪海 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 1994年第4期19-25,共7页
Necessity of XPS spectrum deconvolution, disadvantages of the traditional Fast Fourier Transform decon-volution method (FFT) , principle, method and advantages of Maximum Entropy Deconvolution Method (MEM) are de-scri... Necessity of XPS spectrum deconvolution, disadvantages of the traditional Fast Fourier Transform decon-volution method (FFT) , principle, method and advantages of Maximum Entropy Deconvolution Method (MEM) are de-scribed. Criteria for determing the number of data points sam-pled in MEM are the main point disccussed in the paper,some XPS deconvolution applications of our MEM software show that the MEM makes XPS deconvolution much easier than the traditional FFT method. 展开更多
关键词 X-ray photoelectron spectrum (XPS) peak maximum entropy decovolution method (MEM) software
下载PDF
基于邦纳多球谱仪探测的中子能谱解谱研究
12
作者 张硕 范杰清 +3 位作者 张芳 赵强 郝建红 董志伟 《强激光与粒子束》 CAS CSCD 北大核心 2024年第12期115-120,共6页
在中子辐射领域,中子解谱问题备受关注。邦纳多球谱仪常用于中子能谱探测,最大熵法可针对多球谱仪探测数据进行中子解谱。基于此原理,建立包含邦纳多球谱仪的仿真模型,以蒙特卡罗方法的模拟结果作为先验谱,使用基于最大熵原理的最大熵... 在中子辐射领域,中子解谱问题备受关注。邦纳多球谱仪常用于中子能谱探测,最大熵法可针对多球谱仪探测数据进行中子解谱。基于此原理,建立包含邦纳多球谱仪的仿真模型,以蒙特卡罗方法的模拟结果作为先验谱,使用基于最大熵原理的最大熵反卷积(MAXED)方法进行中子解谱,结果证明了方法的有效性和准确性。通过增加蒙特卡罗方法的随机粒子数,获得了精确度不同的多组先验谱,对于不同的先验谱,最终解谱结果均可获得统计学显著性,解谱结果有效。经过对比,先验谱越精准,最终解谱结果准确度越高,说明通过合适的降方差方法获得准确的蒙特卡罗计算结果至关重要,可为后续研究和实验提供参考。同步使用了基于迭代算法的GRAVEL方法进行中子解谱,两种解谱方法计算结果对比进一步证明了MAXED方法解谱的优越性能。 展开更多
关键词 中子探测器 中子解谱 最大熵法 先验谱
下载PDF
Area and entropy spectra of black holes via an adiabatic invariant
13
作者 刘成周 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第7期156-161,共1页
By considering and using an adiabatic invariant for black holes, the area and entropy spectra of static spherically-symmetric black holes are investigated. Without using quasi-normal modes of black holes, equally-spac... By considering and using an adiabatic invariant for black holes, the area and entropy spectra of static spherically-symmetric black holes are investigated. Without using quasi-normal modes of black holes, equally-spaced area and entropy spectra are derived by only utilizing the adiabatic invariant. The spectra for non-charged and charged black holes are calculated, respectively. All these results are consistent with the original Bekenstein spectra. 展开更多
关键词 black hole adiabatic invariant area spectrum entropy spectrum
全文增补中
基于双重分解和双向长短时记忆网络的中长期负荷预测模型
14
作者 王继东 于俊源 孔祥玉 《电网技术》 EI CSCD 北大核心 2024年第8期3418-3426,I0121-I0126,共15页
针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(sin... 针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(singular spectrum analysis,SSA)双重分解的双向长短时记忆网络(bidirectional long and short time memory,BiLSTM)预测模型。首先,采用CEEMDAN对历史负荷进行分解,以得到若干个周期规律更为清晰的子序列;再利用多尺度熵(multiscale entropy,MSE)计算所有子序列的复杂程度,根据不同时间尺度上的样本熵值将相似的子序列重构聚合;然后,利用SSA去噪的功能,对高度复杂的新序列进行二次分解,去除序列中的噪声并提取更为主要的规律,从而进一步提高中长序列预测精度;再将得到的最终一组子序列输入BiLSTM进行预测;最后,考虑到天气、节假日等外部因素对电力负荷的影响,提出了一种误差修正技术。选取了巴拿马某地区的用电负荷进行实验,实验结果表明,经过双重分解可以将均方根误差降低87.4%;预测未来一年的负荷序列时,采用的BiLSTM模型将拟合系数最高提高2.5%;所提出的误差修正技术可将均方根误差降低9.7%。 展开更多
关键词 中长期负荷预测 二次分解 多尺度熵 奇异谱分析 双向长短时记忆网络 长序列处理
下载PDF
基于ICEEMDAN和PSO-LSSVM的石油机械滚动轴承故障诊断方法研究
15
作者 郑立朝 宋宏志 +4 位作者 顾启林 章宝玲 安宏鑫 张瀚阳 别锋锋 《计算机测量与控制》 2024年第8期129-137,共9页
针对滚动轴承疲劳故障振动信号具有能量弱、特征稀疏等特点,提出了一种通过改进自适应噪声完备经验模态分解方法与粒子群优化的最小二乘支持向量机结合的故障识别方法;对轴承不同故障信号利用改进的自适应噪声完备经验模态算法分解为一... 针对滚动轴承疲劳故障振动信号具有能量弱、特征稀疏等特点,提出了一种通过改进自适应噪声完备经验模态分解方法与粒子群优化的最小二乘支持向量机结合的故障识别方法;对轴承不同故障信号利用改进的自适应噪声完备经验模态算法分解为一系列固有模态函数分量;根据相关系数-方差贡献率准则筛选出最能表征原始信号状态的分量,并计算重构分量的奇异谱熵值构成特征向量;将提取的特征向量集合输入到基于粒子群优化的最小二乘支持向量机分类器中,进行模型的训练和故障模式的识别,与SVM和LSSVM分类器模型进行准确率和效率比较;试验结果表明,该方法在滚动轴承故障信号中能有效提取故障特征,准确率达98.75%,具有一定可靠性和实用性。 展开更多
关键词 滚动轴承 ICEEMDAN分解 奇异谱熵 PSO-LSSVM 模式识别
下载PDF
基于功率谱熵的无线电引信目标与干扰信号分类方法
16
作者 刘冰 郝新红 蔡鑫 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第3期913-919,共7页
无线电调频引信在战场环境容易受到干扰信号的干扰导致早炸,丧失打击能力。为提升无线电调频引信抗干扰能力,准确识别引信目标与干扰信号,提出一种基于功率谱熵特征的无线电调频引信目标与干扰信号分类识别方法。利用实测采集的无线电... 无线电调频引信在战场环境容易受到干扰信号的干扰导致早炸,丧失打击能力。为提升无线电调频引信抗干扰能力,准确识别引信目标与干扰信号,提出一种基于功率谱熵特征的无线电调频引信目标与干扰信号分类识别方法。利用实测采集的无线电引信检波端输出信号,通过提取目标和干扰信号的功率谱指数熵和Renyi熵特征构成特征向量,作为K邻近(KNN)分类器的输入进行目标和干扰信号分类识别,并利用5-折交叉检验方法对其进行验证。结果表明:目标和干扰信号的功率指数熵和Renyi熵具有显著差异性,使用KNN分类器对其进行分类识别时,最高的识别准确率可达99.47%。 展开更多
关键词 无线电调频引信 抗干扰 功率谱熵特征 目标分类 KNN算法
下载PDF
一种基于类小波变换的无线电频谱监测数据无损压缩方法
17
作者 张承琰 郑明魁 +3 位作者 刘会明 易天儒 李少良 陈祖儿 《电子测量与仪器学报》 CSCD 北大核心 2024年第7期152-158,共7页
无线电频谱监测海量数据存储和分析是无线电监管工作的重要组成部分。频谱数据具有时间相关性以及不同频点间的相关冗余,对此本文设计了一种基于类小波变换的无线电频谱监测数据无损压缩方法。该方法首先基于时间相关性将一维频谱信号... 无线电频谱监测海量数据存储和分析是无线电监管工作的重要组成部分。频谱数据具有时间相关性以及不同频点间的相关冗余,对此本文设计了一种基于类小波变换的无线电频谱监测数据无损压缩方法。该方法首先基于时间相关性将一维频谱信号转换成二维矩阵;转换成二维矩阵后数据在水平方向以及垂直方向都存在冗余,算法采用卷积神经网络来代替传统小波中的预测和更新模块,并引入了自适应压缩块来处理不同维度的特征,从而获得更紧凑的频谱数据表示。研究进一步设计了一种基于上下文的深度熵模型,利用类小波变换不同子带系数获得熵编码参数,以此估计累积概率,从而实现频谱数据的压缩。实验结果表明,与已有的Deflate等传统频谱监测数据无损压缩方法相比,本文算法有进一步的性能提升,与典型的JPEG2000、PNG、JPEG-LS等二维图像无损压缩方法相比,本文所提出的方法的压缩效果也提高了20%以上。 展开更多
关键词 频谱监测数据 无损压缩 类小波变换 卷积神经网络 熵编码
下载PDF
ITD结合参数优化MOMEDA的滚动轴承故障特征提取
18
作者 刘沛 彭珍瑞 何泽人 《机械科学与技术》 CSCD 北大核心 2024年第6期967-974,共8页
针对固有时间尺度分解(Intrinsic time scale decomposition,ITD)方法在强背景噪声影响下难以提取轴承故障特征的问题,提出了一种ITD与参数优化的多点最优最小熵解卷积(Multipoint optimal minimum entropy deconvolution adjusted,MOME... 针对固有时间尺度分解(Intrinsic time scale decomposition,ITD)方法在强背景噪声影响下难以提取轴承故障特征的问题,提出了一种ITD与参数优化的多点最优最小熵解卷积(Multipoint optimal minimum entropy deconvolution adjusted,MOMEDA)相结合的滚动轴承故障特征提取方法。首先根据包络谱峰值因子最大原则提取包含丰富故障信息的ITD分量,其次对该分量进行MOMEDA降噪处理。对影响MOMEDA滤波效果的两个参数——故障周期T与滤波器长度L分别以多点峭度和平方包络谱的基尼指数进行优化,最后进行包络谱分析提取故障特征频率。通过仿真信号与实测信号分析表明该方法能在强噪声干扰下有效提取故障特征。 展开更多
关键词 固有时间尺度分解 多点最优最小熵解卷积 滚动轴承 包络谱峰值因子 基尼指数
下载PDF
坡谱信息熵与区域水土流失关系研究
19
作者 高艺琳 罗明良 《中阿科技论坛(中英文)》 2024年第5期72-76,共5页
坡谱信息熵可以在宏观上反映地形起伏特征和地貌组合差异,且计算相对便捷。为探索坡谱信息熵与区域水土流失之间的关系,文章以西北黄土高原水土保持区为例,基于ALOS数字高程模型(空间分辨率12.5 m)计算研究区内的坡谱信息熵、土壤侵蚀模... 坡谱信息熵可以在宏观上反映地形起伏特征和地貌组合差异,且计算相对便捷。为探索坡谱信息熵与区域水土流失之间的关系,文章以西北黄土高原水土保持区为例,基于ALOS数字高程模型(空间分辨率12.5 m)计算研究区内的坡谱信息熵、土壤侵蚀模数,构建坡谱信息熵与土壤侵蚀模数之间的函数关系。研究结果表明:研究区内坡谱曲线主要为“L”形、“S”形,坡谱信息熵值在0.67~1.72nat之间;平均土壤侵蚀模数为1940t/(km^(2)·a)。在流域尺度、二级尺度和三级尺度上,构建坡谱信息熵与土壤侵蚀模数的函数模型,均呈极显著的多项式函数关系,但在流域尺度上,坡谱信息熵与土壤侵蚀模数的关系存在较大不确定性。 展开更多
关键词 土壤侵蚀 坡谱 坡谱信息熵 黄土高原
下载PDF
基于传感信号采集的电控发动机振动故障监测方法
20
作者 马晓 郑晅 柴艳娜 《传感技术学报》 CAS CSCD 北大核心 2024年第4期675-681,共7页
通过调理振动信号可以更高效地监测振动故障。为此,提出基于传感信号采集的电控发动机振动故障监测方法。首先,搭建电控发电机传感信号采集与处理架构,通过放大传感信号增益、滤波和转换信号模数的方式处理待监测信号,为提高监测准确性... 通过调理振动信号可以更高效地监测振动故障。为此,提出基于传感信号采集的电控发动机振动故障监测方法。首先,搭建电控发电机传感信号采集与处理架构,通过放大传感信号增益、滤波和转换信号模数的方式处理待监测信号,为提高监测准确性奠定可靠的数据基础。通过小波包分解与重构,获取信号的时域参数和小波能谱熵,并构建三维特征量。然后,利用“一对一”分解策略优化孪生支持向量机,构造多元分类器,使其更适用于振动故障监测这一多类别分类问题,再输入待监测信号的特征量,通过确定故障类别实现持续性监测。仿真结果表明:该方法训练耗时的最大值仅为897 ms,对于转子摩擦振动、不平衡振动等5种类型故障的监测准确率始终在97%以上,在缩减训练样本后准确率仍保持在90%以上。 展开更多
关键词 信号与信息处理 振动故障监测 传感信号采集 电控发动机 信号调理 信号转换 小波能谱熵 孪生支持向量机
下载PDF
上一页 1 2 31 下一页 到第
使用帮助 返回顶部