期刊文献+
共找到1,313篇文章
< 1 2 66 >
每页显示 20 50 100
Scaling up Kernel Grower Clustering Method for Large Data Sets via Core-sets 被引量:2
1
作者 CHANG Liang DENG Xiao-Ming +1 位作者 ZHENG Sui-Wu WANG Yong-Qing 《自动化学报》 EI CSCD 北大核心 2008年第3期376-382,共7页
核栽培者是聚类最近 Camastra 和 Verri 建议的方法的一个新奇的核。它证明为各种各样的数据的好性能关于流行聚类的算法有利地设定并且比较。然而,方法的主要缺点是在处理大数据集合的弱可伸缩能力,它极大地限制它的应用程序。在这... 核栽培者是聚类最近 Camastra 和 Verri 建议的方法的一个新奇的核。它证明为各种各样的数据的好性能关于流行聚类的算法有利地设定并且比较。然而,方法的主要缺点是在处理大数据集合的弱可伸缩能力,它极大地限制它的应用程序。在这份报纸,我们用核心集合建议一个可伸缩起来的核栽培者方法,它是比为聚类的大数据的原来的方法显著地快的。同时,它能处理很大的数据集合。象合成数据集合一样的基准数据集合的数字实验显示出建议方法的效率。方法也被用于真实图象分割说明它的性能。 展开更多
关键词 大型数据集 图象分割 模式识别 磁心配置 核聚类
下载PDF
Semi-supervised Affinity Propagation Clustering Based on Subtractive Clustering for Large-Scale Data Sets
2
作者 Qi Zhu Huifu Zhang Quanqin Yang 《国际计算机前沿大会会议论文集》 2015年第1期76-77,共2页
In the face of a growing number of large-scale data sets, affinity propagation clustering algorithm to calculate the process required to build the similarity matrix, will bring huge storage and computation. Therefore,... In the face of a growing number of large-scale data sets, affinity propagation clustering algorithm to calculate the process required to build the similarity matrix, will bring huge storage and computation. Therefore, this paper proposes an improved affinity propagation clustering algorithm. First, add the subtraction clustering, using the density value of the data points to obtain the point of initial clusters. Then, calculate the similarity distance between the initial cluster points, and reference the idea of semi-supervised clustering, adding pairs restriction information, structure sparse similarity matrix. Finally, the cluster representative points conduct AP clustering until a suitable cluster division.Experimental results show that the algorithm allows the calculation is greatly reduced, the similarity matrix storage capacity is also reduced, and better than the original algorithm on the clustering effect and processing speed. 展开更多
关键词 subtractive clustering INITIAL cluster AFFINITY propagation clustering SEMI-SUPERVISED clustering LARGE-SCALE data sets
下载PDF
Autonomous Clustering Using Rough Set Theory 被引量:2
3
作者 Charlotte Bean Chandra Kambhampati 《International Journal of Automation and computing》 EI 2008年第1期90-102,共13页
This paper proposes a clustering technique that minimizes the need for subjective human intervention and is based on elements of rough set theory (RST). The proposed algorithm is unified in its approach to clusterin... This paper proposes a clustering technique that minimizes the need for subjective human intervention and is based on elements of rough set theory (RST). The proposed algorithm is unified in its approach to clustering and makes use of both local and global data properties to obtain clustering solutions. It handles single-type and mixed attribute data sets with ease. The results from three data sets of single and mixed attribute types are used to illustrate the technique and establish its efficiency. 展开更多
关键词 Rough set theory (RST) data clustering knowledge-oriented clustering AUTONOMOUS
下载PDF
Liver Segmentation from CT Image Using Fuzzy Clustering and Level Set 被引量:2
4
作者 Xuechen Li Suhuai Luo Jiaming Li 《Journal of Signal and Information Processing》 2013年第3期36-42,共7页
This paper presents a fully automatic segmentation method of liver CT scans using fuzzy c-mean clustering and level set. First, the contrast of original image is enhanced to make boundaries clearer;second, a spatial f... This paper presents a fully automatic segmentation method of liver CT scans using fuzzy c-mean clustering and level set. First, the contrast of original image is enhanced to make boundaries clearer;second, a spatial fuzzy c-mean clustering combining with anatomical prior knowledge is employed to extract liver region automatically;thirdly, a distance regularized level set is used for refinement;finally, morphological operations are used as post-processing. The experiment result shows that the method can achieve high accuracy (0.9986) and specificity (0.9989). Comparing with standard level set method, our method is more effective in dealing with over-segmentation problem. 展开更多
关键词 LIVER SEGMENTATION FUZZY c-Mean clustering Level set
下载PDF
Clustering of Web Learners Based on Rough Set
5
作者 LIUShuai-dong CHENShi-hong 《Wuhan University Journal of Natural Sciences》 EI CAS 2004年第5期542-546,共5页
The demand for individualized teaching from E-learning websites is rapidly increasing due to the huge differences existed among Web learners. A method for clustering Web learners based on rough set is proposed. The ba... The demand for individualized teaching from E-learning websites is rapidly increasing due to the huge differences existed among Web learners. A method for clustering Web learners based on rough set is proposed. The basic idea of the method is to reduce the learning attributes prior to clustering, and therefore the clustering of Web learners is carried out in a relative low-dimensional space. Using this method, the E-learning websites can arrange corresponding teaching content for different clusters of learners so that the learners’ individual requirements can be more satisfied. Key words rough set - attributes reduction - k-means clustering - individualized teaching CLC number TP 391.6 Foundation item: Supported by the National “863” Program of China (2002AA111010, 2003AA001032)Biography: LIU Shuai-dong (1979-), male, Master candidate, research direction: knowledge discovery and individualized learning techniques. 展开更多
关键词 rough set attributes reduction k-means clustering individualized teaching
下载PDF
New judging model of fuzzy cluster optimal dividing based on rough sets theory
6
作者 Wang Yun Liu Qinghong +1 位作者 Mu Yong Shi Kaiquan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第2期392-397,共6页
To investigate the judging problem of optimal dividing matrix among several fuzzy dividing matrices in fuzzy dividing space, correspondingly, which is determined by the various choices of cluster samples in the totali... To investigate the judging problem of optimal dividing matrix among several fuzzy dividing matrices in fuzzy dividing space, correspondingly, which is determined by the various choices of cluster samples in the totality sample space, two algorithms are proposed on the basis of the data analysis method in rough sets theory: information system discrete algorithm (algorithm 1) and samples representatives judging algorithm (algorithm 2). On the principle of the farthest distance, algorithm 1 transforms continuous data into discrete form which could be transacted by rough sets theory. Taking the approximate precision as a criterion, algorithm 2 chooses the sample space with a good representative. Hence, the clustering sample set in inducing and computing optimal dividing matrix can be achieved. Several theorems are proposed to provide strict theoretic foundations for the execution of the algorithm model. An applied example based on the new algorithm model is given, whose result verifies the feasibility of this new algorithm model. 展开更多
关键词 Rough sets theory Fuzzy optimal dividing matrix Representatives of samples Fuzzy cluster analysis Information system approximate precision.
下载PDF
Use of Rough Sets Theory in Point Cluster and River Network Selection
7
作者 Jia Qiu Ruisheng Wang Wenjing Li 《Journal of Geographic Information System》 2014年第3期209-219,共11页
In this paper, we applied the rough sets to the point cluster and river network selection. In order to meet the requirements of rough sets, first, we structuralize and quantify the spatial information of objects by co... In this paper, we applied the rough sets to the point cluster and river network selection. In order to meet the requirements of rough sets, first, we structuralize and quantify the spatial information of objects by convex hull, triangulated irregular network (TIN), Voronoi diagram, etc.;second, we manually assign decisional attributes to the information table according to conditional attributes. In doing so, the spatial information and attribute information are integrated together to evaluate the importance of points and rivers by rough sets theory. Finally, we select the point cluster and the river network in a progressive manner. The experimental results show that our method is valid and effective. In comparison with previous work, our method has the advantage to adaptively consider the spatial and attribute information at the same time without any a priori knowledge. 展开更多
关键词 ROUGH sets THEORY Map GENERALIZATION POINT cluster River Network Progressive SELECTION
下载PDF
NEW SHADOWED C-MEANS CLUSTERING WITH FEATURE WEIGHTS 被引量:2
8
作者 王丽娜 王建东 姜坚 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第3期273-283,共11页
Partition-based clustering with weighted feature is developed in the framework of shadowed sets. The objects in the core and boundary regions, generated by shadowed sets-based clustering, have different impact on the ... Partition-based clustering with weighted feature is developed in the framework of shadowed sets. The objects in the core and boundary regions, generated by shadowed sets-based clustering, have different impact on the prototype of each cluster. By integrating feature weights, a formula for weight calculation is introduced to the clustering algorithm. The selection of weight exponent is crucial for good result and the weights are updated iteratively with each partition of clusters. The convergence of the weighted algorithms is given, and the feasible cluster validity indices of data mining application are utilized. Experimental results on both synthetic and real-life numerical data with different feature weights demonstrate that the weighted algorithm is better than the other unweighted algorithms. 展开更多
关键词 fuzzy C-means shadowed sets shadowed C-means feature weights cluster validity index
下载PDF
融合Shadowed Sets聚类的离群点检测算法 被引量:3
9
作者 王丹 毛紫阳 吴孟达 《计算机科学与探索》 CSCD 2012年第11期985-993,共9页
从数据整体和宏观特点给出了离群点的新的定义,并基于数据宏观模式定义了一种新的离群因子,该因子考虑了数据点偏离数据模式的程度和数据点本身归类的不确定性;提出了一种新的Shadowed Sets优化目标,使得在模糊集阴影化过程中更加关注... 从数据整体和宏观特点给出了离群点的新的定义,并基于数据宏观模式定义了一种新的离群因子,该因子考虑了数据点偏离数据模式的程度和数据点本身归类的不确定性;提出了一种新的Shadowed Sets优化目标,使得在模糊集阴影化过程中更加关注核的准确性;同时基于Shadowed Sets聚类,提出了一种结合聚类的离群点检测算法,该算法可以同时进行聚类和离群点检测;通过模拟数据和Iris数据测试,显示算法具有较好的检测效果。 展开更多
关键词 离群点 聚类 阴影集
下载PDF
DSets-DBSCAN无参数聚类的雷达信号分选算法 被引量:4
10
作者 刘鲁涛 王璐璐 +1 位作者 李品 陈涛 《国防科技大学学报》 EI CAS CSCD 北大核心 2022年第4期158-163,共6页
针对现有的很多高效分选算法的性能严重依赖于外界输入的参数问题,例如聚类数目、聚类容差等,将无参数聚类算法DSets-DBSCAN应用于雷达信号分选,提出了一种无参数的雷达信号脉冲聚类算法。该算法无须依赖于任何参数的设置,就能自适应地... 针对现有的很多高效分选算法的性能严重依赖于外界输入的参数问题,例如聚类数目、聚类容差等,将无参数聚类算法DSets-DBSCAN应用于雷达信号分选,提出了一种无参数的雷达信号脉冲聚类算法。该算法无须依赖于任何参数的设置,就能自适应地完成聚类。算法输入直方图均衡化处理过的成对相似性矩阵,使得Dsets(dominant sets)算法不依赖于任何参数;根据得到的超小簇自适应给出DBSCAN的输入参数;利用DBSCAN扩展集群。仿真实验证明,该算法对雷达脉冲描述字特征进行无参数分选的有效性。同时,在虚假脉冲比例(虚假脉冲数/雷达脉冲数)不高于80%的情况下,对雷达信号的聚类准确率在97.56%以上。 展开更多
关键词 信号预分选 无参数聚类 Dsets 直方图均衡化
下载PDF
基于改进DSets的无参数雷达信号分选算法 被引量:3
11
作者 刘鲁涛 王璐璐 陈涛 《中国舰船研究》 CSCD 北大核心 2021年第4期232-238,共7页
[目的]随着电磁环境日益复杂,信号分选越来越困难。为了解决现有高效分选算法性能严重依赖于外界输入参数的不足,提出了基于DSets-DS的无参数雷达信号聚类算法。[方法]将直方图均衡化后的主导集(dominant sets,DSets)算法应用于雷达信... [目的]随着电磁环境日益复杂,信号分选越来越困难。为了解决现有高效分选算法性能严重依赖于外界输入参数的不足,提出了基于DSets-DS的无参数雷达信号聚类算法。[方法]将直方图均衡化后的主导集(dominant sets,DSets)算法应用于雷达信号分选,提出一种无参数的雷达信号脉冲聚类算法,然后结合D-S(Dempster-Shafer)证据理论,以解决DSets算法过度分割问题。[结果]在无任何先验信息条件下,能够完成对雷达信号混合脉冲精准聚类;此外,在虚假脉冲比例低于50%的情况下,分选正确率大于93.13%。将DSets算法与D-S证据理论结合,可有效完成对无先验信息的雷达信号脉冲聚类,且有很好的聚类性能。 展开更多
关键词 无参数聚类 主导集算法 直方图均衡 D-S证据理论
下载PDF
一般信息系统的PoClustering与概念格 被引量:1
12
作者 吴强 《绍兴文理学院学报》 2008年第9期12-18,33,共8页
传统聚类方法生成的子集,一般来说都是不相交的.而严格的不相交分类结构,不能充分表现象本体这样的事物间丰富的类关系.在基因本体中,类与子类既不是简单的树也不是格结构,而是一个有向非循环图,其任何子女都可能有多个父结点.PoCluster... 传统聚类方法生成的子集,一般来说都是不相交的.而严格的不相交分类结构,不能充分表现象本体这样的事物间丰富的类关系.在基因本体中,类与子类既不是简单的树也不是格结构,而是一个有向非循环图,其任何子女都可能有多个父结点.PoClustering是相异数据的一种无损聚类方法,概念格则反映了数据的对象和属性的对应关系.采用了PoClustering方法,在保持尽量多的信息的前提下建立一般数据集(信息系统)的属性确定下的概念化分类,讨论了它的算法,从概念格的角度研究了这种类的结构特征. 展开更多
关键词 偏序集 聚类 概念格
下载PDF
Hierarchical hesitant fuzzy K-means clustering algorithm 被引量:21
13
作者 CHEN Na XU Ze-shui XIA Mei-mei 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2014年第1期1-17,共17页
Due to the limitation and hesitation in one's knowledge, the membership degree of an element to a given set usually has a few different values, in which the conventional fuzzy sets are invalid. Hesitant fuzzy sets ar... Due to the limitation and hesitation in one's knowledge, the membership degree of an element to a given set usually has a few different values, in which the conventional fuzzy sets are invalid. Hesitant fuzzy sets are a powerful tool to treat this case. The present paper focuses on investigating the clustering technique for hesitant fuzzy sets based on the K-means clustering algorithm which takes the results of hierarchical clustering as the initial clusters. Finally, two examples demonstrate the validity of our algorithm. 展开更多
关键词 90B50 68T10 62H30 Hesitant fuzzy set hierarchical clustering K-means clustering intuitionisitc fuzzy set
下载PDF
Intuitionistic fuzzy C-means clustering algorithms 被引量:20
14
作者 Zeshui Xu Junjie Wu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第4期580-590,共11页
Intuitionistic fuzzy sets(IFSs) are useful means to describe and deal with vague and uncertain data.An intuitionistic fuzzy C-means algorithm to cluster IFSs is developed.In each stage of the intuitionistic fuzzy C-me... Intuitionistic fuzzy sets(IFSs) are useful means to describe and deal with vague and uncertain data.An intuitionistic fuzzy C-means algorithm to cluster IFSs is developed.In each stage of the intuitionistic fuzzy C-means method the seeds are modified,and for each IFS a membership degree to each of the clusters is estimated.In the end of the algorithm,all the given IFSs are clustered according to the estimated membership degrees.Furthermore,the algorithm is extended for clustering interval-valued intuitionistic fuzzy sets(IVIFSs).Finally,the developed algorithms are illustrated through conducting experiments on both the real-world and simulated data sets. 展开更多
关键词 intuitionistic fuzzy set(IFS) intuitionistic fuzzy Cmeans algorithm clustering interval-valued intuitionistic fuzzy set(IVIFS).
下载PDF
Long-term Traffic Volume Prediction Based on K-means Gaussian Interval Type-2 Fuzzy Sets 被引量:10
15
作者 Runmei Li Yinfeng Huang Jian Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第6期1344-1351,共8页
This paper uses Gaussian interval type-2 fuzzy se theory on historical traffic volume data processing to obtain a 24-hour prediction of traffic volume with high precision. A K-means clustering method is used in this p... This paper uses Gaussian interval type-2 fuzzy se theory on historical traffic volume data processing to obtain a 24-hour prediction of traffic volume with high precision. A K-means clustering method is used in this paper to get 5 minutes traffic volume variation as input data for the Gaussian interval type-2 fuzzy sets which can reflect the distribution of historical traffic volume in one statistical period. Moreover, the cluster with the largest collection of data obtained by K-means clustering method is calculated to get the key parameters of type-2 fuzzy sets, mean and standard deviation of the Gaussian membership function.Using the range of data as the input of Gaussian interval type-2 fuzzy sets leads to the range of traffic volume forecasting output with the ability of describing the possible range of the traffic volume as well as the traffic volume prediction data with high accuracy. The simulation results show that the average relative error is reduced to 8% based on the combined K-means Gaussian interval type-2 fuzzy sets forecasting method. The fluctuation range in terms of an upper and a lower forecasting traffic volume completely envelopes the actual traffic volume and reproduces the fluctuation range of traffic flow. 展开更多
关键词 GAUSSIAN interval type-2 fuzzy sets K-MEANS clustering LONG-TERM PREDICTION TRAFFIC VOLUME TRAFFIC VOLUME fluctuation range
下载PDF
Intuitionistic fuzzy hierarchical clustering algorithms 被引量:6
16
作者 Xu Zeshui1,2 1. Coll. of Economics and Management, Southeast Univ., Nanjing 210096, P. R. China 2. Inst. of Sciences, PLA Univ. of Science and Technology, Nanjing 210007, P. R. China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第1期90-97,共8页
Intuitionistic fuzzy set (IFS) is a set of 2-tuple arguments, each of which is characterized by a membership degree and a nonmembership degree. The generalized form of IFS is interval-valued intuitionistic fuzzy set... Intuitionistic fuzzy set (IFS) is a set of 2-tuple arguments, each of which is characterized by a membership degree and a nonmembership degree. The generalized form of IFS is interval-valued intuitionistic fuzzy set (IVIFS), whose components are intervals rather than exact numbers. IFSs and IVIFSs have been found to be very useful to describe vagueness and uncertainty. However, it seems that little attention has been focused on the clustering analysis of IFSs and IVIFSs. An intuitionistic fuzzy hierarchical algorithm is introduced for clustering IFSs, which is based on the traditional hierarchical clustering procedure, the intuitionistic fuzzy aggregation operator, and the basic distance measures between IFSs: the Hamming distance, normalized Hamming, weighted Hamming, the Euclidean distance, the normalized Euclidean distance, and the weighted Euclidean distance. Subsequently, the algorithm is extended for clustering IVIFSs. Finally the algorithm and its extended form are applied to the classifications of building materials and enterprises respectively. 展开更多
关键词 intuitionistic fuzzy set interval-valued intuitionistic fuzzy set hierarchical clustering intuitionisticfuzzy aggregation operator distance measure.
下载PDF
Application of Self-Organizing Feature Map Neural Network Based on K-means Clustering in Network Intrusion Detection 被引量:5
17
作者 Ling Tan Chong Li +1 位作者 Jingming Xia Jun Cao 《Computers, Materials & Continua》 SCIE EI 2019年第7期275-288,共14页
Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one... Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one of the most important technologies in network security detection.The accuracy of network intrusion detection has reached higher accuracy so far.However,these methods have very low efficiency in network intrusion detection,even the most popular SOM neural network method.In this paper,an efficient and fast network intrusion detection method was proposed.Firstly,the fundamental of the two different methods are introduced respectively.Then,the selforganizing feature map neural network based on K-means clustering(KSOM)algorithms was presented to improve the efficiency of network intrusion detection.Finally,the NSLKDD is used as network intrusion data set to demonstrate that the KSOM method can significantly reduce the number of clustering iteration than SOM method without substantially affecting the clustering results and the accuracy is much higher than Kmeans method.The Experimental results show that our method can relatively improve the accuracy of network intrusion and significantly reduce the number of clustering iteration. 展开更多
关键词 K-means clustering self-organizing feature map neural network network security intrusion detection NSL-KDD data set
下载PDF
A Decision Model Based on Grey Rough Sets Integration with Incomplete Information 被引量:5
18
作者 HOU Ya-lin LUO Dang 《Chinese Quarterly Journal of Mathematics》 CSCD 2009年第1期151-158,共8页
In this paper, for multiple attribute decision-making problem in which attribute values are interval grey numbers and some of them are null values, a decision model based on grey rough sets integration with incomplete... In this paper, for multiple attribute decision-making problem in which attribute values are interval grey numbers and some of them are null values, a decision model based on grey rough sets integration with incomplete information is proposed. We put forward incidence degree coefficient formula for grey interval, by information entropy theory and analysis technique, the method and principle is presented to fill up null values. We also establish the method of grey interval incidence cluster. Because grey system theory and Rough set theory are complementary each other, decision table with preference information is obtained by the result of grey incidence cluster. An algorithm for inducing decision rules based on rough set theory and the dominance relationship is presented. In some extent, this algorithm can deal with decision-making problem in which the attribute values are interval grey numbers and some of them are null values. Contrasted with classical model of cluster decision-making, the algorithm has an advantage of flexibility and compatibility to new information. 展开更多
关键词 grey system theory rough set incidence cluster interval grey number entropy null value
下载PDF
A Direct Data-Cluster Analysis Method Based on Neutrosophic Set Implication 被引量:1
19
作者 Sudan Jha Gyanendra Prasad Joshi +2 位作者 Lewis Nkenyereya Dae Wan Kim Florentin Smarandache 《Computers, Materials & Continua》 SCIE EI 2020年第11期1203-1220,共18页
Raw data are classified using clustering techniques in a reasonable manner to create disjoint clusters.A lot of clustering algorithms based on specific parameters have been proposed to access a high volume of datasets... Raw data are classified using clustering techniques in a reasonable manner to create disjoint clusters.A lot of clustering algorithms based on specific parameters have been proposed to access a high volume of datasets.This paper focuses on cluster analysis based on neutrosophic set implication,i.e.,a k-means algorithm with a threshold-based clustering technique.This algorithm addresses the shortcomings of the k-means clustering algorithm by overcoming the limitations of the threshold-based clustering algorithm.To evaluate the validity of the proposed method,several validity measures and validity indices are applied to the Iris dataset(from the University of California,Irvine,Machine Learning Repository)along with k-means and threshold-based clustering algorithms.The proposed method results in more segregated datasets with compacted clusters,thus achieving higher validity indices.The method also eliminates the limitations of threshold-based clustering algorithm and validates measures and respective indices along with k-means and threshold-based clustering algorithms. 展开更多
关键词 Data clustering data mining neutrosophic set K-MEANS validity measures cluster-based classification hierarchical clustering
下载PDF
A K-means clustering based blind multiband spectrum sensing algorithm for cognitive radio 被引量:2
20
作者 LEI Ke-jun TAN Yang-hong +1 位作者 YANG Xi WANG Han-rui 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第10期2451-2461,共11页
In this paper,a blind multiband spectrum sensing(BMSS)method requiring no knowledge of noise power,primary signal and wireless channel is proposed based on the K-means clustering(KMC).In this approach,the KMC algorith... In this paper,a blind multiband spectrum sensing(BMSS)method requiring no knowledge of noise power,primary signal and wireless channel is proposed based on the K-means clustering(KMC).In this approach,the KMC algorithm is used to identify the occupied subband set(OSS)and the idle subband set(ISS),and then the location and number information of the occupied channels are obtained according to the elements in the OSS.Compared with the classical BMSS methods based on the information theoretic criteria(ITC),the new method shows more excellent performance especially in the low signal-to-noise ratio(SNR)and the small sampling number scenarios,and more robust detection performance in noise uncertainty or unequal noise variance applications.Meanwhile,the new method performs more stablely than the ITC-based methods when the occupied subband number increases or the primary signals suffer multi-path fading.Simulation result verifies the effectiveness of the proposed method. 展开更多
关键词 cognitive radio(CR) blind multiband spectrum sensing(BMSS) K-means clustering(KMC) occupied subband set(OSS) idle subband set(ISS) information theoretic criteria(ITC) noise uncertainty
下载PDF
上一页 1 2 66 下一页 到第
使用帮助 返回顶部