As an extension of overlap functions, pseudo-semi-overlap functions are a crucial class of aggregation functions. Therefore, (I, PSO)-fuzzy rough sets are introduced, utilizing pseudo-semi-overlap functions, and furth...As an extension of overlap functions, pseudo-semi-overlap functions are a crucial class of aggregation functions. Therefore, (I, PSO)-fuzzy rough sets are introduced, utilizing pseudo-semi-overlap functions, and further extended for applications in image edge extraction. Firstly, a new clustering function, the pseudo-semi-overlap function, is introduced by eliminating the symmetry and right continuity present in the overlap function. The relaxed nature of this function enhances its applicability in image edge extraction. Secondly, the definitions of (I, PSO)-fuzzy rough sets are provided, using (I, PSO)-fuzzy rough sets, a pair of new fuzzy mathematical morphological operators (IPSOFMM operators) is proposed. Finally, by combining the fuzzy C-means algorithm and IPSOFMM operators, a novel image edge extraction algorithm (FCM-IPSO algorithm) is proposed and implemented. Compared to existing algorithms, the FCM-IPSO algorithm exhibits more image edges and a 73.81% decrease in the noise introduction rate. The outstanding performance of (I, PSO)-fuzzy rough sets in image edge extraction demonstrates their practical application value.展开更多
Craters are salient terrain features on planetary surfaces, and provide useful information about the relative dating of geological unit of planets. In addition, they are ideal landmarks for spacecraft navigation. Due ...Craters are salient terrain features on planetary surfaces, and provide useful information about the relative dating of geological unit of planets. In addition, they are ideal landmarks for spacecraft navigation. Due to low contrast and uneven illumination, automatic extraction of craters remains a challenging task. This paper presents a saliency detection method for crater edges and a feature matching algorithm based on edges informa- tion. The craters are extracted through saliency edges detection, edge extraction and selection, feature matching of the same crater edges and robust ellipse fitting. In the edges matching algorithm, a crater feature model is proposed by analyzing the relationship between highlight region edges and shadow region ones. Then, crater edges are paired through the effective matching algorithm. Experiments of real planetary images show that the proposed approach is robust to different lights and topographies, and the detection rate is larger than 90%.展开更多
This paper introduces a multi-scale morphological edge detection algorithm to extract SAR image edge which suffers seriously from noise. Combining the basic theme of morphology with that of multi-scale analysis, the a...This paper introduces a multi-scale morphological edge detection algorithm to extract SAR image edge which suffers seriously from noise. Combining the basic theme of morphology with that of multi-scale analysis, the algorithm presents the outstanding characteristics of accuracy and robustness. Comparative Experiments reveal its fine performance.展开更多
A new method of measuring the icing thickness of transmission lines on-line is proposed in this paper.In this method,the pictures of transmission lines which are photoed by the camera on the iron tower are processed i...A new method of measuring the icing thickness of transmission lines on-line is proposed in this paper.In this method,the pictures of transmission lines which are photoed by the camera on the iron tower are processed immediately to extract the edges of the transmission line conductor and transmission line insulators.The icing thickness can be gained by comparing the edges of the iced transmission line and the uniced one.Two icing image edge extraction methods are described in detail,that is,a method based on the combination of the wavelet transform and the floating threshold method and a method based on the combination of the optimal threshold method and the mathematical morphology transform.The icing images from the artificial climatic chamber and transmission lines are used to test the methods above.The results show that the method based on the wavelet transform and the floating threshold method does well in the extraction of relatively smooth edges,such as glaze icing on conductor and icing on the insulator;meanwhile,the method based on the optimal threshold method and the mathematical morphology transform does well in the edge extraction of icing on the conductor,especially the opaque rime icing on the conductor with complicated edges.展开更多
Feature extraction of signals plays an important role in classification problems because of data dimension reduction property and potential improvement of a classification accuracy rate. Principal component analysis (...Feature extraction of signals plays an important role in classification problems because of data dimension reduction property and potential improvement of a classification accuracy rate. Principal component analysis (PCA), wavelets transform or Fourier transform methods are often used for feature extraction. In this paper, we propose a multi-scale PCA, which combines discrete wavelet transform, and PCA for feature extraction of signals in both the spatial and temporal domains. Our study shows that the multi-scale PCA combined with the proposed new classification methods leads to high classification accuracy for the considered signals.展开更多
In the multistage imaging processing for SAR digital imaging and applications ofSAR imagery,extraction of luminance edge for the SAR imageis often required.It is well studiedto extract the luminance edge for ordinary ...In the multistage imaging processing for SAR digital imaging and applications ofSAR imagery,extraction of luminance edge for the SAR imageis often required.It is well studiedto extract the luminance edge for ordinary images,The methods using gradient are effective andcommonly used.Because of the serious noise of coherent speckle exists in SAR images,somepeople believe that edge extraction by using gradient for SAR imagery gives poor results.Inthis paper,we have derived a rather ideal method for the extraction of luminance edge for SARimagery with the consideration of the characteristics of SAR imagery.This method uses therelative average gradient and combines detection with tracking.展开更多
This paper presents a new model for edge extraction of MR images, based on curve evolution and edgeflow techniques. At first the model for curve evolution is constructed, which automatically detect boundaries, and cha...This paper presents a new model for edge extraction of MR images, based on curve evolution and edgeflow techniques. At first the model for curve evolution is constructed, which automatically detect boundaries, and change of topology in terms of the edgeflow fields, and then the numerical approximation of the model is introduced, which is based on semi-implicit scheme to speed up the proposed approach. Finally, the numerical implementation is present and the experimental results show that the proposed model successfully extracts the edge contours, regardless of the heavy noise.展开更多
240 nm AlGaN-based micro-LEDs with different sizes are designed and fabricated.Then,the external quantum efficiency(EQE)and light extraction efficiency(LEE)are systematically investigated by comparing size and edge ef...240 nm AlGaN-based micro-LEDs with different sizes are designed and fabricated.Then,the external quantum efficiency(EQE)and light extraction efficiency(LEE)are systematically investigated by comparing size and edge effects.Here,it is revealed that the peak optical output power increases by 81.83%with the size shrinking from 50.0 to 25.0μm.Thereinto,the LEE increases by 26.21%and the LEE enhancement mainly comes from the sidewall light extraction.Most notably,transversemagnetic(TM)mode light intensifies faster as the size shrinks due to the tilted mesa side-wall and Al reflector design.However,when it turns to 12.5μm sized micro-LEDs,the output power is lower than 25.0μm sized ones.The underlying mechanism is that even though protected by SiO2 passivation,the edge effect which leads to current leakage and Shockley-Read-Hall(SRH)recombination deteriorates rapidly with the size further shrinking.Moreover,the ratio of the p-contact area to mesa area is much lower,which deteriorates the p-type current spreading at the mesa edge.These findings show a role of thumb for the design of high efficiency micro-LEDs with wavelength below 250 nm,which will pave the way for wide applications of deep ultraviolet(DUV)micro-LEDs.展开更多
Recently,deep learning-based image inpainting methods have made great strides in reconstructing damaged regions.However,these methods often struggle to produce satisfactory results when dealing with missing images wit...Recently,deep learning-based image inpainting methods have made great strides in reconstructing damaged regions.However,these methods often struggle to produce satisfactory results when dealing with missing images with large holes,leading to distortions in the structure and blurring of textures.To address these problems,we combine the advantages of transformers and convolutions to propose an image inpainting method that incorporates edge priors and attention mechanisms.The proposed method aims to improve the results of inpainting large holes in images by enhancing the accuracy of structure restoration and the ability to recover texture details.This method divides the inpainting task into two phases:edge prediction and image inpainting.Specifically,in the edge prediction phase,a transformer architecture is designed to combine axial attention with standard self-attention.This design enhances the extraction capability of global structural features and location awareness.It also balances the complexity of self-attention operations,resulting in accurate prediction of the edge structure in the defective region.In the image inpainting phase,a multi-scale fusion attention module is introduced.This module makes full use of multi-level distant features and enhances local pixel continuity,thereby significantly improving the quality of image inpainting.To evaluate the performance of our method.comparative experiments are conducted on several datasets,including CelebA,Places2,and Facade.Quantitative experiments show that our method outperforms the other mainstream methods.Specifically,it improves Peak Signal-to-Noise Ratio(PSNR)and Structure Similarity Index Measure(SSIM)by 1.141~3.234 db and 0.083~0.235,respectively.Moreover,it reduces Learning Perceptual Image Patch Similarity(LPIPS)and Mean Absolute Error(MAE)by 0.0347~0.1753 and 0.0104~0.0402,respectively.Qualitative experiments reveal that our method excels at reconstructing images with complete structural information and clear texture details.Furthermore,our model exhibits impressive performance in terms of the number of parameters,memory cost,and testing time.展开更多
Achieving high‐precision extraction of sea islands from high‐resolution satellite remote sensing images is crucial for effective resource development and sustainable management.Unfortunately,achieving such accuracy ...Achieving high‐precision extraction of sea islands from high‐resolution satellite remote sensing images is crucial for effective resource development and sustainable management.Unfortunately,achieving such accuracy for sea island extraction presents significant challenges due to the presence of extensive background interference.A more widely applicable noise‐tolerant matched filter(NTMF)scheme is proposed for sea island extraction based on the MF scheme.The NTMF scheme effectively suppresses the background interference,leading to more accurate and robust sea island extraction.To further enhance the accuracy and robustness of the NTMF scheme,a neural dynamics algorithm is supplemented that adds an error integration feedback term to counter noise interference during internal computer operations in practical applications.Several comparative experiments were conducted on various remote sensing images of sea islands under different noisy working conditions to demonstrate the superiority of the proposed neural dynamics algorithm‐assisted NTMF scheme.These experiments confirm the ad-vantages of using the NTMF scheme for sea island extraction with the assistance of neural dynamics algorithm.展开更多
Tea leaf picking is a crucial stage in tea production that directly influences the quality and value of the tea.Traditional tea-picking machines may compromise the quality of the tea leaves.High-quality teas are often...Tea leaf picking is a crucial stage in tea production that directly influences the quality and value of the tea.Traditional tea-picking machines may compromise the quality of the tea leaves.High-quality teas are often handpicked and need more delicate operations in intelligent picking machines.Compared with traditional image processing techniques,deep learning models have stronger feature extraction capabilities,and better generalization and are more suitable for practical tea shoot harvesting.However,current research mostly focuses on shoot detection and cannot directly accomplish end-to-end shoot segmentation tasks.We propose a tea shoot instance segmentation model based on multi-scale mixed attention(Mask2FusionNet)using a dataset from the tea garden in Hangzhou.We further analyzed the characteristics of the tea shoot dataset,where the proportion of small to medium-sized targets is 89.9%.Our algorithm is compared with several mainstream object segmentation algorithms,and the results demonstrate that our model achieves an accuracy of 82%in recognizing the tea shoots,showing a better performance compared to other models.Through ablation experiments,we found that ResNet50,PointRend strategy,and the Feature Pyramid Network(FPN)architecture can improve performance by 1.6%,1.4%,and 2.4%,respectively.These experiments demonstrated that our proposed multi-scale and point selection strategy optimizes the feature extraction capability for overlapping small targets.The results indicate that the proposed Mask2FusionNet model can perform the shoot segmentation in unstructured environments,realizing the individual distinction of tea shoots,and complete extraction of the shoot edge contours with a segmentation accuracy of 82.0%.The research results can provide algorithmic support for the segmentation and intelligent harvesting of premium tea shoots at different scales.展开更多
In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) ba...In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance.展开更多
In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of ea...In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm.展开更多
A novel and effective approach to global motion estimation and moving object extraction is proposed. First, the translational motion model is used because of the fact that complex motion can be decomposed as a sum of ...A novel and effective approach to global motion estimation and moving object extraction is proposed. First, the translational motion model is used because of the fact that complex motion can be decomposed as a sum of translational components. Then in this application, the edge gray horizontal and vertical projections are used as the block matching feature for the motion vectors estimation. The proposed algorithm reduces the motion estimation computations by calculating the onedimensional vectors rather than the two-dimensional ones. Once the global motion is robustly estimated, relatively stationary background can be almost completely eliminated through the inter-frame difference method. To achieve an accurate object extraction result, the higher-order statistics (HOS) algorithm is used to discriminate backgrounds and moving objects. Experimental results validate that the proposed method is an effective way for global motion estimation and object extraction.展开更多
Anomaly separation using geochemical data often involves operations in the frequency domain, such as filtering and reducing noise/signal ratios. Unfortunately, the abrupt edge truncation of an image along edges and ho...Anomaly separation using geochemical data often involves operations in the frequency domain, such as filtering and reducing noise/signal ratios. Unfortunately, the abrupt edge truncation of an image along edges and holes (with missing data) often causes frequency distribution distortion in the frequency domain. For example, bright strips are commonly seen in frequency distribution when using a Fourier transform. Such edge effect distortion may affect information extraction results; sometimes severely, depending on the edge abruptness of the image. Traditionally, edge effects are reduced by smoothing the image boundary prior to applying a Fourier transform. Zero-padding is one of the most commonly used smoothing methods. This simple method can reduce the edge effect to some degree but still distorts the image in some cases. Moreover, due to the complexity of geoscience images, which can include irregular shapes and holes with missing data, zero-padding does not always give satisfactory results. This paper proposes the use of decay functions to handle edge effects when extracting information from geoscience images. As an application, this method has been used in a newly developed multifractal method (S-A) for separating geochemical anomalies from background patterns. A geochemical dataset chosen from a mineral district in Nova Scotia, Canada was used to validate the method.展开更多
A novel feature fusion method is proposed for the edge detection of color images. Except for the typical features used in edge detection, the color contrast similarity and the orientation consistency are also selected...A novel feature fusion method is proposed for the edge detection of color images. Except for the typical features used in edge detection, the color contrast similarity and the orientation consistency are also selected as the features. The four features are combined together as a parameter to detect the edges of color images. Experimental results show that the method can inhibit noisy edges and facilitate the detection for weak edges. It has a better performance than conventional methods in noisy environments.展开更多
Aiming at the difficulty of fault identification caused by manual extraction of fault features of rotating machinery,a one-dimensional multi-scale convolutional auto-encoder fault diagnosis model is proposed,based on ...Aiming at the difficulty of fault identification caused by manual extraction of fault features of rotating machinery,a one-dimensional multi-scale convolutional auto-encoder fault diagnosis model is proposed,based on the standard convolutional auto-encoder.In this model,the parallel convolutional and deconvolutional kernels of different scales are used to extract the features from the input signal and reconstruct the input signal;then the feature map extracted by multi-scale convolutional kernels is used as the input of the classifier;and finally the parameters of the whole model are fine-tuned using labeled data.Experiments on one set of simulation fault data and two sets of rolling bearing fault data are conducted to validate the proposed method.The results show that the model can achieve 99.75%,99.3%and 100%diagnostic accuracy,respectively.In addition,the diagnostic accuracy and reconstruction error of the one-dimensional multi-scale convolutional auto-encoder are compared with traditional machine learning,convolutional neural networks and a traditional convolutional auto-encoder.The final results show that the proposed model has a better recognition effect for rolling bearing fault data.展开更多
A novel histogram descriptor for global feature extraction and description was presented. Three elementary primitives for a 2×2 pixel grid were defined. The complex primitives were computed by matrix transforms. ...A novel histogram descriptor for global feature extraction and description was presented. Three elementary primitives for a 2×2 pixel grid were defined. The complex primitives were computed by matrix transforms. These primitives and equivalence class were used for an image to compute the feature image that consisted of three elementary primitives. Histogram was used for the transformed image to extract and describe the features. Furthermore, comparisons were made among the novel histogram descriptor, the gray histogram and the edge histogram with regard to feature vector dimension and retrieval performance. The experimental results show that the novel histogram can not only reduce the effect of noise and illumination change, but also compute the feature vector of lower dimension. Furthermore, the system using the novel histogram has better retrieval performance.展开更多
文摘As an extension of overlap functions, pseudo-semi-overlap functions are a crucial class of aggregation functions. Therefore, (I, PSO)-fuzzy rough sets are introduced, utilizing pseudo-semi-overlap functions, and further extended for applications in image edge extraction. Firstly, a new clustering function, the pseudo-semi-overlap function, is introduced by eliminating the symmetry and right continuity present in the overlap function. The relaxed nature of this function enhances its applicability in image edge extraction. Secondly, the definitions of (I, PSO)-fuzzy rough sets are provided, using (I, PSO)-fuzzy rough sets, a pair of new fuzzy mathematical morphological operators (IPSOFMM operators) is proposed. Finally, by combining the fuzzy C-means algorithm and IPSOFMM operators, a novel image edge extraction algorithm (FCM-IPSO algorithm) is proposed and implemented. Compared to existing algorithms, the FCM-IPSO algorithm exhibits more image edges and a 73.81% decrease in the noise introduction rate. The outstanding performance of (I, PSO)-fuzzy rough sets in image edge extraction demonstrates their practical application value.
基金supported by the National Natural Science Foundation of China(61210012)
文摘Craters are salient terrain features on planetary surfaces, and provide useful information about the relative dating of geological unit of planets. In addition, they are ideal landmarks for spacecraft navigation. Due to low contrast and uneven illumination, automatic extraction of craters remains a challenging task. This paper presents a saliency detection method for crater edges and a feature matching algorithm based on edges informa- tion. The craters are extracted through saliency edges detection, edge extraction and selection, feature matching of the same crater edges and robust ellipse fitting. In the edges matching algorithm, a crater feature model is proposed by analyzing the relationship between highlight region edges and shadow region ones. Then, crater edges are paired through the effective matching algorithm. Experiments of real planetary images show that the proposed approach is robust to different lights and topographies, and the detection rate is larger than 90%.
基金Supported the NatioIlal Naturel Science Foundation of China(No.69831040)
文摘This paper introduces a multi-scale morphological edge detection algorithm to extract SAR image edge which suffers seriously from noise. Combining the basic theme of morphology with that of multi-scale analysis, the algorithm presents the outstanding characteristics of accuracy and robustness. Comparative Experiments reveal its fine performance.
基金Project Supported by Nature Science Foundation Project of CQ CSTC (2008BB615).
文摘A new method of measuring the icing thickness of transmission lines on-line is proposed in this paper.In this method,the pictures of transmission lines which are photoed by the camera on the iron tower are processed immediately to extract the edges of the transmission line conductor and transmission line insulators.The icing thickness can be gained by comparing the edges of the iced transmission line and the uniced one.Two icing image edge extraction methods are described in detail,that is,a method based on the combination of the wavelet transform and the floating threshold method and a method based on the combination of the optimal threshold method and the mathematical morphology transform.The icing images from the artificial climatic chamber and transmission lines are used to test the methods above.The results show that the method based on the wavelet transform and the floating threshold method does well in the extraction of relatively smooth edges,such as glaze icing on conductor and icing on the insulator;meanwhile,the method based on the optimal threshold method and the mathematical morphology transform does well in the edge extraction of icing on the conductor,especially the opaque rime icing on the conductor with complicated edges.
文摘Feature extraction of signals plays an important role in classification problems because of data dimension reduction property and potential improvement of a classification accuracy rate. Principal component analysis (PCA), wavelets transform or Fourier transform methods are often used for feature extraction. In this paper, we propose a multi-scale PCA, which combines discrete wavelet transform, and PCA for feature extraction of signals in both the spatial and temporal domains. Our study shows that the multi-scale PCA combined with the proposed new classification methods leads to high classification accuracy for the considered signals.
文摘In the multistage imaging processing for SAR digital imaging and applications ofSAR imagery,extraction of luminance edge for the SAR imageis often required.It is well studiedto extract the luminance edge for ordinary images,The methods using gradient are effective andcommonly used.Because of the serious noise of coherent speckle exists in SAR images,somepeople believe that edge extraction by using gradient for SAR imagery gives poor results.Inthis paper,we have derived a rather ideal method for the extraction of luminance edge for SARimagery with the consideration of the characteristics of SAR imagery.This method uses therelative average gradient and combines detection with tracking.
文摘This paper presents a new model for edge extraction of MR images, based on curve evolution and edgeflow techniques. At first the model for curve evolution is constructed, which automatically detect boundaries, and change of topology in terms of the edgeflow fields, and then the numerical approximation of the model is introduced, which is based on semi-implicit scheme to speed up the proposed approach. Finally, the numerical implementation is present and the experimental results show that the proposed model successfully extracts the edge contours, regardless of the heavy noise.
基金This work was supported by National Key R&D Program of China(2022YFB3605103)the National Natural Science Foundation of China(62204241,U22A2084,62121005,and 61827813)+3 种基金the Natural Science Foundation of Jilin Province(20230101345JC,20230101360JC,and 20230101107JC)the Youth Innovation Promotion Association of CAS(2023223)the Young Elite Scientist Sponsorship Program By CAST(YESS20200182)the CAS Talents Program(E30122E4M0).
文摘240 nm AlGaN-based micro-LEDs with different sizes are designed and fabricated.Then,the external quantum efficiency(EQE)and light extraction efficiency(LEE)are systematically investigated by comparing size and edge effects.Here,it is revealed that the peak optical output power increases by 81.83%with the size shrinking from 50.0 to 25.0μm.Thereinto,the LEE increases by 26.21%and the LEE enhancement mainly comes from the sidewall light extraction.Most notably,transversemagnetic(TM)mode light intensifies faster as the size shrinks due to the tilted mesa side-wall and Al reflector design.However,when it turns to 12.5μm sized micro-LEDs,the output power is lower than 25.0μm sized ones.The underlying mechanism is that even though protected by SiO2 passivation,the edge effect which leads to current leakage and Shockley-Read-Hall(SRH)recombination deteriorates rapidly with the size further shrinking.Moreover,the ratio of the p-contact area to mesa area is much lower,which deteriorates the p-type current spreading at the mesa edge.These findings show a role of thumb for the design of high efficiency micro-LEDs with wavelength below 250 nm,which will pave the way for wide applications of deep ultraviolet(DUV)micro-LEDs.
基金supported in part by the National Natural Science Foundation of China under Grant 62062061/in part by the Major Project Cultivation Fund of Xizang Minzu University under Grant 324112300447.
文摘Recently,deep learning-based image inpainting methods have made great strides in reconstructing damaged regions.However,these methods often struggle to produce satisfactory results when dealing with missing images with large holes,leading to distortions in the structure and blurring of textures.To address these problems,we combine the advantages of transformers and convolutions to propose an image inpainting method that incorporates edge priors and attention mechanisms.The proposed method aims to improve the results of inpainting large holes in images by enhancing the accuracy of structure restoration and the ability to recover texture details.This method divides the inpainting task into two phases:edge prediction and image inpainting.Specifically,in the edge prediction phase,a transformer architecture is designed to combine axial attention with standard self-attention.This design enhances the extraction capability of global structural features and location awareness.It also balances the complexity of self-attention operations,resulting in accurate prediction of the edge structure in the defective region.In the image inpainting phase,a multi-scale fusion attention module is introduced.This module makes full use of multi-level distant features and enhances local pixel continuity,thereby significantly improving the quality of image inpainting.To evaluate the performance of our method.comparative experiments are conducted on several datasets,including CelebA,Places2,and Facade.Quantitative experiments show that our method outperforms the other mainstream methods.Specifically,it improves Peak Signal-to-Noise Ratio(PSNR)and Structure Similarity Index Measure(SSIM)by 1.141~3.234 db and 0.083~0.235,respectively.Moreover,it reduces Learning Perceptual Image Patch Similarity(LPIPS)and Mean Absolute Error(MAE)by 0.0347~0.1753 and 0.0104~0.0402,respectively.Qualitative experiments reveal that our method excels at reconstructing images with complete structural information and clear texture details.Furthermore,our model exhibits impressive performance in terms of the number of parameters,memory cost,and testing time.
基金Key projects of the Guangdong Education Department,Grant/Award Number:2023ZDZX4009National Natural Science Foundation of China,Grant/Award Number:42206187+1 种基金Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory,Grant/Award Number:GML2021GD0809National Key Research and Development Program of China,Grant/Award Number:2022YFC3103101。
文摘Achieving high‐precision extraction of sea islands from high‐resolution satellite remote sensing images is crucial for effective resource development and sustainable management.Unfortunately,achieving such accuracy for sea island extraction presents significant challenges due to the presence of extensive background interference.A more widely applicable noise‐tolerant matched filter(NTMF)scheme is proposed for sea island extraction based on the MF scheme.The NTMF scheme effectively suppresses the background interference,leading to more accurate and robust sea island extraction.To further enhance the accuracy and robustness of the NTMF scheme,a neural dynamics algorithm is supplemented that adds an error integration feedback term to counter noise interference during internal computer operations in practical applications.Several comparative experiments were conducted on various remote sensing images of sea islands under different noisy working conditions to demonstrate the superiority of the proposed neural dynamics algorithm‐assisted NTMF scheme.These experiments confirm the ad-vantages of using the NTMF scheme for sea island extraction with the assistance of neural dynamics algorithm.
基金This research was supported by the National Natural Science Foundation of China No.62276086the National Key R&D Program of China No.2022YFD2000100Zhejiang Provincial Natural Science Foundation of China under Grant No.LTGN23D010002.
文摘Tea leaf picking is a crucial stage in tea production that directly influences the quality and value of the tea.Traditional tea-picking machines may compromise the quality of the tea leaves.High-quality teas are often handpicked and need more delicate operations in intelligent picking machines.Compared with traditional image processing techniques,deep learning models have stronger feature extraction capabilities,and better generalization and are more suitable for practical tea shoot harvesting.However,current research mostly focuses on shoot detection and cannot directly accomplish end-to-end shoot segmentation tasks.We propose a tea shoot instance segmentation model based on multi-scale mixed attention(Mask2FusionNet)using a dataset from the tea garden in Hangzhou.We further analyzed the characteristics of the tea shoot dataset,where the proportion of small to medium-sized targets is 89.9%.Our algorithm is compared with several mainstream object segmentation algorithms,and the results demonstrate that our model achieves an accuracy of 82%in recognizing the tea shoots,showing a better performance compared to other models.Through ablation experiments,we found that ResNet50,PointRend strategy,and the Feature Pyramid Network(FPN)architecture can improve performance by 1.6%,1.4%,and 2.4%,respectively.These experiments demonstrated that our proposed multi-scale and point selection strategy optimizes the feature extraction capability for overlapping small targets.The results indicate that the proposed Mask2FusionNet model can perform the shoot segmentation in unstructured environments,realizing the individual distinction of tea shoots,and complete extraction of the shoot edge contours with a segmentation accuracy of 82.0%.The research results can provide algorithmic support for the segmentation and intelligent harvesting of premium tea shoots at different scales.
基金supported by the National Natural Science Foundation of China (62271255,61871218)the Fundamental Research Funds for the Central University (3082019NC2019002)+1 种基金the Aeronautical Science Foundation (ASFC-201920007002)the Program of Remote Sensing Intelligent Monitoring and Emergency Services for Regional Security Elements。
文摘In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance.
文摘In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm.
基金The National Natural Science Foundation of China(No.60574006)
文摘A novel and effective approach to global motion estimation and moving object extraction is proposed. First, the translational motion model is used because of the fact that complex motion can be decomposed as a sum of translational components. Then in this application, the edge gray horizontal and vertical projections are used as the block matching feature for the motion vectors estimation. The proposed algorithm reduces the motion estimation computations by calculating the onedimensional vectors rather than the two-dimensional ones. Once the global motion is robustly estimated, relatively stationary background can be almost completely eliminated through the inter-frame difference method. To achieve an accurate object extraction result, the higher-order statistics (HOS) algorithm is used to discriminate backgrounds and moving objects. Experimental results validate that the proposed method is an effective way for global motion estimation and object extraction.
文摘Anomaly separation using geochemical data often involves operations in the frequency domain, such as filtering and reducing noise/signal ratios. Unfortunately, the abrupt edge truncation of an image along edges and holes (with missing data) often causes frequency distribution distortion in the frequency domain. For example, bright strips are commonly seen in frequency distribution when using a Fourier transform. Such edge effect distortion may affect information extraction results; sometimes severely, depending on the edge abruptness of the image. Traditionally, edge effects are reduced by smoothing the image boundary prior to applying a Fourier transform. Zero-padding is one of the most commonly used smoothing methods. This simple method can reduce the edge effect to some degree but still distorts the image in some cases. Moreover, due to the complexity of geoscience images, which can include irregular shapes and holes with missing data, zero-padding does not always give satisfactory results. This paper proposes the use of decay functions to handle edge effects when extracting information from geoscience images. As an application, this method has been used in a newly developed multifractal method (S-A) for separating geochemical anomalies from background patterns. A geochemical dataset chosen from a mineral district in Nova Scotia, Canada was used to validate the method.
基金supported partly by the National Basic Research Program of China (2005CB724303)the National Natural Science Foundation of China (60671062) Shanghai Leading Academic Discipline Project (B112).
文摘A novel feature fusion method is proposed for the edge detection of color images. Except for the typical features used in edge detection, the color contrast similarity and the orientation consistency are also selected as the features. The four features are combined together as a parameter to detect the edges of color images. Experimental results show that the method can inhibit noisy edges and facilitate the detection for weak edges. It has a better performance than conventional methods in noisy environments.
基金The National Natural Science Foundation of China(No.51675098)
文摘Aiming at the difficulty of fault identification caused by manual extraction of fault features of rotating machinery,a one-dimensional multi-scale convolutional auto-encoder fault diagnosis model is proposed,based on the standard convolutional auto-encoder.In this model,the parallel convolutional and deconvolutional kernels of different scales are used to extract the features from the input signal and reconstruct the input signal;then the feature map extracted by multi-scale convolutional kernels is used as the input of the classifier;and finally the parameters of the whole model are fine-tuned using labeled data.Experiments on one set of simulation fault data and two sets of rolling bearing fault data are conducted to validate the proposed method.The results show that the model can achieve 99.75%,99.3%and 100%diagnostic accuracy,respectively.In addition,the diagnostic accuracy and reconstruction error of the one-dimensional multi-scale convolutional auto-encoder are compared with traditional machine learning,convolutional neural networks and a traditional convolutional auto-encoder.The final results show that the proposed model has a better recognition effect for rolling bearing fault data.
基金Project(60873010) supported by the National Natural Science Foundation of ChinaProjects(N090504005, N090604012, N090104001) supported by the Fundamental Research Funds for the Central UniversitiesProject(NCET-05-0288) supported by Program for New Century Excellent Talents in University
文摘A novel histogram descriptor for global feature extraction and description was presented. Three elementary primitives for a 2×2 pixel grid were defined. The complex primitives were computed by matrix transforms. These primitives and equivalence class were used for an image to compute the feature image that consisted of three elementary primitives. Histogram was used for the transformed image to extract and describe the features. Furthermore, comparisons were made among the novel histogram descriptor, the gray histogram and the edge histogram with regard to feature vector dimension and retrieval performance. The experimental results show that the novel histogram can not only reduce the effect of noise and illumination change, but also compute the feature vector of lower dimension. Furthermore, the system using the novel histogram has better retrieval performance.