期刊文献+
共找到2,997篇文章
< 1 2 150 >
每页显示 20 50 100
Disparity estimation for multi-scale multi-sensor fusion
1
作者 SUN Guoliang PEI Shanshan +2 位作者 LONG Qian ZHENG Sifa YANG Rui 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期259-274,共16页
The perception module of advanced driver assistance systems plays a vital role.Perception schemes often use a single sensor for data processing and environmental perception or adopt the information processing results ... The perception module of advanced driver assistance systems plays a vital role.Perception schemes often use a single sensor for data processing and environmental perception or adopt the information processing results of various sensors for the fusion of the detection layer.This paper proposes a multi-scale and multi-sensor data fusion strategy in the front end of perception and accomplishes a multi-sensor function disparity map generation scheme.A binocular stereo vision sensor composed of two cameras and a light deterction and ranging(LiDAR)sensor is used to jointly perceive the environment,and a multi-scale fusion scheme is employed to improve the accuracy of the disparity map.This solution not only has the advantages of dense perception of binocular stereo vision sensors but also considers the perception accuracy of LiDAR sensors.Experiments demonstrate that the multi-scale multi-sensor scheme proposed in this paper significantly improves disparity map estimation. 展开更多
关键词 stereo vision light deterction and ranging(LiDAR) multi-sensor fusion multi-scale fusion disparity map
下载PDF
A Lightweight Convolutional Neural Network with Hierarchical Multi-Scale Feature Fusion for Image Classification
2
作者 Adama Dembele Ronald Waweru Mwangi Ananda Omutokoh Kube 《Journal of Computer and Communications》 2024年第2期173-200,共28页
Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware reso... Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline. 展开更多
关键词 MobileNet Image Classification Lightweight Convolutional Neural Network Depthwise Dilated Separable Convolution Hierarchical multi-scale Feature fusion
下载PDF
Ship recognition based on HRRP via multi-scale sparse preserving method
3
作者 YANG Xueling ZHANG Gong SONG Hu 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期599-608,共10页
In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) ba... In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance. 展开更多
关键词 ship target recognition high-resolution range profile(HRRP) multi-scale fusion kernel sparse preserving projection(MSFKSPP) feature extraction dimensionality reduction
下载PDF
Clothing Parsing Based on Multi-Scale Fusion and Improved Self-Attention Mechanism
4
作者 陈诺 王绍宇 +3 位作者 陆然 李文萱 覃志东 石秀金 《Journal of Donghua University(English Edition)》 CAS 2023年第6期661-666,共6页
Due to the lack of long-range association and spatial location information,fine details and accurate boundaries of complex clothing images cannot always be obtained by using the existing deep learning-based methods.Th... Due to the lack of long-range association and spatial location information,fine details and accurate boundaries of complex clothing images cannot always be obtained by using the existing deep learning-based methods.This paper presents a convolutional structure with multi-scale fusion to optimize the step of clothing feature extraction and a self-attention module to capture long-range association information.The structure enables the self-attention mechanism to directly participate in the process of information exchange through the down-scaling projection operation of the multi-scale framework.In addition,the improved self-attention module introduces the extraction of 2-dimensional relative position information to make up for its lack of ability to extract spatial position features from clothing images.The experimental results based on the colorful fashion parsing dataset(CFPD)show that the proposed network structure achieves 53.68%mean intersection over union(mIoU)and has better performance on the clothing parsing task. 展开更多
关键词 clothing parsing convolutional neural network multi-scale fusion self-attention mechanism vision Transformer
下载PDF
The algorithm of 3D multi-scale volumetric curvature and its application 被引量:12
5
作者 陈学华 杨威 +2 位作者 贺振华 钟文丽 文晓涛 《Applied Geophysics》 SCIE CSCD 2012年第1期65-72,116,共9页
To fully extract and mine the multi-scale features of reservoirs and geologic structures in time/depth and space dimensions, a new 3D multi-scale volumetric curvature (MSVC) methodology is presented in this paper. W... To fully extract and mine the multi-scale features of reservoirs and geologic structures in time/depth and space dimensions, a new 3D multi-scale volumetric curvature (MSVC) methodology is presented in this paper. We also propose a fast algorithm for computing 3D volumetric curvature. In comparison to conventional volumetric curvature attributes, its main improvements and key algorithms introduce multi-frequency components expansion in time-frequency domain and the corresponding multi-scale adaptive differential operator in the wavenumber domain, into the volumetric curvature calculation. This methodology can simultaneously depict seismic multi-scale features in both time and space. Additionally, we use data fusion of volumetric curvatures at various scales to take full advantage of the geologic features and anomalies extracted by curvature measurements at different scales. The 3D MSVC can highlight geologic anomalies and reduce noise at the same time. Thus, it improves the interpretation efficiency of curvature attributes analysis. The 3D MSVC is applied to both land and marine 3D seismic data. The results demonstrate that it can indicate the spatial distribution of reservoirs, detect faults and fracture zones, and identify their multi-scale properties. 展开更多
关键词 3D multi-scale volumetric curvature adaptive differential operator in wavenumber domain multi-frequency expansion in time-frequency domain fault detection fracture zone data fusion
下载PDF
Dendritic Cell Algorithm with Bayesian Optimization Hyperband for Signal Fusion
6
作者 Dan Zhang Yu Zhang Yiwen Liang 《Computers, Materials & Continua》 SCIE EI 2023年第8期2317-2336,共20页
The dendritic cell algorithm(DCA)is an excellent prototype for developing Machine Learning inspired by the function of the powerful natural immune system.Too many parameters increase complexity and lead to plenty of c... The dendritic cell algorithm(DCA)is an excellent prototype for developing Machine Learning inspired by the function of the powerful natural immune system.Too many parameters increase complexity and lead to plenty of criticism in the signal fusion procedure of DCA.The loss function of DCA is ambiguous due to its complexity.To reduce the uncertainty,several researchers simplified the algorithm program;some introduced gradient descent to optimize parameters;some utilized searching methods to find the optimal parameter combination.However,these studies are either time-consuming or need to be revised in the case of non-convex functions.To overcome the problems,this study models the parameter optimization into a black-box optimization problem without knowing the information about its loss function.This study hybridizes bayesian optimization hyperband(BOHB)with DCA to propose a novel DCA version,BHDCA,for accomplishing parameter optimization in the signal fusion process.The BHDCA utilizes the bayesian optimization(BO)of BOHB to find promising parameter configurations and applies the hyperband of BOHB to allocate the suitable budget for each potential configuration.The experimental results show that the proposed algorithm has significant advantages over the otherDCAexpansion algorithms in terms of signal fusion. 展开更多
关键词 Dendritic cell algorithm signal fusion parameter optimization bayesian optimization hyperband
下载PDF
Sub-Regional Infrared-Visible Image Fusion Using Multi-Scale Transformation 被引量:1
7
作者 Yexin Liu Ben Xu +2 位作者 Mengmeng Zhang Wei Li Ran Tao 《Journal of Beijing Institute of Technology》 EI CAS 2022年第6期535-550,共16页
Infrared-visible image fusion plays an important role in multi-source data fusion,which has the advantage of integrating useful information from multi-source sensors.However,there are still challenges in target enhanc... Infrared-visible image fusion plays an important role in multi-source data fusion,which has the advantage of integrating useful information from multi-source sensors.However,there are still challenges in target enhancement and visual improvement.To deal with these problems,a sub-regional infrared-visible image fusion method(SRF)is proposed.First,morphology and threshold segmentation is applied to extract targets interested in infrared images.Second,the infrared back-ground is reconstructed based on extracted targets and the visible image.Finally,target and back-ground regions are fused using a multi-scale transform.Experimental results are obtained using public data for comparison and evaluation,which demonstrate that the proposed SRF has poten-tial benefits over other methods. 展开更多
关键词 image fusion infrared image visible image multi-scale transform
下载PDF
An infrared and visible image fusion method based upon multi-scale and top-hat transforms 被引量:1
8
作者 Gui-Qing He Qi-Qi Zhang +3 位作者 Hai-Xi Zhang Jia-Qi Ji Dan-Dan Dong Jun Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第11期340-348,共9页
The high-frequency components in the traditional multi-scale transform method are approximately sparse, which can represent different information of the details. But in the low-frequency component, the coefficients ar... The high-frequency components in the traditional multi-scale transform method are approximately sparse, which can represent different information of the details. But in the low-frequency component, the coefficients around the zero value are very few, so we cannot sparsely represent low-frequency image information. The low-frequency component contains the main energy of the image and depicts the profile of the image. Direct fusion of the low-frequency component will not be conducive to obtain highly accurate fusion result. Therefore, this paper presents an infrared and visible image fusion method combining the multi-scale and top-hat transforms. On one hand, the new top-hat-transform can effectively extract the salient features of the low-frequency component. On the other hand, the multi-scale transform can extract highfrequency detailed information in multiple scales and from diverse directions. The combination of the two methods is conducive to the acquisition of more characteristics and more accurate fusion results. Among them, for the low-frequency component, a new type of top-hat transform is used to extract low-frequency features, and then different fusion rules are applied to fuse the low-frequency features and low-frequency background; for high-frequency components, the product of characteristics method is used to integrate the detailed information in high-frequency. Experimental results show that the proposed algorithm can obtain more detailed information and clearer infrared target fusion results than the traditional multiscale transform methods. Compared with the state-of-the-art fusion methods based on sparse representation, the proposed algorithm is simple and efficacious, and the time consumption is significantly reduced. 展开更多
关键词 infrared and visible image fusion multi-scale transform mathematical morphology top-hat trans- form
下载PDF
A multi-scale algorithm for dislocation creep at elevated temperatures 被引量:1
9
作者 Lichao Yuan Yujie Wei 《Theoretical & Applied Mechanics Letters》 CSCD 2021年第1期42-46,共5页
Dislocation creep at elevated temperatures plays an important role for plastic deformation in crystalline metals.When using traditional discrete dislocation dynamics(DDD)to capture this process,we often need to update... Dislocation creep at elevated temperatures plays an important role for plastic deformation in crystalline metals.When using traditional discrete dislocation dynamics(DDD)to capture this process,we often need to update the forces on N dislocations involving~N 2 interactions.In this letter,we introduce a multi-scale algorithm to speed up the calculations by dividing a sample of interest into sub-domain grids:dislocations within a characteristic area interact following the conventional way,but their interaction with dislocations in other grids are simplified by lumping all dislocations in another grid as a super one.Such a multi-scale algorithm lowers the computational load to~N 1.5.We employed this algorithm to model dislocation creep in Al-Mg alloy.The simulation leads to a power-law creep rate in consistent with experimental observations.The stress exponent of the power-law creep is a resultant of dislocations climb for~5 and viscous dislocations glide for~3. 展开更多
关键词 multi-scale algorithm Dislocation glide Dislocation climb High temperature creep Dislocation dynamics
下载PDF
Attention Guided Multi Scale Feature Fusion Network for Automatic Prostate Segmentation
10
作者 Yuchun Li Mengxing Huang +1 位作者 Yu Zhang Zhiming Bai 《Computers, Materials & Continua》 SCIE EI 2024年第2期1649-1668,共20页
The precise and automatic segmentation of prostate magnetic resonance imaging(MRI)images is vital for assisting doctors in diagnosing prostate diseases.In recent years,many advanced methods have been applied to prosta... The precise and automatic segmentation of prostate magnetic resonance imaging(MRI)images is vital for assisting doctors in diagnosing prostate diseases.In recent years,many advanced methods have been applied to prostate segmentation,but due to the variability caused by prostate diseases,automatic segmentation of the prostate presents significant challenges.In this paper,we propose an attention-guided multi-scale feature fusion network(AGMSF-Net)to segment prostate MRI images.We propose an attention mechanism for extracting multi-scale features,and introduce a 3D transformer module to enhance global feature representation by adding it during the transition phase from encoder to decoder.In the decoder stage,a feature fusion module is proposed to obtain global context information.We evaluate our model on MRI images of the prostate acquired from a local hospital.The relative volume difference(RVD)and dice similarity coefficient(DSC)between the results of automatic prostate segmentation and ground truth were 1.21%and 93.68%,respectively.To quantitatively evaluate prostate volume on MRI,which is of significant clinical significance,we propose a unique AGMSF-Net.The essential performance evaluation and validation experiments have demonstrated the effectiveness of our method in automatic prostate segmentation. 展开更多
关键词 Prostate segmentation multi-scale attention 3D Transformer feature fusion MRI
下载PDF
Anti-swarm UAV radar system based on detection data fusion
11
作者 WANG Pengfei HU Jinfeng +2 位作者 HU Wen WANG Weiguang DONG Hao 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第5期1167-1176,共10页
There is a growing body of research on the swarm unmanned aerial vehicle(UAV)in recent years,which has the characteristics of small,low speed,and low height as radar target.To confront the swarm UAV,the design of anti... There is a growing body of research on the swarm unmanned aerial vehicle(UAV)in recent years,which has the characteristics of small,low speed,and low height as radar target.To confront the swarm UAV,the design of anti-UAV radar system based on multiple input multiple output(MIMO)is put forward,which can elevate the performance of resolution,angle accuracy,high data rate,and tracking flexibility for swarm UAV detection.Target resolution and detection are the core problem in detecting the swarm UAV.The distinct advantage of MIMO system in angular accuracy measurement is demonstrated by comparing MIMO radar with phased array radar.Since MIMO radar has better performance in resolution,swarm UAV detection still has difficulty in target detection.This paper proposes a multi-mode data fusion algorithm based on deep neural networks to improve the detection effect.Subsequently,signal processing and data processing based on the detection fusion algorithm above are designed,forming a high resolution detection loop.Several simulations are designed to illustrate the feasibility of the designed system and the proposed algorithm. 展开更多
关键词 SWARM RADAR high resolution deep neural network fusion algorithm
下载PDF
Industrial Fusion Cascade Detection of Solder Joint
12
作者 Chunyuan Li Peng Zhang +2 位作者 Shuangming Wang Lie Liu Mingquan Shi 《Computers, Materials & Continua》 SCIE EI 2024年第10期1197-1214,共18页
With the remarkable advancements in machine vision research and its ever-expanding applications,scholars have increasingly focused on harnessing various vision methodologies within the industrial realm.Specifically,de... With the remarkable advancements in machine vision research and its ever-expanding applications,scholars have increasingly focused on harnessing various vision methodologies within the industrial realm.Specifically,detecting vehicle floor welding points poses unique challenges,including high operational costs and limited portability in practical settings.To address these challenges,this paper innovatively integrates template matching and the Faster RCNN algorithm,presenting an industrial fusion cascaded solder joint detection algorithm that seamlessly blends template matching with deep learning techniques.This algorithm meticulously weights and fuses the optimized features of both methodologies,enhancing the overall detection capabilities.Furthermore,it introduces an optimized multi-scale and multi-template matching approach,leveraging a diverse array of templates and image pyramid algorithms to bolster the accuracy and resilience of object detection.By integrating deep learning algorithms with this multi-scale and multi-template matching strategy,the cascaded target matching algorithm effectively accurately identifies solder joint types and positions.A comprehensive welding point dataset,labeled by experts specifically for vehicle detection,was constructed based on images from authentic industrial environments to validate the algorithm’s performance.Experiments demonstrate the algorithm’s compelling performance in industrial scenarios,outperforming the single-template matching algorithm by 21.3%,the multi-scale and multitemplate matching algorithm by 3.4%,the Faster RCNN algorithm by 19.7%,and the YOLOv9 algorithm by 17.3%in terms of solder joint detection accuracy.This optimized algorithm exhibits remarkable robustness and portability,ideally suited for detecting solder joints across diverse vehicle workpieces.Notably,this study’s dataset and feature fusion approach can be a valuable resource for other algorithms seeking to enhance their solder joint detection capabilities.This work thus not only presents a novel and effective solution for industrial solder joint detection but lays the groundwork for future advancements in this critical area. 展开更多
关键词 Cascade object detection deep learning feature fusion multi-scale and multi-template matching solder joint dataset
下载PDF
Optimized air-ground data fusion method for mine slope modeling
13
作者 LIU Dan HUANG Man +4 位作者 TAO Zhigang HONG Chenjie WU Yuewei FAN En YANG Fei 《Journal of Mountain Science》 SCIE CSCD 2024年第6期2130-2139,共10页
Refined 3D modeling of mine slopes is pivotal for precise prediction of geological hazards.Aiming at the inadequacy of existing single modeling methods in comprehensively representing the overall and localized charact... Refined 3D modeling of mine slopes is pivotal for precise prediction of geological hazards.Aiming at the inadequacy of existing single modeling methods in comprehensively representing the overall and localized characteristics of mining slopes,this study introduces a new method that fuses model data from Unmanned aerial vehicles(UAV)tilt photogrammetry and 3D laser scanning through a data alignment algorithm based on control points.First,the mini batch K-Medoids algorithm is utilized to cluster the point cloud data from ground 3D laser scanning.Then,the elbow rule is applied to determine the optimal cluster number(K0),and the feature points are extracted.Next,the nearest neighbor point algorithm is employed to match the feature points obtained from UAV tilt photogrammetry,and the internal point coordinates are adjusted through the distanceweighted average to construct a 3D model.Finally,by integrating an engineering case study,the K0 value is determined to be 8,with a matching accuracy between the two model datasets ranging from 0.0669 to 1.0373 mm.Therefore,compared with the modeling method utilizing K-medoids clustering algorithm,the new modeling method significantly enhances the computational efficiency,the accuracy of selecting the optimal number of feature points in 3D laser scanning,and the precision of the 3D model derived from UAV tilt photogrammetry.This method provides a research foundation for constructing mine slope model. 展开更多
关键词 Air-ground data fusion method Mini batch K-Medoids algorithm Ebow rule Optimal cluster number 3D laser scanning UAV tilt photogrammetry
下载PDF
Multisensor Fuzzy Stochastic Fusion Based on Genetic Algorithms 被引量:3
14
作者 胡昌振 谭惠民 《Journal of Beijing Institute of Technology》 EI CAS 2000年第1期49-54,共6页
To establish a parallel fusion approach of processing high dimensional information, the model and criterion of multisensor fuzzy stochastic data fusion were presented. In order to design genetic algorithm fusion, the ... To establish a parallel fusion approach of processing high dimensional information, the model and criterion of multisensor fuzzy stochastic data fusion were presented. In order to design genetic algorithm fusion, the fusion parameter coding, initial population and fitness function establishing, and fuzzy logic controller designing for genetic operations and probability choosing were completed. The discussion on the highly dimensional fusion was given. For a moving target with the division of 1 64 (velocity) and 1 75 (acceleration), the precision of fusion is 0 94 and 0 98 respectively. The fusion approach can improve the reliability and decision precision effectively. 展开更多
关键词 MULTISENSOR data fusion fuzzy random genetic algorithm
下载PDF
Multi-Scale Fusion Model Based on Gated Recurrent Unit for Enhancing Prediction Accuracy of State-of-Charge in Battery Energy Storage Systems 被引量:1
15
作者 Hao Liu Fengwei Liang +2 位作者 Tianyu Hu Jichao Hong Huimin Ma 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第2期405-414,共10页
Accurate prediction of the state-of-charge(SOC)of battery energy storage system(BESS)is critical for its safety and lifespan in electric vehicles.To overcome the imbalance of existing methods between multi-scale featu... Accurate prediction of the state-of-charge(SOC)of battery energy storage system(BESS)is critical for its safety and lifespan in electric vehicles.To overcome the imbalance of existing methods between multi-scale feature fusion and global feature extraction,this paper introduces a novel multi-scale fusion(MSF)model based on gated recurrent unit(GRU),which is specifically designed for complex multi-step SOC prediction in practical BESSs.Pearson correlation analysis is first employed to identify SOC-related parameters.These parameters are then input into a multi-layer GRU for point-wise feature extraction.Concurrently,the parameters undergo patching before entering a dual-stage multi-layer GRU,thus enabling the model to capture nuanced information across varying time intervals.Ultimately,by means of adaptive weight fusion and a fully connected network,multi-step SOC predictions are rendered.Following extensive validation over multiple days,it is illustrated that the proposed model achieves an absolute error of less than 1.5%in real-time SOC prediction. 展开更多
关键词 Electric vehicle battery energy storage system(BESS) state-of-charge(SOC)prediction gated recurrent unit(GRU) multi-scale fusion(MSF).
原文传递
Grasp Detection with Hierarchical Multi-Scale Feature Fusion and Inverted Shuffle Residual
16
作者 Wenjie Geng Zhiqiang Cao +3 位作者 Peiyu Guan Fengshui Jing Min Tan Junzhi Yu 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第1期244-256,共13页
Grasp detection plays a critical role for robot manipulation.Mainstream pixel-wise grasp detection networks with encoder-decoder structure receive much attention due to good accuracy and efficiency.However,they usuall... Grasp detection plays a critical role for robot manipulation.Mainstream pixel-wise grasp detection networks with encoder-decoder structure receive much attention due to good accuracy and efficiency.However,they usually transmit the high-level feature in the encoder to the decoder,and low-level features are neglected.It is noted that low-level features contain abundant detail information,and how to fully exploit low-level features remains unsolved.Meanwhile,the channel information in high-level feature is also not well mined.Inevitably,the performance of grasp detection is degraded.To solve these problems,we propose a grasp detection network with hierarchical multi-scale feature fusion and inverted shuffle residual.Both low-level and high-level features in the encoder are firstly fused by the designed skip connections with attention module,and the fused information is then propagated to corresponding layers of the decoder for in-depth feature fusion.Such a hierarchical fusion guarantees the quality of grasp prediction.Furthermore,an inverted shuffle residual module is created,where the high-level feature from encoder is split in channel and the resultant split features are processed in their respective branches.By such differentiation processing,more high-dimensional channel information is kept,which enhances the representation ability of the network.Besides,an information enhancement module is added before the encoder to reinforce input information.The proposed method attains 98.9%and 97.8%in image-wise and object-wise accuracy on the Cornell grasping dataset,respectively,and the experimental results verify the effectiveness of the method. 展开更多
关键词 grasp detection hierarchical multi-scale feature fusion skip connections with attention inverted shuffle residual
原文传递
Multi-Scale Feature Fusion Model for Bridge Appearance Defect Detection
17
作者 Rong Pang Yan Yang +3 位作者 Aiguo Huang Yan Liu Peng Zhang Guangwu Tang 《Big Data Mining and Analytics》 EI CSCD 2024年第1期1-11,共11页
Although the Faster Region-based Convolutional Neural Network(Faster R-CNN)model has obvious advantages in defect recognition,it still cannot overcome challenging problems,such as time-consuming,small targets,irregula... Although the Faster Region-based Convolutional Neural Network(Faster R-CNN)model has obvious advantages in defect recognition,it still cannot overcome challenging problems,such as time-consuming,small targets,irregular shapes,and strong noise interference in bridge defect detection.To deal with these issues,this paper proposes a novel Multi-scale Feature Fusion(MFF)model for bridge appearance disease detection.First,the Faster R-CNN model adopts Region Of Interest(ROl)pooling,which omits the edge information of the target area,resulting in some missed detections and inaccuracies in both detecting and localizing bridge defects.Therefore,this paper proposes an MFF based on regional feature Aggregation(MFF-A),which reduces the missed detection rate of bridge defect detection and improves the positioning accuracy of the target area.Second,the Faster R-CNN model is insensitive to small targets,irregular shapes,and strong noises in bridge defect detection,which results in a long training time and low recognition accuracy.Accordingly,a novel Lightweight MFF(namely MFF-L)model for bridge appearance defect detection using a lightweight network EfficientNetV2 and a feature pyramid network is proposed,which fuses multi-scale features to shorten the training speed and improve recognition accuracy.Finally,the effectiveness of the proposed method is evaluated on the bridge disease dataset and public computational fluid dynamic dataset. 展开更多
关键词 defect detection multi-scale Feature fusion(MFF) Region Of Interest(ROl)alignment lightweight network
原文传递
Multi-sources information fusion algorithm in airborne detection systems 被引量:18
18
作者 Yang Yan Jing Zhanrong Gao Tan Wang Huilong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期171-176,共6页
To aim at the multimode character of the data from the airplane detecting system, the paper combines Dempster- Shafer evidence theory and subjective Bayesian algorithm and makes to propose a mixed structure multimode ... To aim at the multimode character of the data from the airplane detecting system, the paper combines Dempster- Shafer evidence theory and subjective Bayesian algorithm and makes to propose a mixed structure multimode data fusion algorithm. The algorithm adopts a prorated algorithm relate to the incertitude evaluation to convert the probability evaluation into the precognition probability in an identity frame, and ensures the adaptability of different data from different source to the mixed system. To guarantee real time fusion, a combination of time domain fusion and space domain fusion is established, this not only assure the fusion of data chain in different time of the same sensor, but also the data fusion from different sensors distributed in different platforms and the data fusion among different modes. The feasibility and practicability are approved through computer simulation. 展开更多
关键词 Information fusion Dempster-Shafer evidence theory Subjective Bayesian algorithm Airplane detecting system
下载PDF
A Novel Multi-sensor Data Fusion Algorithm and Its Application to Diagnostics 被引量:2
19
作者 Li Xiong Xu Zongchang Dong Zhiming 《仪器仪表学报》 EI CAS CSCD 北大核心 2005年第z1期788-790,共3页
To Meet the requirements of multi-sensor data fusion in diagnosis for complex equipment systems,a novel, fuzzy similarity-based data fusion algorithm is given. Based on fuzzy set theory, it calculates the fuzzy simila... To Meet the requirements of multi-sensor data fusion in diagnosis for complex equipment systems,a novel, fuzzy similarity-based data fusion algorithm is given. Based on fuzzy set theory, it calculates the fuzzy similarity among a certain sensor's measurement values and the multiple sensor's objective prediction values to determine the importance weigh of each sensor,and realizes the multi-sensor diagnosis parameter data fusion.According to the principle, its application software is also designed. The applied example proves that the algorithm can give priority to the high-stability and high -reliability sensors and it is laconic ,feasible and efficient to real-time circumstance measure and data processing in engine diagnosis. 展开更多
关键词 DIAGNOSTICS MULTI-SENSOR DATA fusion algorithm ENGINE
下载PDF
Neural Network Based Algorithm and Simulation of Information Fusion in the Coal Mine 被引量:4
20
作者 ZHANG Xiao-qiang WANG Hui-bing YU Hong-zhen 《Journal of China University of Mining and Technology》 EI 2007年第4期595-598,共4页
The concepts of information fusion and the basic principles of neural networks are introduced. Neural net-works were introduced as a way of building an information fusion model in a coal mine monitoring system. This a... The concepts of information fusion and the basic principles of neural networks are introduced. Neural net-works were introduced as a way of building an information fusion model in a coal mine monitoring system. This assures the accurate transmission of the multi-sensor information that comes from the coal mine monitoring systems. The in-formation fusion mode was analyzed. An algorithm was designed based on this analysis and some simulation results were given. Finally,conclusions that could provide auxiliary decision making information to the coal mine dispatching officers were presented. 展开更多
关键词 neural network information fusion algorithm and simulation SENSORS
下载PDF
上一页 1 2 150 下一页 到第
使用帮助 返回顶部