期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Two Stages Segmentation Algorithm of Breast Tumor in DCE-MRI Based on Multi-Scale Feature and Boundary Attention Mechanism
1
作者 Bing Li Liangyu Wang +3 位作者 Xia Liu Hongbin Fan Bo Wang Shoudi Tong 《Computers, Materials & Continua》 SCIE EI 2024年第7期1543-1561,共19页
Nuclearmagnetic resonance imaging of breasts often presents complex backgrounds.Breast tumors exhibit varying sizes,uneven intensity,and indistinct boundaries.These characteristics can lead to challenges such as low a... Nuclearmagnetic resonance imaging of breasts often presents complex backgrounds.Breast tumors exhibit varying sizes,uneven intensity,and indistinct boundaries.These characteristics can lead to challenges such as low accuracy and incorrect segmentation during tumor segmentation.Thus,we propose a two-stage breast tumor segmentation method leveraging multi-scale features and boundary attention mechanisms.Initially,the breast region of interest is extracted to isolate the breast area from surrounding tissues and organs.Subsequently,we devise a fusion network incorporatingmulti-scale features and boundary attentionmechanisms for breast tumor segmentation.We incorporate multi-scale parallel dilated convolution modules into the network,enhancing its capability to segment tumors of various sizes through multi-scale convolution and novel fusion techniques.Additionally,attention and boundary detection modules are included to augment the network’s capacity to locate tumors by capturing nonlocal dependencies in both spatial and channel domains.Furthermore,a hybrid loss function with boundary weight is employed to address sample class imbalance issues and enhance the network’s boundary maintenance capability through additional loss.Themethod was evaluated using breast data from 207 patients at RuijinHospital,resulting in a 6.64%increase in Dice similarity coefficient compared to the benchmarkU-Net.Experimental results demonstrate the superiority of the method over other segmentation techniques,with fewer model parameters. 展开更多
关键词 Dynamic contrast-enhanced magnetic resonance imaging(DCE-MRI) breast tumor segmentation multi-scale dilated convolution boundary attention the hybrid loss function with boundary weight
下载PDF
A Lightweight Convolutional Neural Network with Hierarchical Multi-Scale Feature Fusion for Image Classification
2
作者 Adama Dembele Ronald Waweru Mwangi Ananda Omutokoh Kube 《Journal of Computer and Communications》 2024年第2期173-200,共28页
Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware reso... Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline. 展开更多
关键词 MobileNet Image Classification Lightweight Convolutional Neural Network Depthwise dilated Separable Convolution Hierarchical multi-scale Feature Fusion
下载PDF
Integrating Transformer and Bidirectional Long Short-Term Memory for Intelligent Breast Cancer Detection from Histopathology Biopsy Images
3
作者 Prasanalakshmi Balaji Omar Alqahtani +2 位作者 Sangita Babu Mousmi Ajay Chaurasia Shanmugapriya Prakasam 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期443-458,共16页
Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire population.With recent advancements in digital pathology,Eosin and hematoxylin images provide enh... Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire population.With recent advancements in digital pathology,Eosin and hematoxylin images provide enhanced clarity in examiningmicroscopic features of breast tissues based on their staining properties.Early cancer detection facilitates the quickening of the therapeutic process,thereby increasing survival rates.The analysis made by medical professionals,especially pathologists,is time-consuming and challenging,and there arises a need for automated breast cancer detection systems.The upcoming artificial intelligence platforms,especially deep learning models,play an important role in image diagnosis and prediction.Initially,the histopathology biopsy images are taken from standard data sources.Further,the gathered images are given as input to the Multi-Scale Dilated Vision Transformer,where the essential features are acquired.Subsequently,the features are subjected to the Bidirectional Long Short-Term Memory(Bi-LSTM)for classifying the breast cancer disorder.The efficacy of the model is evaluated using divergent metrics.When compared with other methods,the proposed work reveals that it offers impressive results for detection. 展开更多
关键词 Bidirectional long short-term memory breast cancer detection feature extraction histopathology biopsy images multi-scale dilated vision transformer
下载PDF
基于峰谷形态的纸张纹路分割算法 被引量:13
4
作者 王富治 黄大贵 《电子测量与仪器学报》 CSCD 2009年第6期103-107,共5页
针对基于图像纸张计数技术最为关键的纹路提取与分割问题,本文从峰谷形态角度提出一种新的算法。该方法首先利用测地重建消除产生干扰的次要极值区域,接着利用区域极值对极值区域和非极值区域进行0,1标记得到二值条纹后即可实现计数。... 针对基于图像纸张计数技术最为关键的纹路提取与分割问题,本文从峰谷形态角度提出一种新的算法。该方法首先利用测地重建消除产生干扰的次要极值区域,接着利用区域极值对极值区域和非极值区域进行0,1标记得到二值条纹后即可实现计数。文章比较了区域极值,动态阈值以及全局阈值在复杂成像条件下不同的纹路分割性能。实验证明,极值是比阈值更为优越的明暗条纹判据,具有更强的抗毛边,抗油墨,以及抗光照不均性能,因而能保证更高的计数准确率。 展开更多
关键词 纸张计数 区域极值 图像重建 测地膨胀
下载PDF
基于开重建的LiDAR数据形态学滤波方法 被引量:3
5
作者 孙美玲 李永树 +1 位作者 陈强 蔡国林 《大地测量与地球动力学》 CSCD 北大核心 2014年第2期90-94,共5页
为改善对LiDAR数据点滤波分类的有效性与准确性,在形态学滤波方法的基础上,提出了基于开重建的LiDAR点云形态学滤波算法。首先对格网化DSM进行腐蚀运算获得标记图像,通过对标记图像反复进行测地膨胀运算实现开重建过程,然后利用白顶帽... 为改善对LiDAR数据点滤波分类的有效性与准确性,在形态学滤波方法的基础上,提出了基于开重建的LiDAR点云形态学滤波算法。首先对格网化DSM进行腐蚀运算获得标记图像,通过对标记图像反复进行测地膨胀运算实现开重建过程,然后利用白顶帽变换得到nDSM实现地物与地面点的正确分类。使用ISPRS提供的测试数据的实验结果表明,该方法的Ⅰ类、Ⅱ类及总误差均值分别为3.51%、7.20%和4.26%,与同类滤波方法相比,在Ⅱ类误差增幅不显著的情况下,15个样本区的总误差均值和Ⅰ类误差均值均达到最小。 展开更多
关键词 激光雷达 滤波 形态学开重建 白顶帽重建 测地膨胀
下载PDF
金相图像的晶界恢复与重建 被引量:3
6
作者 蒋明星 陈国华 《光学精密工程》 EI CAS CSCD 北大核心 2011年第10期2541-2549,共9页
针对定量金相分析中金相图像的晶界恢复与重建以及数学形态学在图像处理中的特殊作用,从理论上证明了传统膨胀运算对图像灰度连续性的影响及影响程度与结构元素尺寸的关系,并对传统的膨胀运算的定义做了改进,据此提出了多尺度测地膨胀... 针对定量金相分析中金相图像的晶界恢复与重建以及数学形态学在图像处理中的特殊作用,从理论上证明了传统膨胀运算对图像灰度连续性的影响及影响程度与结构元素尺寸的关系,并对传统的膨胀运算的定义做了改进,据此提出了多尺度测地膨胀算法并以此恢复和重建金相图像的晶界。首先依据改进的膨胀运算对金相图像进行预处理;然后用多尺度迭代腐蚀和多尺度测地膨胀方法得到晶粒的种子;最后用条件粗化方法对晶粒的种子进行区域生长、产生晶界线。实验结果表明,与传统的重复测地膨胀方法以及基于微分运算的图像分割等方法相比,本方法不仅可快速恢复与重建晶界线,而且获取的晶界线更加清晰准确、连续光滑。 展开更多
关键词 晶相图 晶界恢复 晶界重建 膨胀 灰度连续性 多尺度测地膨胀
下载PDF
基于合并准则和测地膨胀重构的视频目标分割
7
作者 马丽红 陈晓棠 张宇 《电视技术》 北大核心 2004年第3期21-24,共4页
提出具有鲁棒性的时空域视频目标分割方案:先用改进分水岭算法和合并准则作空域分割,产生初始I-帧分割,接着选择测地膨胀的掩模和标记图像来重构目标,以目标的每一轮廓像素构造边缘块,投影至下一帧中提取闭合目标轮廓。经多个视频序列... 提出具有鲁棒性的时空域视频目标分割方案:先用改进分水岭算法和合并准则作空域分割,产生初始I-帧分割,接着选择测地膨胀的掩模和标记图像来重构目标,以目标的每一轮廓像素构造边缘块,投影至下一帧中提取闭合目标轮廓。经多个视频序列实验证明,算法是行之有效的,而且适用于快速运动和部分遮挡的目标分割。 展开更多
关键词 合并准则 视频图像 分割算子 测地膨胀 分水岭算法
下载PDF
A BINARY INFINITESIMAL FORM OF TEICHMLLER METRIC AND ANGLES IN AN ASYMPTOTIC TEICHMLLER SPACE
8
作者 吴艳 漆毅 《Acta Mathematica Scientia》 SCIE CSCD 2016年第2期334-344,共11页
The geometry of Teichmuller metric in an asymptotic Teichmuller space is studled in this article. First, a binary infinitesimal form of Teichmuller metric on AT(X) is proved. Then, the notion of angles between two g... The geometry of Teichmuller metric in an asymptotic Teichmuller space is studled in this article. First, a binary infinitesimal form of Teichmuller metric on AT(X) is proved. Then, the notion of angles between two geodesic curves in the asymptotic Teichmuller space AT(X) is introduced. The existence of such angles is proved and the explicit formula is obtained. As an application, a sufficient condition for non-uniqueness geodesics in AT(X) is obtained. 展开更多
关键词 Angles of asymptotic Teichmiiller space geodesic segment Finsler structure Boundary dilatation
下载PDF
Hard-rock tunnel lithology identification using multiscale dilated convolutional attention network based on tunnel face images
9
作者 Wenjun ZHANG Wuqi ZHANG +5 位作者 Gaole ZHANG Jun HUANG Minggeng LI Xiaohui WANG Fei YE Xiaoming GUAN 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第12期1796-1812,共17页
For real-time classification of rock-masses in hard-rock tunnels,quick determination of the rock lithology on the tunnel face during construction is essential.Motivated by current breakthroughs in artificial intellige... For real-time classification of rock-masses in hard-rock tunnels,quick determination of the rock lithology on the tunnel face during construction is essential.Motivated by current breakthroughs in artificial intelligence technology in machine vision,a new automatic detection approach for classifying tunnel lithology based on tunnel face images was developed.The method benefits from residual learning for training a deep convolutional neural network(DCNN),and a multi-scale dilated convolutional attention block is proposed.The block with different dilation rates can provide various receptive fields,and thus it can extract multi-scale features.Moreover,the attention mechanism is utilized to select the salient features adaptively and further improve the performance of the model.In this study,an initial image data set made up of photographs of tunnel faces consisting of basalt,granite,siltstone,and tuff was first collected.After classifying and enhancing the training,validation,and testing data sets,a new image data set was generated.A comparison of the experimental findings demonstrated that the suggested approach outperforms previous classifiers in terms of various indicators,including accuracy,precision,recall,F1-score,and computing time.Finally,a visualization analysis was performed to explain the process of the network in the classification of tunnel lithology through feature extraction.Overall,this study demonstrates the potential of using artificial intelligence methods for in situ rock lithology classification utilizing geological images of the tunnel face. 展开更多
关键词 hard-rock tunnel face intelligent lithology identification multi-scale dilated convolutional attention network image classification deep learning
原文传递
用形态学重建方法进行机载LiDAR数据滤波 被引量:33
10
作者 沈晶 刘纪平 林祥国 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2011年第2期167-170,175,共5页
在利用KD-树进行粗差剔除的基础上,结合机载LiDAR数据的多回波特性剔除不必要的冗余数据,利用形态学重建的方法对机载LiDAR数据进行滤波,且运行时只需要输入一个参数。使用国际摄影测量与遥感学会(ISPRS)提供的测试数据对算法进行实验,... 在利用KD-树进行粗差剔除的基础上,结合机载LiDAR数据的多回波特性剔除不必要的冗余数据,利用形态学重建的方法对机载LiDAR数据进行滤波,且运行时只需要输入一个参数。使用国际摄影测量与遥感学会(ISPRS)提供的测试数据对算法进行实验,并与国际上8种滤波算法进行对比,结果表明,该算法对各种场景的适应性较强,既能有效地去除非地面点,又能很好地保留地面点,使Ⅰ类误差、Ⅱ类误差和总体误差分别保持在9.93%、7.27%和9.76%以下,整体性能优于经典的滤波方法。 展开更多
关键词 机载LIDAR 滤波 数学形态学 形态学重建 测地膨胀
原文传递
基于点的多尺度形态学重建滤波方法 被引量:2
11
作者 常兵涛 陈传法 +3 位作者 郭娇娇 武慧明 贝祎轩 李琳叶 《遥感学报》 EI CSCD 北大核心 2022年第12期2582-2593,共12页
针对现有机载激光雷达(LiDAR)点云滤波算法难以准确分离复杂地形中地面点与地物点问题,提出了一种基于点的多尺度形态学重建滤波方法 PMMF (Point-based Multi-scale Morphological reconstruction Filter)。在初始尺度层次下,PMMF通过... 针对现有机载激光雷达(LiDAR)点云滤波算法难以准确分离复杂地形中地面点与地物点问题,提出了一种基于点的多尺度形态学重建滤波方法 PMMF (Point-based Multi-scale Morphological reconstruction Filter)。在初始尺度层次下,PMMF通过构建一种基于点的形态学重建对原始点云滤波,即先在掩膜点云约束下借助k邻域结构元素和高程缓冲区反复膨胀标记点云,获取潜在地面点;然后通过自适应坡度方法剔除潜在地面点中的非地面点,其中,坡度阈值随地形复杂度自适应变化。在上层滤波结果基础上,PMMF通过提升种子点选择的网格尺度重复上层滤波过程,直至结果收敛。以国际摄影测量与遥感学会(ISPRS)发布的15组基准数据为研究对象,将PMMF滤波结果与近5年(2016年—2020年)提出的15种滤波算法比较表明,PMMF有8组数据滤波效果占优,15组数据平均总误差和Kappa系数分别为2.71%和91.08%。使用4种不同地形特征的高密度机载LiDAR点云数据进一步验证PMMF的滤波效果,并将计算结果与简单形态学滤波(SMRF)、布料模拟滤波(CSF)、渐进加密三角网滤波(PTD)和多分辨率层次滤波(MHF)比较。结果表明,PMMF滤波性能最优,平均总误差为3.24%,较其他4种滤波方法分别减小了12.0%、59.1%、70.1%和53.2%。 展开更多
关键词 机载LIDAR 点云滤波 形态学重建 测地膨胀 自适应坡度阈值
原文传递
A NOTE ON FINITE ELEMENT WAVELETS
12
作者 谌秋辉 陈翰麟 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2001年第4期517-525,共9页
The refinability and approximation order of finite element multi-scale vector are discussed in [1]. But the coefficients in the conditions of approximation order of finite element multi-scale vector are incorrect ther... The refinability and approximation order of finite element multi-scale vector are discussed in [1]. But the coefficients in the conditions of approximation order of finite element multi-scale vector are incorrect there. The main purpose of this note is to make a correction of the error in the main result of [1]. These Cuefficients are very important for the properties of wavelets, such as vanishing moments and regularity. 展开更多
关键词 Approximation order SYMBOL multi-scale vector matrix dilation equation
全文增补中
上一页 1 下一页 到第
使用帮助 返回顶部