This paper introduces a multi-scale morphological edge detection algorithm to extract SAR image edge which suffers seriously from noise. Combining the basic theme of morphology with that of multi-scale analysis, the a...This paper introduces a multi-scale morphological edge detection algorithm to extract SAR image edge which suffers seriously from noise. Combining the basic theme of morphology with that of multi-scale analysis, the algorithm presents the outstanding characteristics of accuracy and robustness. Comparative Experiments reveal its fine performance.展开更多
Watershed segmentation is sensitive to noises and irregular details within the image,which frequently leads to a serious over-segmentation Linear filtering before watershed segmentation can reduce over-segmentation to...Watershed segmentation is sensitive to noises and irregular details within the image,which frequently leads to a serious over-segmentation Linear filtering before watershed segmentation can reduce over-segmentation to some extent,however,it often causes the position offset of object contours.For the purpose of reducing over-segmentation to preserve the location of object contours,the watershed segmentation based on the hierarchical multi-scale modification of morphological gradient is proposed.Firstly,multi-scale morphological filtering was employed to smooth the original image.Then,the gradient image was divided into multi-levels by the volume of three-dimension topographic relief,where the lower gradient layers were further modifiedby morphological closing with larger-sized structuring-elements,and the higher layers with the smaller one.In this way,most local minimums caused by irregular details and noises can be removed,while region contour positions corresponding to the target area were largely preserved.Finally,morphological watershed algorithm was employed to implement segmentation on the modified gradient image.The experimental results show that the proposed method can greatly reduce the over-segmentation of the watershed and avoid the position offset of the object contours.展开更多
The features of alkali activated slag(AAS) and portland cement (PC) were observed on multi-scale,the crack and fracture sections were observed with naked eyes,and SEM and AFM were used to study the structure morph...The features of alkali activated slag(AAS) and portland cement (PC) were observed on multi-scale,the crack and fracture sections were observed with naked eyes,and SEM and AFM were used to study the structure morphology differences between PC and AAS on micrometer to nano meter scale.The experimental results indicated that the AAS paste had soil like fracture texture and it was composed of mainly C-S-H gel but lacks of crystals,and it had a very strong tendency to shrink and crack.AAS paste is much denser and more homogeneous than PC,and on the nano scale C-S-H nano particle in the AAS paste is much smaller and packs much denser than PC paste.展开更多
Seismic energy decays while propagating subsurface, which may reduce the resolution of seismic data. This paper studies the method of seismic energy dispersion compensation which provides the basic principles for mult...Seismic energy decays while propagating subsurface, which may reduce the resolution of seismic data. This paper studies the method of seismic energy dispersion compensation which provides the basic principles for multi-scale morphology and the spectrum simulation method. These methods are applied in seismic energy compensation. First of all, the seismic data is decomposed into multiple scales and the effective frequency bandwidth is selectively broadened for some scales by using a spectrum simulation method. In this process, according to the amplitude spectrum of each scale, the best simulation range is selected to simulate the middle and low frequency components to ensure the authenticity of the simulation curve which is calculated by the median method, and the high frequency component is broadened. Finally, these scales are reconstructed with reasonable coefficients, and the compensated seismic data can be obtained. Examples are shown to illustrate the feasibility of the energy compensation method.展开更多
The high-frequency components in the traditional multi-scale transform method are approximately sparse, which can represent different information of the details. But in the low-frequency component, the coefficients ar...The high-frequency components in the traditional multi-scale transform method are approximately sparse, which can represent different information of the details. But in the low-frequency component, the coefficients around the zero value are very few, so we cannot sparsely represent low-frequency image information. The low-frequency component contains the main energy of the image and depicts the profile of the image. Direct fusion of the low-frequency component will not be conducive to obtain highly accurate fusion result. Therefore, this paper presents an infrared and visible image fusion method combining the multi-scale and top-hat transforms. On one hand, the new top-hat-transform can effectively extract the salient features of the low-frequency component. On the other hand, the multi-scale transform can extract highfrequency detailed information in multiple scales and from diverse directions. The combination of the two methods is conducive to the acquisition of more characteristics and more accurate fusion results. Among them, for the low-frequency component, a new type of top-hat transform is used to extract low-frequency features, and then different fusion rules are applied to fuse the low-frequency features and low-frequency background; for high-frequency components, the product of characteristics method is used to integrate the detailed information in high-frequency. Experimental results show that the proposed algorithm can obtain more detailed information and clearer infrared target fusion results than the traditional multiscale transform methods. Compared with the state-of-the-art fusion methods based on sparse representation, the proposed algorithm is simple and efficacious, and the time consumption is significantly reduced.展开更多
Working conditions of rolling bearings of wind turbine generators are complicated, and their vibration signals often show non-linear and non-stationary characteristics. In order to improve the efficiency of feature ex...Working conditions of rolling bearings of wind turbine generators are complicated, and their vibration signals often show non-linear and non-stationary characteristics. In order to improve the efficiency of feature extraction of wind turbine rolling bearings and to strengthen the feature information, a new structural element and an adaptive algorithm based on the peak energy are proposed,which are combined with spectral correlation analysis to form a fault diagnosis algorithm for wind turbine rolling bearings. The proposed method firstly addresses the problem of impulsive signal omissions that are prone to occur in the process of fault feature extraction of traditional structural elements and proposes a "W" structural element to capture more characteristic information. Then, the proposed method selects the scale of multi-scale mathematical morphology, aiming at the problem of multi-scale mathematical morphology scale selection and structural element expansion law. An adaptive algorithm based on peak energy is proposed to carry out morphological scale selection and structural element expansion by improving the computing efficiency and enhancing the feature extraction effect.Finally, the proposed method performs spectral correlation analysis in the frequency domain for an unknown signal of the extracted feature and identifies the fault based on the correlation coefficient. The method is verified by numerical examples using experimental rig bearing data and actual wind field acquisition data and compared with traditional triangular and flat structural elements. The experimental results show that the new structural elements can more effectively extract the pulses in the signal and reduce noise interference,and the fault-diagnosis algorithm can accurately identify the fault category and improve the reliability of the results.展开更多
基金Supported the NatioIlal Naturel Science Foundation of China(No.69831040)
文摘This paper introduces a multi-scale morphological edge detection algorithm to extract SAR image edge which suffers seriously from noise. Combining the basic theme of morphology with that of multi-scale analysis, the algorithm presents the outstanding characteristics of accuracy and robustness. Comparative Experiments reveal its fine performance.
基金National Natural Science Foundation of China(No.61261029)
文摘Watershed segmentation is sensitive to noises and irregular details within the image,which frequently leads to a serious over-segmentation Linear filtering before watershed segmentation can reduce over-segmentation to some extent,however,it often causes the position offset of object contours.For the purpose of reducing over-segmentation to preserve the location of object contours,the watershed segmentation based on the hierarchical multi-scale modification of morphological gradient is proposed.Firstly,multi-scale morphological filtering was employed to smooth the original image.Then,the gradient image was divided into multi-levels by the volume of three-dimension topographic relief,where the lower gradient layers were further modifiedby morphological closing with larger-sized structuring-elements,and the higher layers with the smaller one.In this way,most local minimums caused by irregular details and noises can be removed,while region contour positions corresponding to the target area were largely preserved.Finally,morphological watershed algorithm was employed to implement segmentation on the modified gradient image.The experimental results show that the proposed method can greatly reduce the over-segmentation of the watershed and avoid the position offset of the object contours.
基金Funded by the Open Foundation of National Key Laboratory of Green Building Materials(CBM-08-KF103)
文摘The features of alkali activated slag(AAS) and portland cement (PC) were observed on multi-scale,the crack and fracture sections were observed with naked eyes,and SEM and AFM were used to study the structure morphology differences between PC and AAS on micrometer to nano meter scale.The experimental results indicated that the AAS paste had soil like fracture texture and it was composed of mainly C-S-H gel but lacks of crystals,and it had a very strong tendency to shrink and crack.AAS paste is much denser and more homogeneous than PC,and on the nano scale C-S-H nano particle in the AAS paste is much smaller and packs much denser than PC paste.
文摘Seismic energy decays while propagating subsurface, which may reduce the resolution of seismic data. This paper studies the method of seismic energy dispersion compensation which provides the basic principles for multi-scale morphology and the spectrum simulation method. These methods are applied in seismic energy compensation. First of all, the seismic data is decomposed into multiple scales and the effective frequency bandwidth is selectively broadened for some scales by using a spectrum simulation method. In this process, according to the amplitude spectrum of each scale, the best simulation range is selected to simulate the middle and low frequency components to ensure the authenticity of the simulation curve which is calculated by the median method, and the high frequency component is broadened. Finally, these scales are reconstructed with reasonable coefficients, and the compensated seismic data can be obtained. Examples are shown to illustrate the feasibility of the energy compensation method.
基金Project supported by the National Natural Science Foundation of China(Grant No.61402368)Aerospace Support Fund,China(Grant No.2017-HT-XGD)Aerospace Science and Technology Innovation Foundation,China(Grant No.2017 ZD 53047)
文摘The high-frequency components in the traditional multi-scale transform method are approximately sparse, which can represent different information of the details. But in the low-frequency component, the coefficients around the zero value are very few, so we cannot sparsely represent low-frequency image information. The low-frequency component contains the main energy of the image and depicts the profile of the image. Direct fusion of the low-frequency component will not be conducive to obtain highly accurate fusion result. Therefore, this paper presents an infrared and visible image fusion method combining the multi-scale and top-hat transforms. On one hand, the new top-hat-transform can effectively extract the salient features of the low-frequency component. On the other hand, the multi-scale transform can extract highfrequency detailed information in multiple scales and from diverse directions. The combination of the two methods is conducive to the acquisition of more characteristics and more accurate fusion results. Among them, for the low-frequency component, a new type of top-hat transform is used to extract low-frequency features, and then different fusion rules are applied to fuse the low-frequency features and low-frequency background; for high-frequency components, the product of characteristics method is used to integrate the detailed information in high-frequency. Experimental results show that the proposed algorithm can obtain more detailed information and clearer infrared target fusion results than the traditional multiscale transform methods. Compared with the state-of-the-art fusion methods based on sparse representation, the proposed algorithm is simple and efficacious, and the time consumption is significantly reduced.
基金supported by National Natural Science Foundation of China (No. 61763037)Inner Mongolia Autonomous Region Natural Science Foundation of China(No. 2019LH06007)Science and Technology Plan Project of Inner Mongolia (No. 2019,2020GG028)。
文摘Working conditions of rolling bearings of wind turbine generators are complicated, and their vibration signals often show non-linear and non-stationary characteristics. In order to improve the efficiency of feature extraction of wind turbine rolling bearings and to strengthen the feature information, a new structural element and an adaptive algorithm based on the peak energy are proposed,which are combined with spectral correlation analysis to form a fault diagnosis algorithm for wind turbine rolling bearings. The proposed method firstly addresses the problem of impulsive signal omissions that are prone to occur in the process of fault feature extraction of traditional structural elements and proposes a "W" structural element to capture more characteristic information. Then, the proposed method selects the scale of multi-scale mathematical morphology, aiming at the problem of multi-scale mathematical morphology scale selection and structural element expansion law. An adaptive algorithm based on peak energy is proposed to carry out morphological scale selection and structural element expansion by improving the computing efficiency and enhancing the feature extraction effect.Finally, the proposed method performs spectral correlation analysis in the frequency domain for an unknown signal of the extracted feature and identifies the fault based on the correlation coefficient. The method is verified by numerical examples using experimental rig bearing data and actual wind field acquisition data and compared with traditional triangular and flat structural elements. The experimental results show that the new structural elements can more effectively extract the pulses in the signal and reduce noise interference,and the fault-diagnosis algorithm can accurately identify the fault category and improve the reliability of the results.