In the standard particle swarm optimization(SPSO),the big problem is that it suffers from premature convergence,that is,in complex optimization problems,it may easily get trapped in local optima.In order to mitigate p...In the standard particle swarm optimization(SPSO),the big problem is that it suffers from premature convergence,that is,in complex optimization problems,it may easily get trapped in local optima.In order to mitigate premature convergence problem,this paper presents a new algorithm,which is called particle swarm optimization(PSO) with directed mutation,or DMPSO.The main idea of this algorithm is to "let the best particle(the smallest fitness of the particle swarm) become more excellent and the worst particle(the largest fitness of the particle swarm) try to be excellent".The new algorithm is tested on a set of eight benchmark functions,and compared with those of other four PSO variants.The experimental results illustrate the effectiveness and efficiency of the DMPSO.The comparisons show that DMPSO significantly improves the performance of PSO and searching accuracy.展开更多
An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from its...An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from itself and the best one but also from the mean value of some other particles.In addition,adaptive mutation was introduced to reduce the rate of premature convergence.The experimental results on the synthetic aperture radar(SAR) target recognition of moving and stationary target acquisition and recognition(MSTAR) dataset and character recognition of MNIST database show that the improved algorithm is feasible and effective for fuzzy multi-class SVM training.展开更多
Extreme hydrological events induced by typhoons in reservoir areas have presented severe challenges to the safe operation of hydraulic structures. Based on analysis of the seepage characteristics of an earth rock dam,...Extreme hydrological events induced by typhoons in reservoir areas have presented severe challenges to the safe operation of hydraulic structures. Based on analysis of the seepage characteristics of an earth rock dam, a novel seepage safety monitoring model was constructed in this study. The nonlinear influence processes of the antecedent reservoir water level and rainfall were assumed to follow normal distributions. The particle swarm optimization (PSO) algorithm was used to optimize the model parameters so as to raise the fitting accuracy. In addition, a mutation factor was introduced to simulate the sudden increase in the piezometric level induced by short-duration heavy rainfall and the possible historical extreme reservoir water level during a typhoon. In order to verify the efficacy of this model, the earth rock dam of the Siminghu Reservoir was used as an example. The piezometric level at the SW1-2 measuring point during Typhoon Fitow in 2013 was fitted with the present model, and a corresponding theoretical expression was established. Comparison of fitting results of the piezometric level obtained from the present statistical model and traditional statistical model with monitored values during the typhoon shows that the present model has a higher fitting accuracy and can simulate the uprush feature of the seepage pressure during the typhoon perfectly.展开更多
Considering comprehensive benefit of micro-grid system and consumers,we establish a mathematical model with the goal of the maximum consumer satisfaction and the maximum benefit of power generation side in the view of...Considering comprehensive benefit of micro-grid system and consumers,we establish a mathematical model with the goal of the maximum consumer satisfaction and the maximum benefit of power generation side in the view of energy management.An improved multi-objective local mutation adaptive quantum particle swarm optimization(MO-LM-AQPSO)algorithm is adopted to obtain the Pareto frontier of consumer satisfaction and the benefit of power generation side.The optimal solution of the non-dominant solution is selected with introducing the power shortage and power loss to maximize the benefit of power generation side,and its reasonableness is verified by numerical simulation.Then,translational load and time-of-use electricity price incentive mechanism are considered and reasonable peak-valley price ratio is adopted to guide users to actively participate in demand response.The simulation results show that the reasonable incentive mechanism increases the benefit of power generation side and improves the consumer satisfaction.Also the mechanism maximizes the utilization of renewable energy and effectively reduces the operation cost of the battery.展开更多
Combining the clonal selection mechanism of the immune system with the evolution equations of particle swarm optimization, an advanced algorithm was introduced for functions optimization. The advantages of this algori...Combining the clonal selection mechanism of the immune system with the evolution equations of particle swarm optimization, an advanced algorithm was introduced for functions optimization. The advantages of this algorithm lies in two aspects. Via immunity operation, the diversity of the antibodies was maintained, and the speed of convergent was improved by using particle swarm evolution equations. Simulation programme and three functions were used to check the effect of the algorithm. The advanced algorithm were compared with clonal selection algorithm and particle swarm algorithm. The results show that this advanced algorithm can converge to the global optimum at a great rate in a given range, the performance of optimization is improved effectively.展开更多
A new adaptive mutation particle swarm optimizer,which is based on the variance of the population's fitness,is presented in this paper.During the running time,the mutation probability for the current best particle...A new adaptive mutation particle swarm optimizer,which is based on the variance of the population's fitness,is presented in this paper.During the running time,the mutation probability for the current best particle is determined by two factors:the variance of the population's fitness and the current optimal solution.The ability of particle swarm optimization(PSO)algorithm to break away from the local optimum is greatly improved by the mutation.The experimental results show that the new algorithm not only has great advantage of convergence property over genetic algorithm and PSO,but can also avoid the premature convergence problem effectively.展开更多
Particle swarm optimization(PSO)is a type of swarm intelligence algorithm that is frequently used to resolve specific global optimization problems due to its rapid convergence and ease of operation.However,PSO still h...Particle swarm optimization(PSO)is a type of swarm intelligence algorithm that is frequently used to resolve specific global optimization problems due to its rapid convergence and ease of operation.However,PSO still has certain deficiencies,such as a poor trade-off between exploration and exploitation and premature convergence.Hence,this paper proposes a dual-stage hybrid learning particle swarm optimization(DHLPSO).In the algorithm,the iterative process is partitioned into two stages.The learning strategy used at each stage emphasizes exploration and exploitation,respectively.In the first stage,to increase population variety,a Manhattan distance based learning strategy is proposed.In this strategy,each particle chooses the furthest Manhattan distance particle and a better particle for learning.In the second stage,an excellent example learning strategy is adopted to perform local optimization operations on the population,in which each particle learns from the global optimal particle and a better particle.Utilizing the Gaussian mutation strategy,the algorithm’s searchability in particular multimodal functions is significantly enhanced.On benchmark functions from CEC 2013,DHLPSO is evaluated alongside other PSO variants already in existence.The comparison results clearly demonstrate that,compared to other cutting-edge PSO variations,DHLPSO implements highly competitive performance in handling global optimization problems.展开更多
分布式低碳能源站(distributed low-carbon energy station,DLCES)能提高能源利用效率和可再生能源消纳率,准确预测DLCES的未来运行状态能保障其安全可靠运行。为此,提出一种基于数据驱动的分布式低碳能源站状态预测方法。首先,分析DLCE...分布式低碳能源站(distributed low-carbon energy station,DLCES)能提高能源利用效率和可再生能源消纳率,准确预测DLCES的未来运行状态能保障其安全可靠运行。为此,提出一种基于数据驱动的分布式低碳能源站状态预测方法。首先,分析DLCES结构与运行状态,利用关键状态量和偏移量变化将运行状态划分为正常、恢复、临界及紧急状态;其次,构建深度长短期记忆(long-short term memory,LSTM)模型,并利用改进粒子群算法进行超参数优化,提升预测模型性能;最后,利用测试集数据对柯西变异的粒子群算法(Cauchy mutation particle swarm optimization,CMPSO)和LSTM相结合的模型进行预测仿真,将其与RNN、LSTM及BP神经网络预测结果对比分析。结果表明:CMPSO-LSTM模型能提高预测效果,更具实际意义。展开更多
基金Supported by National-Natural Science Found for Distinguished Young Scholars of China (61025015), the Foundation for Innovative Research Groups of National Natural Science Foundation of China (61321003) and the China Scholarship Council
基金National Natural Science Foundation of China(No.60905039)
文摘In the standard particle swarm optimization(SPSO),the big problem is that it suffers from premature convergence,that is,in complex optimization problems,it may easily get trapped in local optima.In order to mitigate premature convergence problem,this paper presents a new algorithm,which is called particle swarm optimization(PSO) with directed mutation,or DMPSO.The main idea of this algorithm is to "let the best particle(the smallest fitness of the particle swarm) become more excellent and the worst particle(the largest fitness of the particle swarm) try to be excellent".The new algorithm is tested on a set of eight benchmark functions,and compared with those of other four PSO variants.The experimental results illustrate the effectiveness and efficiency of the DMPSO.The comparisons show that DMPSO significantly improves the performance of PSO and searching accuracy.
基金supported by the National Natural Science Foundation of China (60873086)the Aeronautical Science Foundation of China(20085153013)the Fundamental Research Found of Northwestern Polytechnical Unirersity (JC200942)
文摘An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from itself and the best one but also from the mean value of some other particles.In addition,adaptive mutation was introduced to reduce the rate of premature convergence.The experimental results on the synthetic aperture radar(SAR) target recognition of moving and stationary target acquisition and recognition(MSTAR) dataset and character recognition of MNIST database show that the improved algorithm is feasible and effective for fuzzy multi-class SVM training.
基金supported by the National Natural Science Foundation of China(Grants No.51179108 and 51679151)the Special Fund for the Public Welfare Industry of the Ministry of Water Resources of China(Grant No.201501033)+1 种基金the National Key Research and Development Program(Grant No.2016YFC0401603)the Program Sponsored for Scientific Innovation Research of College Graduates in Jiangsu Province(Grant No.KYZZ15_0140)
文摘Extreme hydrological events induced by typhoons in reservoir areas have presented severe challenges to the safe operation of hydraulic structures. Based on analysis of the seepage characteristics of an earth rock dam, a novel seepage safety monitoring model was constructed in this study. The nonlinear influence processes of the antecedent reservoir water level and rainfall were assumed to follow normal distributions. The particle swarm optimization (PSO) algorithm was used to optimize the model parameters so as to raise the fitting accuracy. In addition, a mutation factor was introduced to simulate the sudden increase in the piezometric level induced by short-duration heavy rainfall and the possible historical extreme reservoir water level during a typhoon. In order to verify the efficacy of this model, the earth rock dam of the Siminghu Reservoir was used as an example. The piezometric level at the SW1-2 measuring point during Typhoon Fitow in 2013 was fitted with the present model, and a corresponding theoretical expression was established. Comparison of fitting results of the piezometric level obtained from the present statistical model and traditional statistical model with monitored values during the typhoon shows that the present model has a higher fitting accuracy and can simulate the uprush feature of the seepage pressure during the typhoon perfectly.
基金National Natural Science Foundation of China(No.519667013)Institution of Higher Learning Scientific Research Project of Gansu Province of China(No.2016B-032)。
文摘Considering comprehensive benefit of micro-grid system and consumers,we establish a mathematical model with the goal of the maximum consumer satisfaction and the maximum benefit of power generation side in the view of energy management.An improved multi-objective local mutation adaptive quantum particle swarm optimization(MO-LM-AQPSO)algorithm is adopted to obtain the Pareto frontier of consumer satisfaction and the benefit of power generation side.The optimal solution of the non-dominant solution is selected with introducing the power shortage and power loss to maximize the benefit of power generation side,and its reasonableness is verified by numerical simulation.Then,translational load and time-of-use electricity price incentive mechanism are considered and reasonable peak-valley price ratio is adopted to guide users to actively participate in demand response.The simulation results show that the reasonable incentive mechanism increases the benefit of power generation side and improves the consumer satisfaction.Also the mechanism maximizes the utilization of renewable energy and effectively reduces the operation cost of the battery.
基金Project(A1420060159) supported by the National Basic Research of China projects(60234030, 60404021) supported by the National Natural Science Foundation of China
文摘Combining the clonal selection mechanism of the immune system with the evolution equations of particle swarm optimization, an advanced algorithm was introduced for functions optimization. The advantages of this algorithm lies in two aspects. Via immunity operation, the diversity of the antibodies was maintained, and the speed of convergent was improved by using particle swarm evolution equations. Simulation programme and three functions were used to check the effect of the algorithm. The advanced algorithm were compared with clonal selection algorithm and particle swarm algorithm. The results show that this advanced algorithm can converge to the global optimum at a great rate in a given range, the performance of optimization is improved effectively.
基金supported by the Gansu Natural Science Foundation (No.ZS011-A25-016-G).
文摘A new adaptive mutation particle swarm optimizer,which is based on the variance of the population's fitness,is presented in this paper.During the running time,the mutation probability for the current best particle is determined by two factors:the variance of the population's fitness and the current optimal solution.The ability of particle swarm optimization(PSO)algorithm to break away from the local optimum is greatly improved by the mutation.The experimental results show that the new algorithm not only has great advantage of convergence property over genetic algorithm and PSO,but can also avoid the premature convergence problem effectively.
基金the National Natural Science Foundation of China(Nos.62066019 and 61903089)the Natural Science Foundation of Jiangxi Province(Nos.20202BABL202020 and 20202BAB202014)the Graduate Innovation Foundation of Jiangxi University of Science and Technology(Nos.XY2021-S092 and YC2022-S641).
文摘Particle swarm optimization(PSO)is a type of swarm intelligence algorithm that is frequently used to resolve specific global optimization problems due to its rapid convergence and ease of operation.However,PSO still has certain deficiencies,such as a poor trade-off between exploration and exploitation and premature convergence.Hence,this paper proposes a dual-stage hybrid learning particle swarm optimization(DHLPSO).In the algorithm,the iterative process is partitioned into two stages.The learning strategy used at each stage emphasizes exploration and exploitation,respectively.In the first stage,to increase population variety,a Manhattan distance based learning strategy is proposed.In this strategy,each particle chooses the furthest Manhattan distance particle and a better particle for learning.In the second stage,an excellent example learning strategy is adopted to perform local optimization operations on the population,in which each particle learns from the global optimal particle and a better particle.Utilizing the Gaussian mutation strategy,the algorithm’s searchability in particular multimodal functions is significantly enhanced.On benchmark functions from CEC 2013,DHLPSO is evaluated alongside other PSO variants already in existence.The comparison results clearly demonstrate that,compared to other cutting-edge PSO variations,DHLPSO implements highly competitive performance in handling global optimization problems.
文摘分布式低碳能源站(distributed low-carbon energy station,DLCES)能提高能源利用效率和可再生能源消纳率,准确预测DLCES的未来运行状态能保障其安全可靠运行。为此,提出一种基于数据驱动的分布式低碳能源站状态预测方法。首先,分析DLCES结构与运行状态,利用关键状态量和偏移量变化将运行状态划分为正常、恢复、临界及紧急状态;其次,构建深度长短期记忆(long-short term memory,LSTM)模型,并利用改进粒子群算法进行超参数优化,提升预测模型性能;最后,利用测试集数据对柯西变异的粒子群算法(Cauchy mutation particle swarm optimization,CMPSO)和LSTM相结合的模型进行预测仿真,将其与RNN、LSTM及BP神经网络预测结果对比分析。结果表明:CMPSO-LSTM模型能提高预测效果,更具实际意义。