期刊文献+
共找到93,568篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-scale object detection by top-down and bottom-up feature pyramid network 被引量:14
1
作者 ZHAO Baojun ZHAO Boya +2 位作者 TANG Linbo WANG Wenzheng WU Chen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第1期1-12,共12页
While moving ahead with the object detection technology, especially deep neural networks, many related tasks, such as medical application and industrial automation, have achieved great success. However, the detection ... While moving ahead with the object detection technology, especially deep neural networks, many related tasks, such as medical application and industrial automation, have achieved great success. However, the detection of objects with multiple aspect ratios and scales is still a key problem. This paper proposes a top-down and bottom-up feature pyramid network(TDBU-FPN),which combines multi-scale feature representation and anchor generation at multiple aspect ratios. First, in order to build the multi-scale feature map, this paper puts a number of fully convolutional layers after the backbone. Second, to link neighboring feature maps, top-down and bottom-up flows are adopted to introduce context information via top-down flow and supplement suboriginal information via bottom-up flow. The top-down flow refers to the deconvolution procedure, and the bottom-up flow refers to the pooling procedure. Third, the problem of adapting different object aspect ratios is tackled via many anchor shapes with different aspect ratios on each multi-scale feature map. The proposed method is evaluated on the pattern analysis, statistical modeling and computational learning visual object classes(PASCAL VOC)dataset and reaches an accuracy of 79%, which exhibits a 1.8% improvement with a detection speed of 23 fps. 展开更多
关键词 convolutional neural NETWORK (CNN) FEATURE PYRAMID NETWORK (FPN) object detection deconvolution.
下载PDF
Multi-Scale Object Perception with Embedding Textural Space
2
作者 Kewei Wu Zhao Xie Jun Gao 《International Journal of Intelligence Science》 2012年第2期32-39,共8页
This paper mainly focuses on the issues about generic multi-scale object perception for detection or recognition. A novel computational model in visually-feature space is presented for scene & object representatio... This paper mainly focuses on the issues about generic multi-scale object perception for detection or recognition. A novel computational model in visually-feature space is presented for scene & object representation to purse the underlying textural manifold statistically in nonparametric manner. The associative method approximately makes perceptual hierarchy in human-vision biologically coherency in specific quad-tree-pyramid structure, and the appropriate scale-value of different objects can automatically be selected by evaluating from well-defined scale function without any priori knowledge. The sufficient experiments truly demonstrate the effectiveness of scale determination in textural manifold with object localization rapidly. 展开更多
关键词 object PERCEPTION Scale SPACE Textural MANIFOLD Quad-Tree Structure NONPARAMETRIC Estimation
下载PDF
B-PesNet: Smoothly Propagating Semantics for Robust and Reliable Multi-Scale Object Detection for Secure Systems
3
作者 Yunbo Rao Hongyu Mu +4 位作者 Zeyu Yang Weibin Zheng Faxin Wang Jiansu Pu Shaoning Zeng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第9期1039-1054,共16页
Multi-scale object detection is a research hotspot,and it has critical applications in many secure systems.Although the object detection algorithms have constantly been progressing recently,how to perform highly accur... Multi-scale object detection is a research hotspot,and it has critical applications in many secure systems.Although the object detection algorithms have constantly been progressing recently,how to perform highly accurate and reliable multi-class object detection is still a challenging task due to the influence of many factors,such as the deformation and occlusion of the object in the actual scene.The more interference factors,the more complicated the semantic information,so we need a deeper network to extract deep information.However,deep neural networks often suffer from network degradation.To prevent the occurrence of degradation on deep neural networks,we put forth a new model using a newly-designed Pre-ReLU,which inserts a ReLU layer before the convolution layer for the sake of preventing network degradation and ensuring the performance of deep networks.This structure can transfer the semantic information more smoothly from the shallow to the deep layer.However,the deep networks will encounter not only degradation,but also a decline in efficiency.Therefore,to speed up the two-stage detector,we divide the feature map into many groups so as to diminish the number of parameters.Correspondingly,calculation speed has been enhanced,achieving a balance between speed and accuracy.Through mathematical demonstration,a Balanced Loss(BL)is proposed by a balance factor to decrease the weight of the negative sample during the training phase to balance the positives and negatives.Finally,our detector demonstrates rosy results in a range of experiments and gains an mAP of 73.38 on PASCAL VOC2007,which approaches the requirement of many security systems. 展开更多
关键词 object detection Pre-ReLU CNN Balanced loss
下载PDF
YOLO-MFD:Remote Sensing Image Object Detection with Multi-Scale Fusion Dynamic Head
4
作者 Zhongyuan Zhang Wenqiu Zhu 《Computers, Materials & Continua》 SCIE EI 2024年第5期2547-2563,共17页
Remote sensing imagery,due to its high altitude,presents inherent challenges characterized by multiple scales,limited target areas,and intricate backgrounds.These inherent traits often lead to increased miss and false... Remote sensing imagery,due to its high altitude,presents inherent challenges characterized by multiple scales,limited target areas,and intricate backgrounds.These inherent traits often lead to increased miss and false detection rates when applying object recognition algorithms tailored for remote sensing imagery.Additionally,these complexities contribute to inaccuracies in target localization and hinder precise target categorization.This paper addresses these challenges by proposing a solution:The YOLO-MFD model(YOLO-MFD:Remote Sensing Image Object Detection withMulti-scale Fusion Dynamic Head).Before presenting our method,we delve into the prevalent issues faced in remote sensing imagery analysis.Specifically,we emphasize the struggles of existing object recognition algorithms in comprehensively capturing critical image features amidst varying scales and complex backgrounds.To resolve these issues,we introduce a novel approach.First,we propose the implementation of a lightweight multi-scale module called CEF.This module significantly improves the model’s ability to comprehensively capture important image features by merging multi-scale feature information.It effectively addresses the issues of missed detection and mistaken alarms that are common in remote sensing imagery.Second,an additional layer of small target detection heads is added,and a residual link is established with the higher-level feature extraction module in the backbone section.This allows the model to incorporate shallower information,significantly improving the accuracy of target localization in remotely sensed images.Finally,a dynamic head attentionmechanism is introduced.This allows themodel to exhibit greater flexibility and accuracy in recognizing shapes and targets of different sizes.Consequently,the precision of object detection is significantly improved.The trial results show that the YOLO-MFD model shows improvements of 6.3%,3.5%,and 2.5%over the original YOLOv8 model in Precision,map@0.5 and map@0.5:0.95,separately.These results illustrate the clear advantages of the method. 展开更多
关键词 object detection YOLOv8 multi-scale attention mechanism dynamic detection head
下载PDF
MSC-YOLO:Improved YOLOv7 Based on Multi-Scale Spatial Context for Small Object Detection in UAV-View
5
作者 Xiangyan Tang Chengchun Ruan +2 位作者 Xiulai Li Binbin Li Cebin Fu 《Computers, Materials & Continua》 SCIE EI 2024年第4期983-1003,共21页
Accurately identifying small objects in high-resolution aerial images presents a complex and crucial task in thefield of small object detection on unmanned aerial vehicles(UAVs).This task is challenging due to variati... Accurately identifying small objects in high-resolution aerial images presents a complex and crucial task in thefield of small object detection on unmanned aerial vehicles(UAVs).This task is challenging due to variations inUAV flight altitude,differences in object scales,as well as factors like flight speed and motion blur.To enhancethe detection efficacy of small targets in drone aerial imagery,we propose an enhanced You Only Look Onceversion 7(YOLOv7)algorithm based on multi-scale spatial context.We build the MSC-YOLO model,whichincorporates an additional prediction head,denoted as P2,to improve adaptability for small objects.We replaceconventional downsampling with a Spatial-to-Depth Convolutional Combination(CSPDC)module to mitigatethe loss of intricate feature details related to small objects.Furthermore,we propose a Spatial Context Pyramidwith Multi-Scale Attention(SCPMA)module,which captures spatial and channel-dependent features of smalltargets acrossmultiple scales.This module enhances the perception of spatial contextual features and the utilizationof multiscale feature information.On the Visdrone2023 and UAVDT datasets,MSC-YOLO achieves remarkableresults,outperforming the baseline method YOLOv7 by 3.0%in terms ofmean average precision(mAP).The MSCYOLOalgorithm proposed in this paper has demonstrated satisfactory performance in detecting small targets inUAV aerial photography,providing strong support for practical applications. 展开更多
关键词 Small object detection YOLOv7 multi-scale attention spatial context
下载PDF
Modeling effectiveness and identification of multi-scale objects in farmland soils with improved Yee-FDTD methods
6
作者 Yuanhong Li Zuoxi Zhao +2 位作者 Zhi Qiu Yangfan Luo Yuchan Zhu 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2020年第6期150-158,共9页
Finite-Difference Time-Domain(FDTD)is the most popular time-domain approach in computational electromagnetics.Due to the Courant-Friedrich-Levy(CFL)condition and the perfect match layer(PML)boundary precision,FDTD can... Finite-Difference Time-Domain(FDTD)is the most popular time-domain approach in computational electromagnetics.Due to the Courant-Friedrich-Levy(CFL)condition and the perfect match layer(PML)boundary precision,FDTD cannot simulate soil medium whose surface is connected by multiple straight lines or curves(multi-scale)accurately and efficiently,which greatly limits the application of FDTD method to simulate buried objects in soils.Firstly,this study proposed the absorption boundary and adopted two typical perfect matching layers(UPML and CPML)to compare their absorption effects,and then using the three forms of improved Yee-FDTD algorithm,alternating-direction implicit(ADI-FDTD),unconditionally stable(US-FDTD)and hybrid implicit explicit finite time-domain(HIE-FDTD)to divide and contrast the boundary model effects.It showed that the HIE-FDTD was suitable for inversion of multi-scale structure object modeling,while ADI-FDTD and US-FDTD were ideal for single-boundary objects in both uniaxial perfectly matched layer(UMPL)and convolution perfectly matched layer(CPML)finite element space.After that,all the models were tested by computer performance for their simulated efficiency.When simulating single boundary objects,UPML-US-FDTD and ADI-FDTD could achieve the ideal results,and in the boundary inversion of multi-scale objects,HIE-FDTD modeling results and efficiency were the best.Test modeling speeds of CPML-HIE-FDTD were compared with three kinds of waveform sources,Ricker,Blackman-Harris and Gaussian.Finally,under the computer condition in which the CPU was i5-8250,the HIE-FDTD model still had better performance than the traditional Yee-FDTD forward modeling algorithm.For modeling multi-scale objects in farmland soils,the methods used CPML combined with the HIE-FDTD were the most efficient and accurate ways.This study can solve the problem that the traditional FDTD algorithm cannot construct non-mesh objects by utilizing the diversity characteristics of Yee cell elements. 展开更多
关键词 Yee-FDTD multi-scale objects modeling effectiveness Ground Penetrating Radar farmland soils
原文传递
A semi-analytical model for coupled flow in stress-sensitive multi-scale shale reservoirs with fractal characteristics 被引量:2
7
作者 Qian Zhang Wen-Dong Wang +4 位作者 Yu-Liang Su Wei Chen Zheng-Dong Lei Lei Li Yong-Mao Hao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期327-342,共16页
A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes... A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes due to stress sensitivity, which plays a crucial role in controlling pressure propagation and oil flow. This paper proposes a multi-scale coupled flow mathematical model of matrix nanopores, induced fractures, and hydraulic fractures. In this model, the micro-scale effects of shale oil flow in fractal nanopores, fractal induced fracture network, and stress sensitivity of multi-scale media are considered. We solved the model iteratively using Pedrosa transform, semi-analytic Segmented Bessel function, Laplace transform. The results of this model exhibit good agreement with the numerical solution and field production data, confirming the high accuracy of the model. As well, the influence of stress sensitivity on permeability, pressure and production is analyzed. It is shown that the permeability and production decrease significantly when induced fractures are weakly supported. Closed induced fractures can inhibit interporosity flow in the stimulated reservoir volume (SRV). It has been shown in sensitivity analysis that hydraulic fractures are beneficial to early production, and induced fractures in SRV are beneficial to middle production. The model can characterize multi-scale flow characteristics of shale oil, providing theoretical guidance for rapid productivity evaluation. 展开更多
关键词 multi-scale coupled flow Stress sensitivity Shale oil Micro-scale effect Fractal theory
下载PDF
Multi-scale physics-informed neural networks for solving high Reynolds number boundary layer flows based on matched asymptotic expansions 被引量:1
8
作者 Jianlin Huang Rundi Qiu +1 位作者 Jingzhu Wang Yiwei Wang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第2期76-81,共6页
Multi-scale system remains a classical scientific problem in fluid dynamics,biology,etc.In the present study,a scheme of multi-scale Physics-informed neural networks is proposed to solve the boundary layer flow at hig... Multi-scale system remains a classical scientific problem in fluid dynamics,biology,etc.In the present study,a scheme of multi-scale Physics-informed neural networks is proposed to solve the boundary layer flow at high Reynolds numbers without any data.The flow is divided into several regions with different scales based on Prandtl's boundary theory.Different regions are solved with governing equations in different scales.The method of matched asymptotic expansions is used to make the flow field continuously.A flow on a semi infinite flat plate at a high Reynolds number is considered a multi-scale problem because the boundary layer scale is much smaller than the outer flow scale.The results are compared with the reference numerical solutions,which show that the msPINNs can solve the multi-scale problem of the boundary layer in high Reynolds number flows.This scheme can be developed for more multi-scale problems in the future. 展开更多
关键词 Physics-informed neural networks(PINNs) multi-scale Fluid dynamics Boundary layer
下载PDF
A New method for selecting multi-scale road network objects 被引量:1
9
作者 Wang Yanhui 《High Technology Letters》 EI CAS 2011年第4期407-413,共7页
Aimed at solving the problems of road network object selection at any unknown scale, the existing methods on object selection are integrated and extended in this paper, and a new object interpolation method is propose... Aimed at solving the problems of road network object selection at any unknown scale, the existing methods on object selection are integrated and extended in this paper, and a new object interpolation method is proposed, which reflects the inheritable and transferable characteristics of related information among multi-scale representation objects, and takes the attribute effects into account. Then the basic idea, the overall framework and the technical flow of the interpolation are put forward, at the samet:me synthetical weight function of the interpolation method is defined and described. The method and technical strategies of object selection are extended, and the key problems are solved, including the dejign of the objective quantitative and structural selections based on the weight values, the interpolation experiment strategies and technical flows, the result of the test shows that the object interpolation method not only inherits the objects at smaller scales, but also takes the attribute effect into account when deriving objects from larger scales according to the road importance, which is a guarantee to objective selection of the road objects at middle scales. 展开更多
关键词 multi-scale representation object interpolation object selection synthetic weight
下载PDF
MSD-Net: Pneumonia Classification Model Based on Multi-Scale Directional Feature Enhancement
10
作者 Tao Zhou Yujie Guo +3 位作者 Caiyue Peng Yuxia Niu Yunfeng Pan Huiling Lu 《Computers, Materials & Continua》 SCIE EI 2024年第6期4863-4882,共20页
Computer-aided diagnosis of pneumonia based on deep learning is a research hotspot.However,there are some problems that the features of different sizes and different directions are not sufficient when extracting the f... Computer-aided diagnosis of pneumonia based on deep learning is a research hotspot.However,there are some problems that the features of different sizes and different directions are not sufficient when extracting the features in lung X-ray images.A pneumonia classification model based on multi-scale directional feature enhancement MSD-Net is proposed in this paper.The main innovations are as follows:Firstly,the Multi-scale Residual Feature Extraction Module(MRFEM)is designed to effectively extract multi-scale features.The MRFEM uses dilated convolutions with different expansion rates to increase the receptive field and extract multi-scale features effectively.Secondly,the Multi-scale Directional Feature Perception Module(MDFPM)is designed,which uses a three-branch structure of different sizes convolution to transmit direction feature layer by layer,and focuses on the target region to enhance the feature information.Thirdly,the Axial Compression Former Module(ACFM)is designed to perform global calculations to enhance the perception ability of global features in different directions.To verify the effectiveness of the MSD-Net,comparative experiments and ablation experiments are carried out.In the COVID-19 RADIOGRAPHY DATABASE,the Accuracy,Recall,Precision,F1 Score,and Specificity of MSD-Net are 97.76%,95.57%,95.52%,95.52%,and 98.51%,respectively.In the chest X-ray dataset,the Accuracy,Recall,Precision,F1 Score and Specificity of MSD-Net are 97.78%,95.22%,96.49%,95.58%,and 98.11%,respectively.This model improves the accuracy of lung image recognition effectively and provides an important clinical reference to pneumonia Computer-Aided Diagnosis. 展开更多
关键词 PNEUMONIA X-ray image ResNet multi-scale feature direction feature TRANSFORMER
下载PDF
Multi-scale context-aware network for continuous sign language recognition
11
作者 Senhua XUE Liqing GAO +1 位作者 Liang WAN Wei FENG 《虚拟现实与智能硬件(中英文)》 EI 2024年第4期323-337,共15页
The hands and face are the most important parts for expressing sign language morphemes in sign language videos.However,we find that existing Continuous Sign Language Recognition(CSLR)methods lack the mining of hand an... The hands and face are the most important parts for expressing sign language morphemes in sign language videos.However,we find that existing Continuous Sign Language Recognition(CSLR)methods lack the mining of hand and face information in visual backbones or use expensive and time-consuming external extractors to explore this information.In addition,the signs have different lengths,whereas previous CSLR methods typically use a fixed-length window to segment the video to capture sequential features and then perform global temporal modeling,which disturbs the perception of complete signs.In this study,we propose a Multi-Scale Context-Aware network(MSCA-Net)to solve the aforementioned problems.Our MSCA-Net contains two main modules:(1)Multi-Scale Motion Attention(MSMA),which uses the differences among frames to perceive information of the hands and face in multiple spatial scales,replacing the heavy feature extractors;and(2)Multi-Scale Temporal Modeling(MSTM),which explores crucial temporal information in the sign language video from different temporal scales.We conduct extensive experiments using three widely used sign language datasets,i.e.,RWTH-PHOENIX-Weather-2014,RWTH-PHOENIX-Weather-2014T,and CSL-Daily.The proposed MSCA-Net achieve state-of-the-art performance,demonstrating the effectiveness of our approach. 展开更多
关键词 Continuous sign language recognition multi-scale motion attention multi-scale temporal modeling
下载PDF
Transfer learning framework for multi-scale crack type classification with sparse microseismic networks
12
作者 Arnold Yuxuan Xie Bing QLi 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期167-178,共12页
Rock fracture mechanisms can be inferred from moment tensors(MT)inverted from microseismic events.However,MT can only be inverted for events whose waveforms are acquired across a network of sensors.This is limiting fo... Rock fracture mechanisms can be inferred from moment tensors(MT)inverted from microseismic events.However,MT can only be inverted for events whose waveforms are acquired across a network of sensors.This is limiting for underground mines where the microseismic stations often lack azimuthal coverage.Thus,there is a need for a method to invert fracture mechanisms using waveforms acquired by a sparse microseismic network.Here,we present a novel,multi-scale framework to classify whether a rock crack contracts or dilates based on a single waveform.The framework consists of a deep learning model that is initially trained on 2400000+manually labelled field-scale seismic and microseismic waveforms acquired across 692 stations.Transfer learning is then applied to fine-tune the model on 300000+MT-labelled labscale acoustic emission waveforms from 39 individual experiments instrumented with different sensor layouts,loading,and rock types in training.The optimal model achieves over 86%F-score on unseen waveforms at both the lab-and field-scale.This model outperforms existing empirical methods in classification of rock fracture mechanisms monitored by a sparse microseismic network.This facilitates rapid assessment of,and early warning against,various rock engineering hazard such as induced earthquakes and rock bursts. 展开更多
关键词 multi-scale Fracture processes Microseismic Acoustic emission Source mechanism Deep learning
下载PDF
Multi-scale Modeling and Finite Element Analyses of Thermal Conductivity of 3D C/SiC Composites Fabricating by Flexible-Oriented Woven Process
13
作者 Zheng Sun Zhongde Shan +5 位作者 Hao Huang Dong Wang Wang Wang Jiale Liu Chenchen Tan Chaozhong Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期275-288,共14页
Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale pr... Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale proposed in this work are used to simulate the thermal conductivity behaviors of the 3D C/SiC composites.An entirely new process is introduced to weave the preform with three-dimensional orthogonal architecture.The 3D steady-state analysis step is created for assessing the thermal conductivity behaviors of the composites by applying periodic temperature boundary conditions.Three RVE models of cuboid,hexagonal and fiber random distribution are respectively developed to comparatively study the influence of fiber package pattern on the thermal conductivities at the microscale.Besides,the effect of void morphology on the thermal conductivity of the matrix is analyzed by the void/matrix models.The prediction results at the mesoscale correspond closely to the experimental values.The effect of the porosities and fiber volume fractions on the thermal conductivities is also taken into consideration.The multi-scale models mentioned in this paper can be used to predict the thermal conductivity behaviors of other composites with complex structures. 展开更多
关键词 3D C/SiC composites Finite element analyses multi-scale modeling Thermal conductivity
下载PDF
Contour Detection Algorithm forαPhase Structure of TB6 Titanium Alloy fused with Multi-Scale Fretting Features
14
作者 Fei He Yan Dou +1 位作者 Xiaoying Zhang Lele Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第5期499-509,共11页
Aiming at the problems of inaccuracy in detecting theαphase contour of TB6 titanium alloy.By combining computer vision technology with human vision mechanisms,the spatial characteristics of theαphase can be simulate... Aiming at the problems of inaccuracy in detecting theαphase contour of TB6 titanium alloy.By combining computer vision technology with human vision mechanisms,the spatial characteristics of theαphase can be simulated to obtain the contour accurately.Therefore,an algorithm forαphase contour detection of TB6 titanium alloy fused with multi-scale fretting features is proposed.Firstly,through the response of the classical receptive field model based on fretting and the suppression of new non-classical receptive field model based on fretting,the information maps of theαphase contour of the TB6 titanium alloy at different scales are obtained;then the information map of the smallest scale contour is used as a benchmark,the neighborhood is constructed to judge the deviation of other scale contour information,and the corresponding weight value is calculated;finally,Gaussian function is used to weight and fuse the deviation information,and the contour detection result of TB6 titanium alloyαphase is obtained.In the Visual Studio 2013 environment,484 metallographic images with different temperatures,strain rates,and magnifications were tested.The results show that the performance evaluation F value of the proposed algorithm is 0.915,which can effectively improve the accuracy ofαphase contour detection of TB6 titanium alloy. 展开更多
关键词 TB6 titanium alloyαphase multi-scale fretting features Contour detection
下载PDF
Few-shot image recognition based on multi-scale features prototypical network
15
作者 LIU Jiatong DUAN Yong 《High Technology Letters》 EI CAS 2024年第3期280-289,共10页
In order to improve the models capability in expressing features during few-shot learning,a multi-scale features prototypical network(MS-PN)algorithm is proposed.The metric learning algo-rithm is employed to extract i... In order to improve the models capability in expressing features during few-shot learning,a multi-scale features prototypical network(MS-PN)algorithm is proposed.The metric learning algo-rithm is employed to extract image features and project them into a feature space,thus evaluating the similarity between samples based on their relative distances within the metric space.To sufficiently extract feature information from limited sample data and mitigate the impact of constrained data vol-ume,a multi-scale feature extraction network is presented to capture data features at various scales during the process of image feature extraction.Additionally,the position of the prototype is fine-tuned by assigning weights to data points to mitigate the influence of outliers on the experiment.The loss function integrates contrastive loss and label-smoothing to bring similar data points closer and separate dissimilar data points within the metric space.Experimental evaluations are conducted on small-sample datasets mini-ImageNet and CUB200-2011.The method in this paper can achieve higher classification accuracy.Specifically,in the 5-way 1-shot experiment,classification accuracy reaches 50.13%and 66.79%respectively on these two datasets.Moreover,in the 5-way 5-shot ex-periment,accuracy of 66.79%and 85.91%are observed,respectively. 展开更多
关键词 few-shot learning multi-scale feature prototypical network channel attention label-smoothing
下载PDF
Improved multi-scale inverse bottleneck residual network based on triplet parallel attention for apple leaf disease identification
16
作者 Lei Tang Jizheng Yi Xiaoyao Li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期901-922,共22页
Accurate diagnosis of apple leaf diseases is crucial for improving the quality of apple production and promoting the development of the apple industry. However, apple leaf diseases do not differ significantly from ima... Accurate diagnosis of apple leaf diseases is crucial for improving the quality of apple production and promoting the development of the apple industry. However, apple leaf diseases do not differ significantly from image texture and structural information. The difficulties in disease feature extraction in complex backgrounds slow the related research progress. To address the problems, this paper proposes an improved multi-scale inverse bottleneck residual network model based on a triplet parallel attention mechanism, which is built upon ResNet-50, while improving and combining the inception module and ResNext inverse bottleneck blocks, to recognize seven types of apple leaf(including six diseases of alternaria leaf spot, brown spot, grey spot, mosaic, rust, scab, and one healthy). First, the 3×3 convolutions in some of the residual modules are replaced by multi-scale residual convolutions, the convolution kernels of different sizes contained in each branch of the multi-scale convolution are applied to extract feature maps of different sizes, and the outputs of these branches are multi-scale fused by summing to enrich the output features of the images. Second, the global layer-wise dynamic coordinated inverse bottleneck structure is used to reduce the network feature loss. The inverse bottleneck structure makes the image information less lossy when transforming from different dimensional feature spaces. The fusion of multi-scale and layer-wise dynamic coordinated inverse bottlenecks makes the model effectively balances computational efficiency and feature representation capability, and more robust with a combination of horizontal and vertical features in the fine identification of apple leaf diseases. Finally, after each improved module, a triplet parallel attention module is integrated with cross-dimensional interactions among channels through rotations and residual transformations, which improves the parallel search efficiency of important features and the recognition rate of the network with relatively small computational costs while the dimensional dependencies are improved. To verify the validity of the model in this paper, we uniformly enhance apple leaf disease images screened from the public data sets of Plant Village, Baidu Flying Paddle, and the Internet. The final processed image count is 14,000. The ablation study, pre-processing comparison, and method comparison are conducted on the processed datasets. The experimental results demonstrate that the proposed method reaches 98.73% accuracy on the adopted datasets, which is 1.82% higher than the classical ResNet-50 model, and 0.29% better than the apple leaf disease datasets before preprocessing. It also achieves competitive results in apple leaf disease identification compared to some state-ofthe-art methods. 展开更多
关键词 multi-scale module inverse bottleneck structure triplet parallel attention apple leaf disease
下载PDF
Multi-Scale Mixed Attention Tea Shoot Instance Segmentation Model
17
作者 Dongmei Chen Peipei Cao +5 位作者 Lijie Yan Huidong Chen Jia Lin Xin Li Lin Yuan Kaihua Wu 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第2期261-275,共15页
Tea leaf picking is a crucial stage in tea production that directly influences the quality and value of the tea.Traditional tea-picking machines may compromise the quality of the tea leaves.High-quality teas are often... Tea leaf picking is a crucial stage in tea production that directly influences the quality and value of the tea.Traditional tea-picking machines may compromise the quality of the tea leaves.High-quality teas are often handpicked and need more delicate operations in intelligent picking machines.Compared with traditional image processing techniques,deep learning models have stronger feature extraction capabilities,and better generalization and are more suitable for practical tea shoot harvesting.However,current research mostly focuses on shoot detection and cannot directly accomplish end-to-end shoot segmentation tasks.We propose a tea shoot instance segmentation model based on multi-scale mixed attention(Mask2FusionNet)using a dataset from the tea garden in Hangzhou.We further analyzed the characteristics of the tea shoot dataset,where the proportion of small to medium-sized targets is 89.9%.Our algorithm is compared with several mainstream object segmentation algorithms,and the results demonstrate that our model achieves an accuracy of 82%in recognizing the tea shoots,showing a better performance compared to other models.Through ablation experiments,we found that ResNet50,PointRend strategy,and the Feature Pyramid Network(FPN)architecture can improve performance by 1.6%,1.4%,and 2.4%,respectively.These experiments demonstrated that our proposed multi-scale and point selection strategy optimizes the feature extraction capability for overlapping small targets.The results indicate that the proposed Mask2FusionNet model can perform the shoot segmentation in unstructured environments,realizing the individual distinction of tea shoots,and complete extraction of the shoot edge contours with a segmentation accuracy of 82.0%.The research results can provide algorithmic support for the segmentation and intelligent harvesting of premium tea shoots at different scales. 展开更多
关键词 Tea shoots attention mechanism multi-scale feature extraction instance segmentation deep learning
下载PDF
A multi-scale second-order autoregressive recursive filter approach for the sea ice concentration analysis
18
作者 Lu Yang Xuefeng Zhang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第3期115-126,共12页
To effectively extract multi-scale information from observation data and improve computational efficiency,a multi-scale second-order autoregressive recursive filter(MSRF)method is designed.The second-order autoregress... To effectively extract multi-scale information from observation data and improve computational efficiency,a multi-scale second-order autoregressive recursive filter(MSRF)method is designed.The second-order autoregressive filter used in this study has been attempted to replace the traditional first-order recursive filter used in spatial multi-scale recursive filter(SMRF)method.The experimental results indicate that the MSRF scheme successfully extracts various scale information resolved by observations.Moreover,compared with the SMRF scheme,the MSRF scheme improves computational accuracy and efficiency to some extent.The MSRF scheme can not only propagate to a longer distance without the attenuation of innovation,but also reduce the mean absolute deviation between the reconstructed sea ice concentration results and observations reduced by about 3.2%compared to the SMRF scheme.On the other hand,compared with traditional first-order recursive filters using in the SMRF scheme that multiple filters are executed,the MSRF scheme only needs to perform two filter processes in one iteration,greatly improving filtering efficiency.In the two-dimensional experiment of sea ice concentration,the calculation time of the MSRF scheme is only 1/7 of that of SMRF scheme.This means that the MSRF scheme can achieve better performance with less computational cost,which is of great significance for further application in real-time ocean or sea ice data assimilation systems in the future. 展开更多
关键词 second-order auto-regressive filter multi-scale recursive filter sea ice concentration three-dimensional variational data assimilation
下载PDF
Multi-Scale Design and Optimization of Composite Material Structure for Heavy-Duty Truck Protection Device
19
作者 Yanhui Zhang Lianhua Ma +3 位作者 Hailiang Su Jirong Qin Zhining Chen Kaibiao Deng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1961-1980,共20页
In this paper,to present a lightweight-developed front underrun protection device(FUPD)for heavy-duty trucks,plain weave carbon fiber reinforced plastic(CFRP)is used instead of the original high-strength steel.First,t... In this paper,to present a lightweight-developed front underrun protection device(FUPD)for heavy-duty trucks,plain weave carbon fiber reinforced plastic(CFRP)is used instead of the original high-strength steel.First,the mechanical and structural properties of plain carbon fiber composite anti-collision beams are comparatively analyzed from a multi-scale perspective.For studying the design capability of carbon fiber composite materials,we investigate the effects of TC-33 carbon fiber diameter(D),fiber yarn width(W)and height(H),and fiber yarn density(N)on the front underrun protective beam of carbon fiber compositematerials.Based on the investigation,a material-structure matching strategy suitable for the front underrun protective beam of heavy-duty trucks is proposed.Next,the composite material structure is optimized by applying size optimization and stack sequence optimization methods to obtain the higher performance carbon fiber composite front underrun protection beam of commercial vehicles.The results show that the fiber yarn height(H)has the greatest influence on the protective beam,and theH1matching scheme for the front underrun protective beamwith a carbon fiber composite structure exhibits superior performance.The proposed method achieves a weight reduction of 55.21% while still meeting regulatory requirements,which demonstrates its remarkable weight reduction effect. 展开更多
关键词 Structural optimization front underrun protection device carbon fiber reinforced plastic multi-scale model lightweight design
下载PDF
Disparity estimation for multi-scale multi-sensor fusion
20
作者 SUN Guoliang PEI Shanshan +2 位作者 LONG Qian ZHENG Sifa YANG Rui 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期259-274,共16页
The perception module of advanced driver assistance systems plays a vital role.Perception schemes often use a single sensor for data processing and environmental perception or adopt the information processing results ... The perception module of advanced driver assistance systems plays a vital role.Perception schemes often use a single sensor for data processing and environmental perception or adopt the information processing results of various sensors for the fusion of the detection layer.This paper proposes a multi-scale and multi-sensor data fusion strategy in the front end of perception and accomplishes a multi-sensor function disparity map generation scheme.A binocular stereo vision sensor composed of two cameras and a light deterction and ranging(LiDAR)sensor is used to jointly perceive the environment,and a multi-scale fusion scheme is employed to improve the accuracy of the disparity map.This solution not only has the advantages of dense perception of binocular stereo vision sensors but also considers the perception accuracy of LiDAR sensors.Experiments demonstrate that the multi-scale multi-sensor scheme proposed in this paper significantly improves disparity map estimation. 展开更多
关键词 stereo vision light deterction and ranging(LiDAR) multi-sensor fusion multi-scale fusion disparity map
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部