Thermal rectification is an exotic thermal transport phenomenon,an analog to electrical rectification,in which heat flux along one direction is larger than that in the other direction and is of significant interest in...Thermal rectification is an exotic thermal transport phenomenon,an analog to electrical rectification,in which heat flux along one direction is larger than that in the other direction and is of significant interest in electronic device applications.However,achieving high thermal rectification efficiency or rectification ratio is still a scientific challenge.In this work,we performed a systematic simulation of thermal rectification by considering both efforts of thermal conductivity asymmetry and geometrical asymmetry in a multi-segment thermal rectifier.It is found that the high asymmetry of thermal conductivity and the asymmetry of the geometric structure of multi-segment thermal rectifiers can significantly enhance the thermal rectification,and the combination of both thermal conductivity asymmetry and geometrical asymmetry can further improve thermal rectification efficiency.This work suggests a possible way for improving thermal rectification devices by asymmetry engineering.展开更多
This paper presents an enhanced version of the standard shooting method that enables problems with two unknown parameters to be solved.A novel approach is applied to the analysis of the natural vibrations of Euler-Ber...This paper presents an enhanced version of the standard shooting method that enables problems with two unknown parameters to be solved.A novel approach is applied to the analysis of the natural vibrations of Euler-Bernoulli beams.The proposed algorithm,named as two-parameter multiple shooting method,is a new powerful numerical tool for calculating the natural frequencies and modes of multi-segment prismatic and non-prismatic beams with different boundary conditions.The impact of the axial force and additional point masses is also taken into account.Due to the fact that the method is based directly on the fourth-order ordinary differential equation,the structures do not have to be divided into many small elements to obtain an accurate enough solution,even though the geometry is very complex.To verify the proposed method,three different examples are considered,i.e.,a three-segment non-prismatic beam,a prismatic column subject to non-uniformly distributed compressive loads,and a two-segment beam with an additional point mass.Numerical analyses are carried out with the software MATHEMATICA.The results are compared with the solutions computed by the commercial finite element program SOFiSTiK.Good agreement is achieved,which confirms the correctness and high effectiveness of the formulated algorithm.展开更多
A vortex domain wall's(VW) magnetic racetrack memory's high performance depends on VW structural stability,high speed, low power consumption and high storage density. In this study, these critical parameters w...A vortex domain wall's(VW) magnetic racetrack memory's high performance depends on VW structural stability,high speed, low power consumption and high storage density. In this study, these critical parameters were investigated in magnetic multi-segmented nanowires using micromagnetic simulation. Thus, an offset magnetic nanowire with a junction at the center was proposed for this purpose. This junction was implemented by shifting one portion of the magnetic nanowire horizontally in the x-direction(l) and vertically(d) in the y-direction. The VW structure became stable by manipulating magnetic properties, such as magnetic saturation(M_(4)) and magnetic anisotropy energy(K_(u)). In this case, increasing the values of M_(4) ≥ 800 kA/m keeps the VW structure stable during its dynamics and pinning and depinning in offset nanowires,which contributes to maintenance of the storage memory's lifetime for a longer period. It was also found that the VW moved with a speed of 500 m/s, which is desirable for VW racetrack memory devices. Moreover, it was revealed that the VW velocity could be controlled by adjusting the offset area dimensions(l and d), which helps to drive the VW by using low current densities and reducing the thermal-magnetic spin fluctuations. Further, the depinning current density of the VW(J_(d)) over the offset area increases as d increases and l decreases. In addition, magnetic properties, such as the M_(4) and K_(u),can affect the depinning process of the VW through the offset area. For high storage density, magnetic nanowires(multisegmented) with four junctions were designed. In total, six states were found with high VW stability, which means three bits per cell. Herein, we observed that the depinning current density(J_(d)) for moving the VW from one state to another was highly influenced by the offset area geometry(l and d) and the material's magnetic properties, such as the M_(4) and K_(u).展开更多
Complex product development will inevitably face the design planning of the multi-coupled activities, and overlapping these activities could potentially reduce product development time, but there is a risk of the addi...Complex product development will inevitably face the design planning of the multi-coupled activities, and overlapping these activities could potentially reduce product development time, but there is a risk of the additional cost. Although the downstream task information dependence to the upstream task is already considered in the current researches, but the design process overall iteration caused by the information interdependence between activities is hardly discussed; especially the impact on the design process' overall iteration from the valid information accumulation process. Secondly, most studies only focus on the single overlapping process of two activities, rarely take multi-segment and multi-ply overlapping process of multi coupled activities into account; especially the inherent link between product development time and cost which originates from the overlapping process of multi coupled activities. For the purpose of solving the above problems, as to the insufficiency of the accumulated valid information in overlapping process, the function of the valid information evolution (VIE) degree is constructed. Stochastic process theory is used to describe the design information exchange and the valid information accumulation in the overlapping segment, and then the planning models of the single overlapping segment are built. On these bases, by analyzing overlapping processes and overlapping features of multi-coupling activities, multi-segment and multi-ply overlapping planning models are built; by sorting overlapping processes and analyzing the construction of these planning models, two conclusions are obtained: (1) As to multi-segment and multi-ply overlapping of multi coupled activities, the total decrement of the task set development time is the sum of the time decrement caused by basic overlapping segments, and minus the sum of the time increment caused by multiple overlapping segments; (2) the total increment of development cost is the sum of the cost increment caused by all overlapping process. And then, based on overlapping degree analysis of these planning models, by the V1E degree function, the four lemmas theory proofs are represented, and two propositions are finally proved: (1) The multi-ply overlapping of the multi coupled activities will weaken the basic overlapping effect on the development cycle time reduction (2) Overlapping the multi coupled activities will decrease product development cycle, but increase product development cost. And there is trade-off between development time and cost. And so, two methods are given to slacken and eliminate multi-ply overlapping effects. At last, an example about a vehicle upper subsystem design illustrates the application of the proposed models; compared with a sequential execution pattern, the decreasing of development cycle (22%) and the increasing of development cost (3%) show the validity of the method in the example The proposed research not only lays a theoretical foundation for correctly planning complex product development process, but also provides specific and effective operation methods for overlapping multi coupled activities.展开更多
Through the analysis to the DDoS(distributed denial of service) attack, it will conclude that at different time segments, the arrive rate of normal SYN (Synchronization) package are similar, while the abnormal pac...Through the analysis to the DDoS(distributed denial of service) attack, it will conclude that at different time segments, the arrive rate of normal SYN (Synchronization) package are similar, while the abnormal packages are different with the normal ones. Toward this situation a DDoS defense algorithm based on multi-segment timeout technology is presented, more than one timeout segment are set to control the net flow. Experiment results show that in the case of little flow, multi-segment timeout has the ability dynamic defense, so the system performance is improved and the system has high response rate.展开更多
A novel flat-flat resonator consisting of two crystals(Nd:YAG + Nd:YVO4) is established for power scaling in a diode-end-pumped solid-state laser. We systematically compare laser characteristics between multi-seg...A novel flat-flat resonator consisting of two crystals(Nd:YAG + Nd:YVO4) is established for power scaling in a diode-end-pumped solid-state laser. We systematically compare laser characteristics between multi-segmented(Nd:YAG + Nd:YVO4) and conventional composite(Nd:YAG + Nd:YAG) crystals to demonstrate the feasibility of spectral line matching for output power scale-up in end-pumped lasers. A maximum continuous-wave output power of 79.2 W is reported at 1064 nm, with Mx2= 4.82, My2= 5.48, and a pumping power of 136 W in the multi-segmented crystals(Nd:YAG + Nd:YVO4). Compared to conventional composite crystals(Nd:YAG + Nd:YAG), the optical-optical conversion efficiency of multi-segmented crystals(Nd:YAG + Nd:YVO4) from 808 nm to 1064 nm is enhanced from 30% to 58.8%,while the laser output sensitivity as affected by the diode-laser temperature is reduced from 55% to 9%.展开更多
Objective To evaluate the effect of double tractors swing microendoscopic discectomy technique in multisegmental lumbar disc herniation.Methods From December 2006 to November 2009,153 patients with multisegmental lumb...Objective To evaluate the effect of double tractors swing microendoscopic discectomy technique in multisegmental lumbar disc herniation.Methods From December 2006 to November 2009,153 patients with multisegmental lumbar disc herniation展开更多
This paper presents the combustion characteristics in hybrid rocket motors with multisegmented grain through three-dimensional numerical simulations.Multi-segmented grain is composed of several thin grains with two or...This paper presents the combustion characteristics in hybrid rocket motors with multisegmented grain through three-dimensional numerical simulations.Multi-segmented grain is composed of several thin grains with two or more ports.The numerical model consists of Navier-Stokes equations with turbulence,solid fuel pyrolysis,chemical reactions,a fluid–solid coupling model and a regression rate model.The simulations adopt 90%Hydrogen Peroxide(HP)and PolyEthylene(PE)as the propellant combination.The effects of the rotation,port number,fuel grain segment number and mid-chamber length on the flow field and combustion performances are analyzed.The results indicate that the multi-segmented grain configuration can strengthen the flow field,and the regression rate and combustion efficiency are enhanced.Take the cases with two grain segments and three ports for example,the regression rate is increased by 32.4%-45.1%and the combustion efficiency increases by 6%-8.6%in different rotation angles.展开更多
The objective of maintaining the cleanliness of the multi-segment disk amplifier in Shenguang-II(SG-II) is to reduce laser-induced damage for optics. The flow field of clean gas, which is used for the transportation o...The objective of maintaining the cleanliness of the multi-segment disk amplifier in Shenguang-II(SG-II) is to reduce laser-induced damage for optics. The flow field of clean gas, which is used for the transportation of contaminant particles,is a key factor affecting the cleanliness level in the multi-segment disk amplifier. We developed a gas–solid coupling and three-dimensional flow numerical simulation model. The three-dimensional and two-phase flow model is verified by the flow-field smog experiment and the particle concentration measurement experiment with the 130-disk amplifier in SG-II. By optimizing the boundary conditions with the same flow rate, the multi-inlet vector flow scheme can not only effectively reduce the purging time, but also prevent the reverse diffusion of contaminant particles in the multi-segment disk amplifier and the deposition of contaminant particles on the surface of the Nd:glass.展开更多
Based on the mechanism of chromatographic retention (the relationship between the retention of solute and the mobile phase conditions) and method of resolution map, several methods of optimizing multi-segment linear g...Based on the mechanism of chromatographic retention (the relationship between the retention of solute and the mobile phase conditions) and method of resolution map, several methods of optimizing multi-segment linear gradient elution conditions were proposed according to the different separation requirements of various samples. These methods were verified using literature data. Moreover, the advantages and disadvantages of these methods were compared. It was proved that the third method is a fast optimization method which is capable of separating all the components with relatively high resolution.展开更多
A 14-bit low power self-timed differential successive approximation(SAR) ADC with an on-chip multisegment bandgap reference(BGR) is described.An on-chip multi-segment BGR,which has a temperature coefficient of 1.3...A 14-bit low power self-timed differential successive approximation(SAR) ADC with an on-chip multisegment bandgap reference(BGR) is described.An on-chip multi-segment BGR,which has a temperature coefficient of 1.3 ppm/℃and a thermal drift of about 100μV over the temperature range of -40 to 120℃is implemented to provide a high precision reference voltage for the SAR ADC.The Gray code form is utilized instead of binary form mode control to reduce substrate noise and enhance the linearity of the whole system.Self-timed bit-cycling is adopted to enhance the time efficiency.The 14-bit ADC was fabricated in a TSMC 0.13μm CMOS process. With the on-chip BGR,the SAR ADC achieves an SNDR of 81.2 dB(13.2 ENOB) and an SFDR of 85.2 dB with a conversion rate of 2 MS/s at room temperature and can keep an ENOB of more than 12 bits at a conversion rate of 2 MS/s over the temperature range from -40 to 120℃.展开更多
针对由于血管类间具有强相似性造成的动静脉错误分类问题,提出了一种新的融合上下文信息的多尺度视网膜动静脉分类网络(multi-scale retinal artery and vein classification network,MCFNet),该网络使用多尺度特征(multi-scale feature...针对由于血管类间具有强相似性造成的动静脉错误分类问题,提出了一种新的融合上下文信息的多尺度视网膜动静脉分类网络(multi-scale retinal artery and vein classification network,MCFNet),该网络使用多尺度特征(multi-scale feature,MSF)提取模块及高效的全局上下文信息融合(efficient global contextual information aggregation,EGCA)模块结合U型分割网络进行动静脉分类,抑制了倾向于背景的特征并增强了血管的边缘、交点和末端特征,解决了段内动静脉错误分类问题。此外,在U型网络的解码器部分加入3层深度监督,使浅层信息得到充分训练,避免梯度消失,优化训练过程。在2个公开的眼底图像数据集(DRIVE-AV,LES-AV)上,与3种现有网络进行方法对比,该模型的F1评分分别提高了2.86、1.92、0.81个百分点,灵敏度分别提高了4.27、2.43、1.21个百分点,结果表明所提出的模型能够很好地解决动静脉分类错误的问题。展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.12274355)Xiamen University Malaysia Research Fund(Grant Nos.XMUMRF/2022C9/IORI/003 and XMUMRF/2022-C10/IORI/004)。
文摘Thermal rectification is an exotic thermal transport phenomenon,an analog to electrical rectification,in which heat flux along one direction is larger than that in the other direction and is of significant interest in electronic device applications.However,achieving high thermal rectification efficiency or rectification ratio is still a scientific challenge.In this work,we performed a systematic simulation of thermal rectification by considering both efforts of thermal conductivity asymmetry and geometrical asymmetry in a multi-segment thermal rectifier.It is found that the high asymmetry of thermal conductivity and the asymmetry of the geometric structure of multi-segment thermal rectifiers can significantly enhance the thermal rectification,and the combination of both thermal conductivity asymmetry and geometrical asymmetry can further improve thermal rectification efficiency.This work suggests a possible way for improving thermal rectification devices by asymmetry engineering.
文摘This paper presents an enhanced version of the standard shooting method that enables problems with two unknown parameters to be solved.A novel approach is applied to the analysis of the natural vibrations of Euler-Bernoulli beams.The proposed algorithm,named as two-parameter multiple shooting method,is a new powerful numerical tool for calculating the natural frequencies and modes of multi-segment prismatic and non-prismatic beams with different boundary conditions.The impact of the axial force and additional point masses is also taken into account.Due to the fact that the method is based directly on the fourth-order ordinary differential equation,the structures do not have to be divided into many small elements to obtain an accurate enough solution,even though the geometry is very complex.To verify the proposed method,three different examples are considered,i.e.,a three-segment non-prismatic beam,a prismatic column subject to non-uniformly distributed compressive loads,and a two-segment beam with an additional point mass.Numerical analyses are carried out with the software MATHEMATICA.The results are compared with the solutions computed by the commercial finite element program SOFiSTiK.Good agreement is achieved,which confirms the correctness and high effectiveness of the formulated algorithm.
文摘A vortex domain wall's(VW) magnetic racetrack memory's high performance depends on VW structural stability,high speed, low power consumption and high storage density. In this study, these critical parameters were investigated in magnetic multi-segmented nanowires using micromagnetic simulation. Thus, an offset magnetic nanowire with a junction at the center was proposed for this purpose. This junction was implemented by shifting one portion of the magnetic nanowire horizontally in the x-direction(l) and vertically(d) in the y-direction. The VW structure became stable by manipulating magnetic properties, such as magnetic saturation(M_(4)) and magnetic anisotropy energy(K_(u)). In this case, increasing the values of M_(4) ≥ 800 kA/m keeps the VW structure stable during its dynamics and pinning and depinning in offset nanowires,which contributes to maintenance of the storage memory's lifetime for a longer period. It was also found that the VW moved with a speed of 500 m/s, which is desirable for VW racetrack memory devices. Moreover, it was revealed that the VW velocity could be controlled by adjusting the offset area dimensions(l and d), which helps to drive the VW by using low current densities and reducing the thermal-magnetic spin fluctuations. Further, the depinning current density of the VW(J_(d)) over the offset area increases as d increases and l decreases. In addition, magnetic properties, such as the M_(4) and K_(u),can affect the depinning process of the VW through the offset area. For high storage density, magnetic nanowires(multisegmented) with four junctions were designed. In total, six states were found with high VW stability, which means three bits per cell. Herein, we observed that the depinning current density(J_(d)) for moving the VW from one state to another was highly influenced by the offset area geometry(l and d) and the material's magnetic properties, such as the M_(4) and K_(u).
基金sponsored by Jiangsu Provincial Colleges and Universities Natural Science Foundation of China (Grant No.08KJD410001)Humanities and Social Sciences Planning Fund of Ministry of Education of China (Grant No. 12YJAZH151)Humanities and Social Sciences Youth Fund of Ministry of Education of China (Grant No. 12YJCZH209)
文摘Complex product development will inevitably face the design planning of the multi-coupled activities, and overlapping these activities could potentially reduce product development time, but there is a risk of the additional cost. Although the downstream task information dependence to the upstream task is already considered in the current researches, but the design process overall iteration caused by the information interdependence between activities is hardly discussed; especially the impact on the design process' overall iteration from the valid information accumulation process. Secondly, most studies only focus on the single overlapping process of two activities, rarely take multi-segment and multi-ply overlapping process of multi coupled activities into account; especially the inherent link between product development time and cost which originates from the overlapping process of multi coupled activities. For the purpose of solving the above problems, as to the insufficiency of the accumulated valid information in overlapping process, the function of the valid information evolution (VIE) degree is constructed. Stochastic process theory is used to describe the design information exchange and the valid information accumulation in the overlapping segment, and then the planning models of the single overlapping segment are built. On these bases, by analyzing overlapping processes and overlapping features of multi-coupling activities, multi-segment and multi-ply overlapping planning models are built; by sorting overlapping processes and analyzing the construction of these planning models, two conclusions are obtained: (1) As to multi-segment and multi-ply overlapping of multi coupled activities, the total decrement of the task set development time is the sum of the time decrement caused by basic overlapping segments, and minus the sum of the time increment caused by multiple overlapping segments; (2) the total increment of development cost is the sum of the cost increment caused by all overlapping process. And then, based on overlapping degree analysis of these planning models, by the V1E degree function, the four lemmas theory proofs are represented, and two propositions are finally proved: (1) The multi-ply overlapping of the multi coupled activities will weaken the basic overlapping effect on the development cycle time reduction (2) Overlapping the multi coupled activities will decrease product development cycle, but increase product development cost. And there is trade-off between development time and cost. And so, two methods are given to slacken and eliminate multi-ply overlapping effects. At last, an example about a vehicle upper subsystem design illustrates the application of the proposed models; compared with a sequential execution pattern, the decreasing of development cycle (22%) and the increasing of development cost (3%) show the validity of the method in the example The proposed research not only lays a theoretical foundation for correctly planning complex product development process, but also provides specific and effective operation methods for overlapping multi coupled activities.
基金Supported by the Natural Science Foundation ofHebei Province (F2004000133)
文摘Through the analysis to the DDoS(distributed denial of service) attack, it will conclude that at different time segments, the arrive rate of normal SYN (Synchronization) package are similar, while the abnormal packages are different with the normal ones. Toward this situation a DDoS defense algorithm based on multi-segment timeout technology is presented, more than one timeout segment are set to control the net flow. Experiment results show that in the case of little flow, multi-segment timeout has the ability dynamic defense, so the system performance is improved and the system has high response rate.
基金Project supported by the National Defense Pre-Research Foundation of China(Grant No.9140A020105)
文摘A novel flat-flat resonator consisting of two crystals(Nd:YAG + Nd:YVO4) is established for power scaling in a diode-end-pumped solid-state laser. We systematically compare laser characteristics between multi-segmented(Nd:YAG + Nd:YVO4) and conventional composite(Nd:YAG + Nd:YAG) crystals to demonstrate the feasibility of spectral line matching for output power scale-up in end-pumped lasers. A maximum continuous-wave output power of 79.2 W is reported at 1064 nm, with Mx2= 4.82, My2= 5.48, and a pumping power of 136 W in the multi-segmented crystals(Nd:YAG + Nd:YVO4). Compared to conventional composite crystals(Nd:YAG + Nd:YAG), the optical-optical conversion efficiency of multi-segmented crystals(Nd:YAG + Nd:YVO4) from 808 nm to 1064 nm is enhanced from 30% to 58.8%,while the laser output sensitivity as affected by the diode-laser temperature is reduced from 55% to 9%.
文摘Objective To evaluate the effect of double tractors swing microendoscopic discectomy technique in multisegmental lumbar disc herniation.Methods From December 2006 to November 2009,153 patients with multisegmental lumbar disc herniation
文摘This paper presents the combustion characteristics in hybrid rocket motors with multisegmented grain through three-dimensional numerical simulations.Multi-segmented grain is composed of several thin grains with two or more ports.The numerical model consists of Navier-Stokes equations with turbulence,solid fuel pyrolysis,chemical reactions,a fluid–solid coupling model and a regression rate model.The simulations adopt 90%Hydrogen Peroxide(HP)and PolyEthylene(PE)as the propellant combination.The effects of the rotation,port number,fuel grain segment number and mid-chamber length on the flow field and combustion performances are analyzed.The results indicate that the multi-segmented grain configuration can strengthen the flow field,and the regression rate and combustion efficiency are enhanced.Take the cases with two grain segments and three ports for example,the regression rate is increased by 32.4%-45.1%and the combustion efficiency increases by 6%-8.6%in different rotation angles.
基金supported by the National Natural Science Foundation of China (Grant No. 61505228)
文摘The objective of maintaining the cleanliness of the multi-segment disk amplifier in Shenguang-II(SG-II) is to reduce laser-induced damage for optics. The flow field of clean gas, which is used for the transportation of contaminant particles,is a key factor affecting the cleanliness level in the multi-segment disk amplifier. We developed a gas–solid coupling and three-dimensional flow numerical simulation model. The three-dimensional and two-phase flow model is verified by the flow-field smog experiment and the particle concentration measurement experiment with the 130-disk amplifier in SG-II. By optimizing the boundary conditions with the same flow rate, the multi-inlet vector flow scheme can not only effectively reduce the purging time, but also prevent the reverse diffusion of contaminant particles in the multi-segment disk amplifier and the deposition of contaminant particles on the surface of the Nd:glass.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 20175029).
文摘Based on the mechanism of chromatographic retention (the relationship between the retention of solute and the mobile phase conditions) and method of resolution map, several methods of optimizing multi-segment linear gradient elution conditions were proposed according to the different separation requirements of various samples. These methods were verified using literature data. Moreover, the advantages and disadvantages of these methods were compared. It was proved that the third method is a fast optimization method which is capable of separating all the components with relatively high resolution.
文摘A 14-bit low power self-timed differential successive approximation(SAR) ADC with an on-chip multisegment bandgap reference(BGR) is described.An on-chip multi-segment BGR,which has a temperature coefficient of 1.3 ppm/℃and a thermal drift of about 100μV over the temperature range of -40 to 120℃is implemented to provide a high precision reference voltage for the SAR ADC.The Gray code form is utilized instead of binary form mode control to reduce substrate noise and enhance the linearity of the whole system.Self-timed bit-cycling is adopted to enhance the time efficiency.The 14-bit ADC was fabricated in a TSMC 0.13μm CMOS process. With the on-chip BGR,the SAR ADC achieves an SNDR of 81.2 dB(13.2 ENOB) and an SFDR of 85.2 dB with a conversion rate of 2 MS/s at room temperature and can keep an ENOB of more than 12 bits at a conversion rate of 2 MS/s over the temperature range from -40 to 120℃.
文摘针对由于血管类间具有强相似性造成的动静脉错误分类问题,提出了一种新的融合上下文信息的多尺度视网膜动静脉分类网络(multi-scale retinal artery and vein classification network,MCFNet),该网络使用多尺度特征(multi-scale feature,MSF)提取模块及高效的全局上下文信息融合(efficient global contextual information aggregation,EGCA)模块结合U型分割网络进行动静脉分类,抑制了倾向于背景的特征并增强了血管的边缘、交点和末端特征,解决了段内动静脉错误分类问题。此外,在U型网络的解码器部分加入3层深度监督,使浅层信息得到充分训练,避免梯度消失,优化训练过程。在2个公开的眼底图像数据集(DRIVE-AV,LES-AV)上,与3种现有网络进行方法对比,该模型的F1评分分别提高了2.86、1.92、0.81个百分点,灵敏度分别提高了4.27、2.43、1.21个百分点,结果表明所提出的模型能够很好地解决动静脉分类错误的问题。
文摘针对现有方法在腹部中小器官图像分割性能方面存在的不足,提出一种基于局部和全局并行编码的网络模型用于腹部多器官图像分割.首先,设计一种提取多尺度特征信息的局部编码分支;其次,全局特征编码分支采用分块Transformer,通过块内Transformer和块间Transformer的组合,既捕获了全局的长距离依赖信息又降低了计算量;再次,设计特征融合模块,以融合来自两条编码分支的上下文信息;最后,设计解码模块,实现全局信息与局部上下文信息的交互,更好地补偿解码阶段的信息损失.在Synapse多器官CT数据集上进行实验,与目前9种先进方法相比,在平均Dice相似系数(DSC)和Hausdorff距离(HD)指标上都达到了最佳性能,分别为83.10%和17.80 mm.