The traditional open pit mine slope deformation monitoring system can not use the monitoring information coming from many monitoring points at the same time, can only using the monitoring data coming from a key monito...The traditional open pit mine slope deformation monitoring system can not use the monitoring information coming from many monitoring points at the same time, can only using the monitoring data coming from a key monitoring point,and that is to say it can only handle one-dimensional time series.Given this shortage in the monitoring, the multi-sensor information fusion in the state estimation techniques would be intro- duced to the slope deformation monitoring system,and by the dynamic characteristics of deformation slope,the open pit slope would be regarded as a dynamic goal,the condi- tion monitoring of which would be regarded as a dynamic target tracking.Distributed In- formation fusion technology with feedback was used to process the monitoring data and on this basis Klman filtering algorithms was introduced,and the simulation examples was used to prove its effectivenes.展开更多
A condition monitoring method of deep-hole drilling based on multi-sensor information fusion is discussed. The signal of vibration and cutting force are collected when the condition of deep-hole drilling on stainless ...A condition monitoring method of deep-hole drilling based on multi-sensor information fusion is discussed. The signal of vibration and cutting force are collected when the condition of deep-hole drilling on stainless steel 0Cr17Ni4Cu4Nb is normal or abnormal. Four eigenvectors are extracted on time-domain and frequency-domain analysis of the signals. Then the four eigenvectors are combined and sent to neural networks to dispose. The fusion results indicate that multi-sensor information fusion is superior to single-sensor information, and that cutting force signal can reflect the condition of cutting tool better than vibration signal.展开更多
For existing indoor localization algorithm has low accuracy, high cost in deployment and maintenance, lack of robustness, and low sensor utilization, this paper proposes a particle filter algorithm based on multi-sens...For existing indoor localization algorithm has low accuracy, high cost in deployment and maintenance, lack of robustness, and low sensor utilization, this paper proposes a particle filter algorithm based on multi-sensor fusion. The pedestrian’s localization in indoor environment is described as dynamic system state estimation problem. The algorithm combines the smart mobile terminal with indoor localization, and filters the result of localization with the particle filter. In this paper, a dynamic interval particle filter algorithm based on pedestrian dead reckoning (PDR) information and RSSI localization information have been used to improve the filtering precision and the stability. Moreover, the localization results will be uploaded to the server in time, and the location fingerprint database will be built incrementally, which can adapt the dynamic changes of the indoor environment. Experimental results show that the algorithm based on multi-sensor improves the localization accuracy and robustness compared with the location algorithm based on Wi-Fi.展开更多
Aiming at the problem of incomplete information and uncertainties in the diagnosis of complex system by using single parameter, a new method of multi-sensor information fusion fault diagnosis based on BP neural networ...Aiming at the problem of incomplete information and uncertainties in the diagnosis of complex system by using single parameter, a new method of multi-sensor information fusion fault diagnosis based on BP neural network and D-S evidence theory is proposed. In order to simplify the structure of BP neural network, two parallel BP neural networks are used to diagnose the fault data at first; and then, using the evidence theory to fuse the local diagnostic results, the accurate inference of the inaccurate information is realized, and the accurate diagnosis resuh is obtained. The method is applied to the fault diagnosis of the hydraulic driven servo system (HDSS) in a certain type of rocket launcher, which realizes the fault location and diagnosis of the main components of the hydraulic driven servo system, and effectively improves the reliability of the system.展开更多
In order to improve the ability of a bionic quadruped robot to percept the location of obstacles in a complex and dynamic environment, the information fusion between an ultrasonic sensor and a binocular sensor was stu...In order to improve the ability of a bionic quadruped robot to percept the location of obstacles in a complex and dynamic environment, the information fusion between an ultrasonic sensor and a binocular sensor was studied under the condition that the robot moves in the Walk gait on a structured road. Firstly, the distance information of obstacles from these two sensors was separately processed by the Kalman filter algorithm, which largely reduced the noise interference. After that, we obtained two groups of estimated distance values from the robot to the obstacle and a variance of the estimation value. Additionally, a fusion of the estimation values and the variances was achieved based on the STF fusion algorithm. Finally, a simulation was performed to show that the curve of a real value was tracked well by that of the estimation value, which attributes to the effectiveness of the Kalman filter algorithm. In contrast to statistics before fusion, the fusion variance of the estimation value was sharply decreased. The precision of the position information is 4. 6 cm, which meets the application requirements of the robot.展开更多
Field environmental sensing can acquire real-time environmental information,which will be applied to field operation,through the fusion of multiple sensors.Multi-sensor fusion refers to the fusion of information obtai...Field environmental sensing can acquire real-time environmental information,which will be applied to field operation,through the fusion of multiple sensors.Multi-sensor fusion refers to the fusion of information obtained from multiple sensors using more advanced data processing methods.The main objective of applying this technology in field environment perception is to acquire real-time environmental information,making agricultural mechanical devices operate better in complex farmland environment with stronger sensing ability and operational accuracy.In this paper,the characteristics of sensors are studied to clarify the advantages and existing problems of each type of sensors and point out that multiple sensors can be introduced to compensate for the information loss.Secondly,the mainstream information fusion types at present are outlined.The characteristics,advantages and disadvantages of different fusion methods are analyzed.The important studies and applications related to multi-sensor information fusion technology published at home and abroad are listed.Eventually,the existing problems in the field environment sensing at present are summarized and the prospect for future of sensors precise sensing,multi-dimensional fusion strategies,discrepancies in sensor fusion and agricultural information processing are proposed in hope of providing reference for the deeper development of smart agriculture.展开更多
The conventional control methods of variable air volume (VAV) air conditioning systems usually assume that the indoor air is well mixed, and consider each building zone as one node with homogeneous temperature distrib...The conventional control methods of variable air volume (VAV) air conditioning systems usually assume that the indoor air is well mixed, and consider each building zone as one node with homogeneous temperature distribution. The average temperature is subsequently used as the controlled parameter in the VAV cascade control process, which might cause uneven temperature distribution and unsatisfactory thermal comfort. This paper presents a coupled simulation of computational fluid dynamics (CFD) and building energy simulation (BES) for the VAV system in an office building located in Shanghai for the purpose of simulating the building, the VAV control system, and indoor thermal environment simultaneously. An external interface is developed to integrate the CFD and BES models based on quasi-dynamic coupling approach. Based upon the developed co-simulation platform, the novel VAV control method is further proposed by fusing information from multiple sensors. By adding two temperature sensors to constrain the thermal comfort of the occupied zone, the supply air temperature setpoint of the VAV terminal unit can be reset in real time. The novel control method is embedded into the co-simulation platform and compared with the conventional VAV control approach. The results illustrate that the temperature distribution under the proposed method is more uniform. At most times of the typical test day, the air diffusion performance indexes (ADPIs) for the proposed method are above 80%, while the ADPIs for the conventional control method are between 60% and 80%. Due to multi-sensor information fusion, the proposed VAV control approach has better ability to ensure the indoor thermal comfort.展开更多
The existingmultipath routing in Software Defined Network (SDN) is relatively blind and inefficient, and there is alack of cooperation between the terminal and network sides, making it difficult to achieve dynamic ada...The existingmultipath routing in Software Defined Network (SDN) is relatively blind and inefficient, and there is alack of cooperation between the terminal and network sides, making it difficult to achieve dynamic adaptationof service requirements and network resources. To address these issues, we propose a multi-constraint pathoptimization scheme based on information fusion in SDN. The proposed scheme collects network topology andnetwork state information on the network side and computes disjoint paths between end hosts. It uses the FuzzyAnalytic Hierarchy Process (FAHP) to calculate the weight coefficients of multiple constrained parameters andconstructs a composite quality evaluation function for the paths to determine the priority of the disjoint paths. TheSDN controller extracts the service attributes by analyzing the packet header and selects the optimal path for flowrule forwarding. Furthermore, the service attributes are fed back to the path composite quality evaluation function,and the path priority is dynamically adjusted to achieve dynamic adaptation between service requirements andnetwork status. By continuously monitoring and analyzing the service attributes, the scheme can ensure optimalrouting decisions in response to varying network conditions and evolving service demands. The experimentalresults demonstrated that the proposed scheme can effectively improve average throughput and link utilizationwhile meeting the Quality of Service (QoS) requirements of various applications.展开更多
Driving fatigue is a physiological phenomenon that often occurs during driving.After the driver enters a fatigued state,the attentionis lax,the response is slow,and the ability todeal with emergencies is significantly...Driving fatigue is a physiological phenomenon that often occurs during driving.After the driver enters a fatigued state,the attentionis lax,the response is slow,and the ability todeal with emergencies is significantly reduced,which can easily cause traffic accidents.Therefore,studying driver fatigue detectionmethods is significant in ensuring safe driving.However,the fatigue state of actual drivers is easily interfered with by the external environment(glasses and light),which leads to many problems,such as weak reliability of fatigue driving detection.Moreover,fatigue is a slow process,first manifested in physiological signals and then reflected in human face images.To improve the accuracy and stability of fatigue detection,this paper proposed a driver fatigue detection method based on image information and physiological information,designed a fatigue driving detection device,built a simulation driving experiment platform,and collected facial as well as physiological information of drivers during driving.Finally,the effectiveness of the fatigue detection method was evaluated.Eye movement feature parameters and physiological signal features of drivers’fatigue levels were extracted.The driver fatigue detection model was trained to classify fatigue and non-fatigue states based on the extracted features.Accuracy rates of the image,electroencephalogram(EEG),and blood oxygen signals were 86%,82%,and 71%,separately.Information fusion theory was presented to facilitate the fatigue detection effect;the fatigue features were fused using multiple kernel learning and typical correlation analysis methods to increase the detection accuracy to 94%.It can be seen that the fatigue driving detectionmethod based onmulti-source feature fusion effectively detected driver fatigue state,and the accuracy rate was higher than that of a single information source.In summary,fatigue drivingmonitoring has broad development prospects and can be used in traffic accident prevention and wearable driver fatigue recognition.展开更多
In the aircraft control system,sensor networks are used to sample the attitude and environmental data.As a result of the external and internal factors(e.g.,environmental and task complexity,inaccurate sensing and comp...In the aircraft control system,sensor networks are used to sample the attitude and environmental data.As a result of the external and internal factors(e.g.,environmental and task complexity,inaccurate sensing and complex structure),the aircraft control system contains several uncertainties,such as imprecision,incompleteness,redundancy and randomness.The information fusion technology is usually used to solve the uncertainty issue,thus improving the sampled data reliability,which can further effectively increase the performance of the fault diagnosis decision-making in the aircraft control system.In this work,we first analyze the uncertainties in the aircraft control system,and also compare different uncertainty quantitative methods.Since the information fusion can eliminate the effects of the uncertainties,it is widely used in the fault diagnosis.Thus,this paper summarizes the recent work in this aera.Furthermore,we analyze the application of information fusion methods in the fault diagnosis of the aircraft control system.Finally,this work identifies existing problems in the use of information fusion for diagnosis and outlines future trends.展开更多
Due to the overwhelming characteristics of the Internet of Things(IoT)and its adoption in approximately every aspect of our lives,the concept of individual devices’privacy has gained prominent attention from both cus...Due to the overwhelming characteristics of the Internet of Things(IoT)and its adoption in approximately every aspect of our lives,the concept of individual devices’privacy has gained prominent attention from both customers,i.e.,people,and industries as wearable devices collect sensitive information about patients(both admitted and outdoor)in smart healthcare infrastructures.In addition to privacy,outliers or noise are among the crucial issues,which are directly correlated with IoT infrastructures,as most member devices are resource-limited and could generate or transmit false data that is required to be refined before processing,i.e.,transmitting.Therefore,the development of privacy-preserving information fusion techniques is highly encouraged,especially those designed for smart IoT-enabled domains.In this paper,we are going to present an effective hybrid approach that can refine raw data values captured by the respectivemember device before transmission while preserving its privacy through the utilization of the differential privacy technique in IoT infrastructures.Sliding window,i.e.,δi based dynamic programming methodology,is implemented at the device level to ensure precise and accurate detection of outliers or noisy data,and refine it prior to activation of the respective transmission activity.Additionally,an appropriate privacy budget has been selected,which is enough to ensure the privacy of every individualmodule,i.e.,a wearable device such as a smartwatch attached to the patient’s body.In contrast,the end module,i.e.,the server in this case,can extract important information with approximately the maximum level of accuracy.Moreover,refined data has been processed by adding an appropriate nose through the Laplace mechanism to make it useless or meaningless for the adversary modules in the IoT.The proposed hybrid approach is trusted from both the device’s privacy and the integrity of the transmitted information perspectives.Simulation and analytical results have proved that the proposed privacy-preserving information fusion technique for wearable devices is an ideal solution for resource-constrained infrastructures such as IoT and the Internet ofMedical Things,where both device privacy and information integrity are important.Finally,the proposed hybrid approach is proven against well-known intruder attacks,especially those related to the privacy of the respective device in IoT infrastructures.展开更多
For some important object recognition applications such as intelligent robots and unmanned driving, images are collected on a consecutive basis and associated among themselves, besides, the scenes have steady prior fe...For some important object recognition applications such as intelligent robots and unmanned driving, images are collected on a consecutive basis and associated among themselves, besides, the scenes have steady prior features. Yet existing technologies do not take full advantage of this information. In order to take object recognition further than existing algorithms in the above application, an object recognition method that fuses temporal sequence with scene priori information is proposed. This method first employs YOLOv3 as the basic algorithm to recognize objects in single-frame images, then the DeepSort algorithm to establish association among potential objects recognized in images of different moments, and finally the confidence fusion method and temporal boundary processing method designed herein to fuse, at the decision level, temporal sequence information with scene priori information. Experiments using public datasets and self-built industrial scene datasets show that due to the expansion of information sources, the quality of single-frame images has less impact on the recognition results, whereby the object recognition is greatly improved. It is presented herein as a widely applicable framework for the fusion of information under multiple classes. All the object recognition algorithms that output object class, location information and recognition confidence at the same time can be integrated into this information fusion framework to improve performance.展开更多
Multi-source information fusion (MSIF) is imported into structural damage diagnosis methods to improve the validity of damage detection. After the introduction of the basic theory, the function model, classification...Multi-source information fusion (MSIF) is imported into structural damage diagnosis methods to improve the validity of damage detection. After the introduction of the basic theory, the function model, classifications and mathematical methods of MSIF, a structural damage detection method based on MSIF is presented, which is to fuse two or more damage character vectors from different structural damage diagnosis methods on the character-level. In an experiment of concrete plates, modal information is measured and analyzed. The structural damage detection method based on MSIF is taken to localize cracks of concrete plates and it is proved to be effective. Results of damage detection by the method based on MSIF are compared with those from the modal strain energy method and the flexibility method. Damage, which can hardly be detected by using the single damage identification method, can be diagnosed by the damage detection method based on the character-level MSIF technique. Meanwhile multi-location damage can be identified by the method based on MSIF. This method is sensitive to structural damage and different mathematical methods for MSIF have different preconditions and applicabilities for diversified structures. How to choose mathematical methods for MSIF should be discussed in detail in health monitoring systems of actual structures.展开更多
The fiber strapdown inertial navigation system (FSINS)/dead reckoning (DR)/Beidou double-star integrated navigation scheme is proposed aiming at the need of land fighting-vehicle independence positioning. The meas...The fiber strapdown inertial navigation system (FSINS)/dead reckoning (DR)/Beidou double-star integrated navigation scheme is proposed aiming at the need of land fighting-vehicle independence positioning. The measurement information fusion technology is studied by introducing the FSINS/DR/Beidou double-star integrated scheme. Several specific methods for the information fusion are discussed, and a Kalman filter is designed for the information fusion. Experimental results show that the design of the integrated scheme can improve the positioning accuracy of the navigation system.展开更多
This paper presents a new information fusion filter in integrated navigation. The method can improve the fault-tolerant performance and make well fault detection, isolation and reconfiguration of the integrated naviga...This paper presents a new information fusion filter in integrated navigation. The method can improve the fault-tolerant performance and make well fault detection, isolation and reconfiguration of the integrated navigation system exist. Based on three sensors'(strapdown system, GPS receiver, Doppler radar) information fusion, a fault-tolerant navigation system is designed with this information fusion filter and two-ellipsoid overlap test. Simulation results show that the design is efficient with the soft-failure of gyro, accelerator, GPS receiver and Doppler radar.展开更多
An efficient vehicle detection approach is proposed for traffic surveillance images, which is based on information fusion of vehicle symmetrical contour and license plate position. The vertical symmetry axis of the ve...An efficient vehicle detection approach is proposed for traffic surveillance images, which is based on information fusion of vehicle symmetrical contour and license plate position. The vertical symmetry axis of the vehicle contour in an image is. first detected, and then the vertical and the horizontal symmetry axes of the license plate are detected using the symmetry axis of the vehicle contour as a reference. The vehicle location in an image is determined using license plate symmetry axes and the vertical and the horizontal projection maps of the vehicle edge image. A dataset consisting of 450 images (15 classes of vehicles) is used to test the proposed method. The experimental results indicate that compared with the vehicle contour-based, the license plate location-based, the vehicle texture-based and the Gabor feature-based methods, the proposed method is the best with a detection accuracy of 90.7% and an elapsed time of 125 ms.展开更多
To cope with the market demand dynamically,enterprise needs to obtain the production status of work in process real-timely,but the information of machining progress has feature of uncertainty and can not reflect the s...To cope with the market demand dynamically,enterprise needs to obtain the production status of work in process real-timely,but the information of machining progress has feature of uncertainty and can not reflect the status of production field effectively.In this work,to overcome the ineffectiveness of computer numerical control(CNC) machining progress information extraction and its application restriction in practice because of heterogeneous system of CNC machine,based on information fusion by analyzing multi-sources information,estimating CNC machining status and predicting the machining progress through tracking tool coordinates,a CNC machining progress monitoring method is presented.The multi-sources heterogeneous information includes machining path,real-time spindle power information,manual input data and tool position.On the method of obtaining this multi-sources heterogeneous information,the method which helps explore numerical control(NC) program,monitor spindle power of CNC,collect human-computer interaction(HCI) information,obtain real-time tool coordinates and express the knowledge concerned in this field is analyzed; The decision rule of CNC machining status in the way of fusing multi-sources information in manufacturing process is summarized,as well as the machining progress tracking method in accordance with real-time tool coordinates and machining path is presented.Finally,the method discussed is proved feasible by the verification of machining progress tracking through simulation experiment.The proposed research realizes the effective integration of CNC machining progress information,and enables enterprises an efficient way to share CNC information and configure CNC resources optimally.展开更多
To aim at the multimode character of the data from the airplane detecting system, the paper combines Dempster- Shafer evidence theory and subjective Bayesian algorithm and makes to propose a mixed structure multimode ...To aim at the multimode character of the data from the airplane detecting system, the paper combines Dempster- Shafer evidence theory and subjective Bayesian algorithm and makes to propose a mixed structure multimode data fusion algorithm. The algorithm adopts a prorated algorithm relate to the incertitude evaluation to convert the probability evaluation into the precognition probability in an identity frame, and ensures the adaptability of different data from different source to the mixed system. To guarantee real time fusion, a combination of time domain fusion and space domain fusion is established, this not only assure the fusion of data chain in different time of the same sensor, but also the data fusion from different sensors distributed in different platforms and the data fusion among different modes. The feasibility and practicability are approved through computer simulation.展开更多
In order to meet the demand of testability analysis and evaluation for complex equipment under a small sample test in the equipment life cycle, the hierarchical hybrid testability model- ing and evaluation method (HH...In order to meet the demand of testability analysis and evaluation for complex equipment under a small sample test in the equipment life cycle, the hierarchical hybrid testability model- ing and evaluation method (HHTME), which combines the testabi- lity structure model (TSM) with the testability Bayesian networks model (TBNM), is presented. Firstly, the testability network topo- logy of complex equipment is built by using the hierarchical hybrid testability modeling method. Secondly, the prior conditional prob- ability distribution between network nodes is determined through expert experience. Then the Bayesian method is used to update the conditional probability distribution, according to history test information, virtual simulation information and similar product in- formation. Finally, the learned hierarchical hybrid testability model (HHTM) is used to estimate the testability of equipment. Compared with the results of other modeling methods, the relative deviation of the HHTM is only 0.52%, and the evaluation result is the most accu rate.展开更多
基金Liaoning Province Technology Key Project(2007231003,2006220019)Liaoning Province Talent Fund Projects(2005219005,2007R24)Liaoning Province Innovative Team Projects(2007T071,2006T076)
文摘The traditional open pit mine slope deformation monitoring system can not use the monitoring information coming from many monitoring points at the same time, can only using the monitoring data coming from a key monitoring point,and that is to say it can only handle one-dimensional time series.Given this shortage in the monitoring, the multi-sensor information fusion in the state estimation techniques would be intro- duced to the slope deformation monitoring system,and by the dynamic characteristics of deformation slope,the open pit slope would be regarded as a dynamic goal,the condi- tion monitoring of which would be regarded as a dynamic target tracking.Distributed In- formation fusion technology with feedback was used to process the monitoring data and on this basis Klman filtering algorithms was introduced,and the simulation examples was used to prove its effectivenes.
文摘A condition monitoring method of deep-hole drilling based on multi-sensor information fusion is discussed. The signal of vibration and cutting force are collected when the condition of deep-hole drilling on stainless steel 0Cr17Ni4Cu4Nb is normal or abnormal. Four eigenvectors are extracted on time-domain and frequency-domain analysis of the signals. Then the four eigenvectors are combined and sent to neural networks to dispose. The fusion results indicate that multi-sensor information fusion is superior to single-sensor information, and that cutting force signal can reflect the condition of cutting tool better than vibration signal.
文摘For existing indoor localization algorithm has low accuracy, high cost in deployment and maintenance, lack of robustness, and low sensor utilization, this paper proposes a particle filter algorithm based on multi-sensor fusion. The pedestrian’s localization in indoor environment is described as dynamic system state estimation problem. The algorithm combines the smart mobile terminal with indoor localization, and filters the result of localization with the particle filter. In this paper, a dynamic interval particle filter algorithm based on pedestrian dead reckoning (PDR) information and RSSI localization information have been used to improve the filtering precision and the stability. Moreover, the localization results will be uploaded to the server in time, and the location fingerprint database will be built incrementally, which can adapt the dynamic changes of the indoor environment. Experimental results show that the algorithm based on multi-sensor improves the localization accuracy and robustness compared with the location algorithm based on Wi-Fi.
基金supported by the military scientific research plan(wj2015cj020001)
文摘Aiming at the problem of incomplete information and uncertainties in the diagnosis of complex system by using single parameter, a new method of multi-sensor information fusion fault diagnosis based on BP neural network and D-S evidence theory is proposed. In order to simplify the structure of BP neural network, two parallel BP neural networks are used to diagnose the fault data at first; and then, using the evidence theory to fuse the local diagnostic results, the accurate inference of the inaccurate information is realized, and the accurate diagnosis resuh is obtained. The method is applied to the fault diagnosis of the hydraulic driven servo system (HDSS) in a certain type of rocket launcher, which realizes the fault location and diagnosis of the main components of the hydraulic driven servo system, and effectively improves the reliability of the system.
基金Supported by the Ministerial Level Advanced Research Foundation(40401060305)
文摘In order to improve the ability of a bionic quadruped robot to percept the location of obstacles in a complex and dynamic environment, the information fusion between an ultrasonic sensor and a binocular sensor was studied under the condition that the robot moves in the Walk gait on a structured road. Firstly, the distance information of obstacles from these two sensors was separately processed by the Kalman filter algorithm, which largely reduced the noise interference. After that, we obtained two groups of estimated distance values from the robot to the obstacle and a variance of the estimation value. Additionally, a fusion of the estimation values and the variances was achieved based on the STF fusion algorithm. Finally, a simulation was performed to show that the curve of a real value was tracked well by that of the estimation value, which attributes to the effectiveness of the Kalman filter algorithm. In contrast to statistics before fusion, the fusion variance of the estimation value was sharply decreased. The precision of the position information is 4. 6 cm, which meets the application requirements of the robot.
基金supported by the National Natural Science Foundation of China(Grant No.52272438)the Jiangsu Agricultural Science and Technology Innovation[Grant No.CX(21)3149]+1 种基金the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(Grant No.Yueshengjihua-2206)the Jiangsu Province and Education Ministry Co-sponsored Synergistic Innovation Center of Modern Agricultural Equipment(Grant No.XTCX2007).
文摘Field environmental sensing can acquire real-time environmental information,which will be applied to field operation,through the fusion of multiple sensors.Multi-sensor fusion refers to the fusion of information obtained from multiple sensors using more advanced data processing methods.The main objective of applying this technology in field environment perception is to acquire real-time environmental information,making agricultural mechanical devices operate better in complex farmland environment with stronger sensing ability and operational accuracy.In this paper,the characteristics of sensors are studied to clarify the advantages and existing problems of each type of sensors and point out that multiple sensors can be introduced to compensate for the information loss.Secondly,the mainstream information fusion types at present are outlined.The characteristics,advantages and disadvantages of different fusion methods are analyzed.The important studies and applications related to multi-sensor information fusion technology published at home and abroad are listed.Eventually,the existing problems in the field environment sensing at present are summarized and the prospect for future of sensors precise sensing,multi-dimensional fusion strategies,discrepancies in sensor fusion and agricultural information processing are proposed in hope of providing reference for the deeper development of smart agriculture.
基金This work was supported by the National Natural Science Foundation of China(No.51876119)the Shanghai Pujiang Program(No.17PJD017).
文摘The conventional control methods of variable air volume (VAV) air conditioning systems usually assume that the indoor air is well mixed, and consider each building zone as one node with homogeneous temperature distribution. The average temperature is subsequently used as the controlled parameter in the VAV cascade control process, which might cause uneven temperature distribution and unsatisfactory thermal comfort. This paper presents a coupled simulation of computational fluid dynamics (CFD) and building energy simulation (BES) for the VAV system in an office building located in Shanghai for the purpose of simulating the building, the VAV control system, and indoor thermal environment simultaneously. An external interface is developed to integrate the CFD and BES models based on quasi-dynamic coupling approach. Based upon the developed co-simulation platform, the novel VAV control method is further proposed by fusing information from multiple sensors. By adding two temperature sensors to constrain the thermal comfort of the occupied zone, the supply air temperature setpoint of the VAV terminal unit can be reset in real time. The novel control method is embedded into the co-simulation platform and compared with the conventional VAV control approach. The results illustrate that the temperature distribution under the proposed method is more uniform. At most times of the typical test day, the air diffusion performance indexes (ADPIs) for the proposed method are above 80%, while the ADPIs for the conventional control method are between 60% and 80%. Due to multi-sensor information fusion, the proposed VAV control approach has better ability to ensure the indoor thermal comfort.
基金the National Key R&D Program of China(No.2021YFB2700800)the GHfund B(No.202302024490).
文摘The existingmultipath routing in Software Defined Network (SDN) is relatively blind and inefficient, and there is alack of cooperation between the terminal and network sides, making it difficult to achieve dynamic adaptationof service requirements and network resources. To address these issues, we propose a multi-constraint pathoptimization scheme based on information fusion in SDN. The proposed scheme collects network topology andnetwork state information on the network side and computes disjoint paths between end hosts. It uses the FuzzyAnalytic Hierarchy Process (FAHP) to calculate the weight coefficients of multiple constrained parameters andconstructs a composite quality evaluation function for the paths to determine the priority of the disjoint paths. TheSDN controller extracts the service attributes by analyzing the packet header and selects the optimal path for flowrule forwarding. Furthermore, the service attributes are fed back to the path composite quality evaluation function,and the path priority is dynamically adjusted to achieve dynamic adaptation between service requirements andnetwork status. By continuously monitoring and analyzing the service attributes, the scheme can ensure optimalrouting decisions in response to varying network conditions and evolving service demands. The experimentalresults demonstrated that the proposed scheme can effectively improve average throughput and link utilizationwhile meeting the Quality of Service (QoS) requirements of various applications.
基金the Fundamental Research Funds for the Central Universities(GrantNo.IR2021222)received by J.Sthe Future Science and Technology Innovation Team Project of HIT(216506)received by Q.W.
文摘Driving fatigue is a physiological phenomenon that often occurs during driving.After the driver enters a fatigued state,the attentionis lax,the response is slow,and the ability todeal with emergencies is significantly reduced,which can easily cause traffic accidents.Therefore,studying driver fatigue detectionmethods is significant in ensuring safe driving.However,the fatigue state of actual drivers is easily interfered with by the external environment(glasses and light),which leads to many problems,such as weak reliability of fatigue driving detection.Moreover,fatigue is a slow process,first manifested in physiological signals and then reflected in human face images.To improve the accuracy and stability of fatigue detection,this paper proposed a driver fatigue detection method based on image information and physiological information,designed a fatigue driving detection device,built a simulation driving experiment platform,and collected facial as well as physiological information of drivers during driving.Finally,the effectiveness of the fatigue detection method was evaluated.Eye movement feature parameters and physiological signal features of drivers’fatigue levels were extracted.The driver fatigue detection model was trained to classify fatigue and non-fatigue states based on the extracted features.Accuracy rates of the image,electroencephalogram(EEG),and blood oxygen signals were 86%,82%,and 71%,separately.Information fusion theory was presented to facilitate the fatigue detection effect;the fatigue features were fused using multiple kernel learning and typical correlation analysis methods to increase the detection accuracy to 94%.It can be seen that the fatigue driving detectionmethod based onmulti-source feature fusion effectively detected driver fatigue state,and the accuracy rate was higher than that of a single information source.In summary,fatigue drivingmonitoring has broad development prospects and can be used in traffic accident prevention and wearable driver fatigue recognition.
基金supported by the National Natural Science Foundation of China(62273176)the Aeronautical Science Foundation of China(20200007018001)the China Scholarship Council(202306830096).
文摘In the aircraft control system,sensor networks are used to sample the attitude and environmental data.As a result of the external and internal factors(e.g.,environmental and task complexity,inaccurate sensing and complex structure),the aircraft control system contains several uncertainties,such as imprecision,incompleteness,redundancy and randomness.The information fusion technology is usually used to solve the uncertainty issue,thus improving the sampled data reliability,which can further effectively increase the performance of the fault diagnosis decision-making in the aircraft control system.In this work,we first analyze the uncertainties in the aircraft control system,and also compare different uncertainty quantitative methods.Since the information fusion can eliminate the effects of the uncertainties,it is widely used in the fault diagnosis.Thus,this paper summarizes the recent work in this aera.Furthermore,we analyze the application of information fusion methods in the fault diagnosis of the aircraft control system.Finally,this work identifies existing problems in the use of information fusion for diagnosis and outlines future trends.
基金Ministry of Higher Education of Malaysia under theResearch GrantLRGS/1/2019/UKM-UKM/5/2 and Princess Nourah bint Abdulrahman University for financing this researcher through Supporting Project Number(PNURSP2024R235),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Due to the overwhelming characteristics of the Internet of Things(IoT)and its adoption in approximately every aspect of our lives,the concept of individual devices’privacy has gained prominent attention from both customers,i.e.,people,and industries as wearable devices collect sensitive information about patients(both admitted and outdoor)in smart healthcare infrastructures.In addition to privacy,outliers or noise are among the crucial issues,which are directly correlated with IoT infrastructures,as most member devices are resource-limited and could generate or transmit false data that is required to be refined before processing,i.e.,transmitting.Therefore,the development of privacy-preserving information fusion techniques is highly encouraged,especially those designed for smart IoT-enabled domains.In this paper,we are going to present an effective hybrid approach that can refine raw data values captured by the respectivemember device before transmission while preserving its privacy through the utilization of the differential privacy technique in IoT infrastructures.Sliding window,i.e.,δi based dynamic programming methodology,is implemented at the device level to ensure precise and accurate detection of outliers or noisy data,and refine it prior to activation of the respective transmission activity.Additionally,an appropriate privacy budget has been selected,which is enough to ensure the privacy of every individualmodule,i.e.,a wearable device such as a smartwatch attached to the patient’s body.In contrast,the end module,i.e.,the server in this case,can extract important information with approximately the maximum level of accuracy.Moreover,refined data has been processed by adding an appropriate nose through the Laplace mechanism to make it useless or meaningless for the adversary modules in the IoT.The proposed hybrid approach is trusted from both the device’s privacy and the integrity of the transmitted information perspectives.Simulation and analytical results have proved that the proposed privacy-preserving information fusion technique for wearable devices is an ideal solution for resource-constrained infrastructures such as IoT and the Internet ofMedical Things,where both device privacy and information integrity are important.Finally,the proposed hybrid approach is proven against well-known intruder attacks,especially those related to the privacy of the respective device in IoT infrastructures.
文摘For some important object recognition applications such as intelligent robots and unmanned driving, images are collected on a consecutive basis and associated among themselves, besides, the scenes have steady prior features. Yet existing technologies do not take full advantage of this information. In order to take object recognition further than existing algorithms in the above application, an object recognition method that fuses temporal sequence with scene priori information is proposed. This method first employs YOLOv3 as the basic algorithm to recognize objects in single-frame images, then the DeepSort algorithm to establish association among potential objects recognized in images of different moments, and finally the confidence fusion method and temporal boundary processing method designed herein to fuse, at the decision level, temporal sequence information with scene priori information. Experiments using public datasets and self-built industrial scene datasets show that due to the expansion of information sources, the quality of single-frame images has less impact on the recognition results, whereby the object recognition is greatly improved. It is presented herein as a widely applicable framework for the fusion of information under multiple classes. All the object recognition algorithms that output object class, location information and recognition confidence at the same time can be integrated into this information fusion framework to improve performance.
基金The National High Technology Research and Develop-ment Program of China(863Program)(No.2006AA04Z416)the Na-tional Science Fund for Distinguished Young Scholars(No.50725828)the Excellent Dissertation Program for Doctoral Degree of Southeast University(No.0705)
文摘Multi-source information fusion (MSIF) is imported into structural damage diagnosis methods to improve the validity of damage detection. After the introduction of the basic theory, the function model, classifications and mathematical methods of MSIF, a structural damage detection method based on MSIF is presented, which is to fuse two or more damage character vectors from different structural damage diagnosis methods on the character-level. In an experiment of concrete plates, modal information is measured and analyzed. The structural damage detection method based on MSIF is taken to localize cracks of concrete plates and it is proved to be effective. Results of damage detection by the method based on MSIF are compared with those from the modal strain energy method and the flexibility method. Damage, which can hardly be detected by using the single damage identification method, can be diagnosed by the damage detection method based on the character-level MSIF technique. Meanwhile multi-location damage can be identified by the method based on MSIF. This method is sensitive to structural damage and different mathematical methods for MSIF have different preconditions and applicabilities for diversified structures. How to choose mathematical methods for MSIF should be discussed in detail in health monitoring systems of actual structures.
文摘The fiber strapdown inertial navigation system (FSINS)/dead reckoning (DR)/Beidou double-star integrated navigation scheme is proposed aiming at the need of land fighting-vehicle independence positioning. The measurement information fusion technology is studied by introducing the FSINS/DR/Beidou double-star integrated scheme. Several specific methods for the information fusion are discussed, and a Kalman filter is designed for the information fusion. Experimental results show that the design of the integrated scheme can improve the positioning accuracy of the navigation system.
文摘This paper presents a new information fusion filter in integrated navigation. The method can improve the fault-tolerant performance and make well fault detection, isolation and reconfiguration of the integrated navigation system exist. Based on three sensors'(strapdown system, GPS receiver, Doppler radar) information fusion, a fault-tolerant navigation system is designed with this information fusion filter and two-ellipsoid overlap test. Simulation results show that the design is efficient with the soft-failure of gyro, accelerator, GPS receiver and Doppler radar.
基金The National Natural Science Foundation of China(No. 40804015,61101163)
文摘An efficient vehicle detection approach is proposed for traffic surveillance images, which is based on information fusion of vehicle symmetrical contour and license plate position. The vertical symmetry axis of the vehicle contour in an image is. first detected, and then the vertical and the horizontal symmetry axes of the license plate are detected using the symmetry axis of the vehicle contour as a reference. The vehicle location in an image is determined using license plate symmetry axes and the vertical and the horizontal projection maps of the vehicle edge image. A dataset consisting of 450 images (15 classes of vehicles) is used to test the proposed method. The experimental results indicate that compared with the vehicle contour-based, the license plate location-based, the vehicle texture-based and the Gabor feature-based methods, the proposed method is the best with a detection accuracy of 90.7% and an elapsed time of 125 ms.
基金supported by National Natural Science Foundation of China (Grant No. 50775228)Municipality Key Scientific & Technological Program of Chongqing, China (Grant No. CSTC2007AA2013)+1 种基金Fundamental Research Funds for the Central Universities of China (Grant No. CDJXS11111136)Program for New Century Excellent Talents in University of Ministry of Education of China
文摘To cope with the market demand dynamically,enterprise needs to obtain the production status of work in process real-timely,but the information of machining progress has feature of uncertainty and can not reflect the status of production field effectively.In this work,to overcome the ineffectiveness of computer numerical control(CNC) machining progress information extraction and its application restriction in practice because of heterogeneous system of CNC machine,based on information fusion by analyzing multi-sources information,estimating CNC machining status and predicting the machining progress through tracking tool coordinates,a CNC machining progress monitoring method is presented.The multi-sources heterogeneous information includes machining path,real-time spindle power information,manual input data and tool position.On the method of obtaining this multi-sources heterogeneous information,the method which helps explore numerical control(NC) program,monitor spindle power of CNC,collect human-computer interaction(HCI) information,obtain real-time tool coordinates and express the knowledge concerned in this field is analyzed; The decision rule of CNC machining status in the way of fusing multi-sources information in manufacturing process is summarized,as well as the machining progress tracking method in accordance with real-time tool coordinates and machining path is presented.Finally,the method discussed is proved feasible by the verification of machining progress tracking through simulation experiment.The proposed research realizes the effective integration of CNC machining progress information,and enables enterprises an efficient way to share CNC information and configure CNC resources optimally.
文摘To aim at the multimode character of the data from the airplane detecting system, the paper combines Dempster- Shafer evidence theory and subjective Bayesian algorithm and makes to propose a mixed structure multimode data fusion algorithm. The algorithm adopts a prorated algorithm relate to the incertitude evaluation to convert the probability evaluation into the precognition probability in an identity frame, and ensures the adaptability of different data from different source to the mixed system. To guarantee real time fusion, a combination of time domain fusion and space domain fusion is established, this not only assure the fusion of data chain in different time of the same sensor, but also the data fusion from different sensors distributed in different platforms and the data fusion among different modes. The feasibility and practicability are approved through computer simulation.
基金supported by the National Defense Pre-research Foundation of China(51327030104)
文摘In order to meet the demand of testability analysis and evaluation for complex equipment under a small sample test in the equipment life cycle, the hierarchical hybrid testability model- ing and evaluation method (HHTME), which combines the testabi- lity structure model (TSM) with the testability Bayesian networks model (TBNM), is presented. Firstly, the testability network topo- logy of complex equipment is built by using the hierarchical hybrid testability modeling method. Secondly, the prior conditional prob- ability distribution between network nodes is determined through expert experience. Then the Bayesian method is used to update the conditional probability distribution, according to history test information, virtual simulation information and similar product in- formation. Finally, the learned hierarchical hybrid testability model (HHTM) is used to estimate the testability of equipment. Compared with the results of other modeling methods, the relative deviation of the HHTM is only 0.52%, and the evaluation result is the most accu rate.