To aim at the multimode character of the data from the airplane detecting system, the paper combines Dempster- Shafer evidence theory and subjective Bayesian algorithm and makes to propose a mixed structure multimode ...To aim at the multimode character of the data from the airplane detecting system, the paper combines Dempster- Shafer evidence theory and subjective Bayesian algorithm and makes to propose a mixed structure multimode data fusion algorithm. The algorithm adopts a prorated algorithm relate to the incertitude evaluation to convert the probability evaluation into the precognition probability in an identity frame, and ensures the adaptability of different data from different source to the mixed system. To guarantee real time fusion, a combination of time domain fusion and space domain fusion is established, this not only assure the fusion of data chain in different time of the same sensor, but also the data fusion from different sensors distributed in different platforms and the data fusion among different modes. The feasibility and practicability are approved through computer simulation.展开更多
The concepts of information fusion and the basic principles of neural networks are introduced. Neural net-works were introduced as a way of building an information fusion model in a coal mine monitoring system. This a...The concepts of information fusion and the basic principles of neural networks are introduced. Neural net-works were introduced as a way of building an information fusion model in a coal mine monitoring system. This assures the accurate transmission of the multi-sensor information that comes from the coal mine monitoring systems. The in-formation fusion mode was analyzed. An algorithm was designed based on this analysis and some simulation results were given. Finally,conclusions that could provide auxiliary decision making information to the coal mine dispatching officers were presented.展开更多
The traditional open pit mine slope deformation monitoring system can not use the monitoring information coming from many monitoring points at the same time, can only using the monitoring data coming from a key monito...The traditional open pit mine slope deformation monitoring system can not use the monitoring information coming from many monitoring points at the same time, can only using the monitoring data coming from a key monitoring point,and that is to say it can only handle one-dimensional time series.Given this shortage in the monitoring, the multi-sensor information fusion in the state estimation techniques would be intro- duced to the slope deformation monitoring system,and by the dynamic characteristics of deformation slope,the open pit slope would be regarded as a dynamic goal,the condi- tion monitoring of which would be regarded as a dynamic target tracking.Distributed In- formation fusion technology with feedback was used to process the monitoring data and on this basis Klman filtering algorithms was introduced,and the simulation examples was used to prove its effectivenes.展开更多
In order to improve the ability of a bionic quadruped robot to percept the location of obstacles in a complex and dynamic environment, the information fusion between an ultrasonic sensor and a binocular sensor was stu...In order to improve the ability of a bionic quadruped robot to percept the location of obstacles in a complex and dynamic environment, the information fusion between an ultrasonic sensor and a binocular sensor was studied under the condition that the robot moves in the Walk gait on a structured road. Firstly, the distance information of obstacles from these two sensors was separately processed by the Kalman filter algorithm, which largely reduced the noise interference. After that, we obtained two groups of estimated distance values from the robot to the obstacle and a variance of the estimation value. Additionally, a fusion of the estimation values and the variances was achieved based on the STF fusion algorithm. Finally, a simulation was performed to show that the curve of a real value was tracked well by that of the estimation value, which attributes to the effectiveness of the Kalman filter algorithm. In contrast to statistics before fusion, the fusion variance of the estimation value was sharply decreased. The precision of the position information is 4. 6 cm, which meets the application requirements of the robot.展开更多
To Meet the requirements of multi-sensor data fusion in diagnosis for complex equipment systems,a novel, fuzzy similarity-based data fusion algorithm is given. Based on fuzzy set theory, it calculates the fuzzy simila...To Meet the requirements of multi-sensor data fusion in diagnosis for complex equipment systems,a novel, fuzzy similarity-based data fusion algorithm is given. Based on fuzzy set theory, it calculates the fuzzy similarity among a certain sensor's measurement values and the multiple sensor's objective prediction values to determine the importance weigh of each sensor,and realizes the multi-sensor diagnosis parameter data fusion.According to the principle, its application software is also designed. The applied example proves that the algorithm can give priority to the high-stability and high -reliability sensors and it is laconic ,feasible and efficient to real-time circumstance measure and data processing in engine diagnosis.展开更多
This paper derives a square-root information-type filtering algorithm for nonlinear multi-sensor fusion problems using the cubature Kalman filter theory. The resulting filter is called the square-root cubature Informa...This paper derives a square-root information-type filtering algorithm for nonlinear multi-sensor fusion problems using the cubature Kalman filter theory. The resulting filter is called the square-root cubature Information filter (SCIF). The SCIF propagates the square-root information matrices derived from numerically stable matrix operations and is therefore numerically robust. The SCIF is applied to a highly maneuvering target tracking problem in a distributed sensor network with feedback. The SCIF’s performance is finally compared with the regular cubature information filter and the traditional extended information filter. The results, presented herein, indicate that the SCIF is the most reliable of all three filters and yields a more accurate estimate than the extended information filter.展开更多
In view of the deficiency of current gas monitoring systems in coal mine roadwayexcavation, a two-level information fusion technology, which adopted the adaptiveweighted algorithm and the BP neural network technology,...In view of the deficiency of current gas monitoring systems in coal mine roadwayexcavation, a two-level information fusion technology, which adopted the adaptiveweighted algorithm and the BP neural network technology, was applied to gas monitoring.The results show that the adaptive weighted algorithm can realize self-regulation by decreasingthe weight value of the failed sensor automatically, so as to eliminate the effect ofthe failed sensor and ensure the effectiveness and accuracy of the gas monitoring system.The BP neural network can not only effectively predict the gas gush quantity of the excavationroadway, but also accurately calculate the gas concentration in the region whereone or more sensors have failed, so as to provide the basis for judging the safety status ofthe roadway excavation.The experiments prove the superiority and feasibility of the applicationof information fusion in gas monitoring.展开更多
Altitude regulation is a fundamental problem in UAV(unmanned aerial vehicles) control to ensure hovering and autonomous navigation performance.However,data from altitude sensors may be unstable by interference.A digit...Altitude regulation is a fundamental problem in UAV(unmanned aerial vehicles) control to ensure hovering and autonomous navigation performance.However,data from altitude sensors may be unstable by interference.A digital-filter-based improved adaptive Kalman method is proposed to improve accuracy and reliability of the altitude measurement information.A unique sensor data fusion structure is designed to make different sensors switch automatically in different environment.Simulation and experimental results show that an improved Sage-Husa adaptive extended Kalman filter(SHAEKF) is adopted in altitude data fusion which means that altitude error is limited to 1.5m in high altitude and 1.2m near the ground.This method is proved feasible and effective through hovering flight test and three-dimensional track flight experiment.展开更多
Towards the problems of existing detection methods,a novel real-time detection method(DMFIF) based on fractal and information fusion is proposed.It focuses on the intrinsic macroscopic characteristics of network,which...Towards the problems of existing detection methods,a novel real-time detection method(DMFIF) based on fractal and information fusion is proposed.It focuses on the intrinsic macroscopic characteristics of network,which reflect not the "unique" abnormalities of P2P botnets but the "common" abnormalities of them.It regards network traffic as the signal,and synthetically considers the macroscopic characteristics of network under different time scales with the fractal theory,including the self-similarity and the local singularity,which don't vary with the topology structures,the protocols and the attack types of P2P botnet.At first detect traffic abnormalities of the above characteristics with the nonparametric CUSUM algorithm,and achieve the final result by fusing the above detection results with the Dempster-Shafer evidence theory.Moreover,the side effect on detecting P2P botnet which web applications generated is considered.The experiments show that DMFIF can detect P2P botnet with a higher degree of precision.展开更多
Field environmental sensing can acquire real-time environmental information,which will be applied to field operation,through the fusion of multiple sensors.Multi-sensor fusion refers to the fusion of information obtai...Field environmental sensing can acquire real-time environmental information,which will be applied to field operation,through the fusion of multiple sensors.Multi-sensor fusion refers to the fusion of information obtained from multiple sensors using more advanced data processing methods.The main objective of applying this technology in field environment perception is to acquire real-time environmental information,making agricultural mechanical devices operate better in complex farmland environment with stronger sensing ability and operational accuracy.In this paper,the characteristics of sensors are studied to clarify the advantages and existing problems of each type of sensors and point out that multiple sensors can be introduced to compensate for the information loss.Secondly,the mainstream information fusion types at present are outlined.The characteristics,advantages and disadvantages of different fusion methods are analyzed.The important studies and applications related to multi-sensor information fusion technology published at home and abroad are listed.Eventually,the existing problems in the field environment sensing at present are summarized and the prospect for future of sensors precise sensing,multi-dimensional fusion strategies,discrepancies in sensor fusion and agricultural information processing are proposed in hope of providing reference for the deeper development of smart agriculture.展开更多
This paper introduces the image fusion approach of multi-resolutionanalysis-based intensity modulation (MRAIM) to produce the high-resolution multi-spectral imagesfrom high-resolution panchromatic image and low-resolu...This paper introduces the image fusion approach of multi-resolutionanalysis-based intensity modulation (MRAIM) to produce the high-resolution multi-spectral imagesfrom high-resolution panchromatic image and low-resolution multi-spectral images for navigationinformation infrastructure. The mathematical model of image fusion is derived according to theprinciple of remote sensing image formation. It shows that the pixel values of a high-resolutionmulti-spectral images are determined by the pixel values of the approximation of a high-resolutionpanchromatic image at the resolution level of low-resolution multi-spectral images, and in the pixelvalae computation the M-band wavelet theory and the a trous algorithm are then used. In order toevaluate the MRAIM approach, an experiment has been carried out on the basis of the IKONOS 1 mpanchromatic image and 4 m multi-spectral images. The result demonstrates that MRAIM image fusionapproach gives promising fusion results and it can be used to produce the high-resolution remotesensing images required for navigation information infrastructures.展开更多
The reasonable measuring of particle weight and effective sampling of particle state are consid- ered as two important aspects to obtain better estimation precision in particle filter. Aiming at the comprehensive trea...The reasonable measuring of particle weight and effective sampling of particle state are consid- ered as two important aspects to obtain better estimation precision in particle filter. Aiming at the comprehensive treatment of above problems, a novel two-stage prediction and update particle filte- ring algorithm based on particle weight optimization in multi-sensor observation is proposed. Firstly, combined with the construction of muhi-senor observation likelihood function and the weight fusion principle, a new particle weight optimization strategy in multi-sensor observation is presented, and the reliability and stability of particle weight are improved by decreasing weight variance. In addi- tion, according to the prediction and update mechanism of particle filter and unscented Kalman fil- ter, a new realization of particle filter with two-stage prediction and update is given. The filter gain containing the latest observation information is used to directly optimize state estimation in the frame- work, which avoids a large calculation amount and the lack of universality in proposal distribution optimization way. The theoretical analysis and experimental results show the feasibility and efficiency of the proposed algorithm.展开更多
Angular contact ball bearings have been widely used in machine tool spindles,and the bearing preload plays an important role in the performance of the spindle.In order to solve the problems of the traditional optimal ...Angular contact ball bearings have been widely used in machine tool spindles,and the bearing preload plays an important role in the performance of the spindle.In order to solve the problems of the traditional optimal preload prediction method limited by actual conditions and uncertainties,a roller bearing preload test method based on the improved D-S evidence theorymulti-sensor fusion method was proposed.First,a novel controllable preload system is proposed and evaluated.Subsequently,multiple sensors are employed to collect data on the bearing parameters during preload application.Finally,a multisensor fusion algorithm is used to make predictions,and a neural network is used to optimize the fitting of the preload data.The limitations of conventional preload testing methods are identified,and the integration of complementary information frommultiple sensors is used to achieve accurate predictions,offering valuable insights into the optimal preload force.Experimental results demonstrate that the multi-sensor fusion approach outperforms traditional methods in accurately measuring the optimal preload for rolling bearings.展开更多
Multi-Source Information Fusion(MSIF),as a comprehensive interdisciplinary field based on modern information technology,has gained significant research value and extensive application prospects in various domains,attr...Multi-Source Information Fusion(MSIF),as a comprehensive interdisciplinary field based on modern information technology,has gained significant research value and extensive application prospects in various domains,attracting high attention and interest from scholars,engineering experts,and practitioners worldwide.Despite achieving fruitful results in both theoretical and applied aspects over the past five decades,there remains a lack of comprehensive and systematic review articles that provide an overview of recent development in MSIF.In light of this,this paper aims to assist researchers and individuals interested in gaining a quick understanding of the relevant theoretical techniques and development trends in MSIF,which conducts a statistical analysis of academic reports and related application achievements in the field of MSIF over the past two decades,and provides a brief overview of the relevant theories,methodologies,and application domains,as well as key issues and challenges currently faced.Finally,an analysis and outlook on the future development directions of MSIF are presented.展开更多
The conventional control methods of variable air volume (VAV) air conditioning systems usually assume that the indoor air is well mixed, and consider each building zone as one node with homogeneous temperature distrib...The conventional control methods of variable air volume (VAV) air conditioning systems usually assume that the indoor air is well mixed, and consider each building zone as one node with homogeneous temperature distribution. The average temperature is subsequently used as the controlled parameter in the VAV cascade control process, which might cause uneven temperature distribution and unsatisfactory thermal comfort. This paper presents a coupled simulation of computational fluid dynamics (CFD) and building energy simulation (BES) for the VAV system in an office building located in Shanghai for the purpose of simulating the building, the VAV control system, and indoor thermal environment simultaneously. An external interface is developed to integrate the CFD and BES models based on quasi-dynamic coupling approach. Based upon the developed co-simulation platform, the novel VAV control method is further proposed by fusing information from multiple sensors. By adding two temperature sensors to constrain the thermal comfort of the occupied zone, the supply air temperature setpoint of the VAV terminal unit can be reset in real time. The novel control method is embedded into the co-simulation platform and compared with the conventional VAV control approach. The results illustrate that the temperature distribution under the proposed method is more uniform. At most times of the typical test day, the air diffusion performance indexes (ADPIs) for the proposed method are above 80%, while the ADPIs for the conventional control method are between 60% and 80%. Due to multi-sensor information fusion, the proposed VAV control approach has better ability to ensure the indoor thermal comfort.展开更多
Aiming at the effective realization of particle filter for maneuvering target tracking in multi-sensor measurements,a novel multi-sensor multiple model particle filtering algorithm with correlated noises is proposed.C...Aiming at the effective realization of particle filter for maneuvering target tracking in multi-sensor measurements,a novel multi-sensor multiple model particle filtering algorithm with correlated noises is proposed.Combined with the kinetic evolution equation of target state,a multi-sensor multiple model particle filter is firstly constructed,which is also used as the basic framework of a new algorithm.In the new algorithm,in order to weaken the adverse influence from random measurement noises in the measuring process of particle weight,a weight optimization strategy is introduced to improve the reliability and stability of particle weight.In addition,considering the correlated noise existing in the practical engineering,a decoupling method of correlated noise is given by the rearrangement and transformation of the state transition equation and measurement equation.Since the weight optimization strategy and noise decoupling method adopt respectively the center fusion structure and the off-line way,it improves the adverse effect effectively on computational complexity for increasing state dimension and sensor number.Finally,the theoretical analysis and experimental results show the feasibility and efficiency of the proposed algorithm.展开更多
For the multi-sensor linear discrete time-invariant stochastic systems with correlated measurement noises and unknown noise statistics,an on-line noise statistics estimator is obtained using the correlation method.Sub...For the multi-sensor linear discrete time-invariant stochastic systems with correlated measurement noises and unknown noise statistics,an on-line noise statistics estimator is obtained using the correlation method.Substituting it into the optimal weighted fusion steady-state white noise deconvolution estimator based on the Kalman filtering,a self-tuning weighted measurement fusion white noise deconvolution estimator is presented.By the Dynamic Error System Analysis(DESA) method,it proved that the self-tuning fusion white noise deconvolution estimator converges to the steady-state optimal fusion white noise deconvolution estimator in a realization.Therefore,it has the asymptotically global optimality.A simulation example for the tracking system with 3 sensors and the Bernoulli-Gaussian input white noise shows its effectiveness.展开更多
The jamming resource allocation problem of the aircraft formation cooperatively jamming netted radar system is investigated.An adaptive allocation strategy based on dynamic adaptive discrete cuckoo search algorithm(DA...The jamming resource allocation problem of the aircraft formation cooperatively jamming netted radar system is investigated.An adaptive allocation strategy based on dynamic adaptive discrete cuckoo search algorithm(DADCS)is proposed,whose core is to adjust allocation scheme of limited jamming resource of aircraft formation in real time to maintain the best jamming effectiveness against netted radar system.Firstly,considering the information fusion rules and different working modes of the netted radar system,a two-factor jamming effectiveness evaluation function is constructed,detection probability and aiming probability are adopted to characterize jamming effectiveness against netted radar system in searching and tracking mode,respectively.Then a nonconvex optimization model for cooperatively jamming netted radar system is established.Finally,a dynamic adaptive discrete cuckoo search algorithm(DADCS)is constructed by improving path update strategies and introducing a global learning mechanism,and a three-step solution method is proposed subsequently.Simulation results are provided to demonstrate the advantages of the proposed optimization strategy and the effectiveness of the improved algorithm.展开更多
The interval numbers are used to types and observation of sensors, a new fusion represent the characteristic values of object method for multi-sensor object recognition is proposed from the viewpoint of decision makin...The interval numbers are used to types and observation of sensors, a new fusion represent the characteristic values of object method for multi-sensor object recognition is proposed from the viewpoint of decision making theory. The method defines the distance matrix and grey association matrix between all object types and unknown object. After solving the optimization problem of maximizing the standard deviations for all attributes, the weights of the attributes are obtained. Thus, the result of recognition for the unknown object is given by the grey association degree. This method avoids the subjectivity of selecting attributes weights. It is straightforward and can be performed on computer easily. The simulated example demonstrates the feasibility and effectiveness of the proposed method.展开更多
文摘To aim at the multimode character of the data from the airplane detecting system, the paper combines Dempster- Shafer evidence theory and subjective Bayesian algorithm and makes to propose a mixed structure multimode data fusion algorithm. The algorithm adopts a prorated algorithm relate to the incertitude evaluation to convert the probability evaluation into the precognition probability in an identity frame, and ensures the adaptability of different data from different source to the mixed system. To guarantee real time fusion, a combination of time domain fusion and space domain fusion is established, this not only assure the fusion of data chain in different time of the same sensor, but also the data fusion from different sensors distributed in different platforms and the data fusion among different modes. The feasibility and practicability are approved through computer simulation.
基金project BK2001073 supported by Jiangsu Province Natural Science Foundation
文摘The concepts of information fusion and the basic principles of neural networks are introduced. Neural net-works were introduced as a way of building an information fusion model in a coal mine monitoring system. This assures the accurate transmission of the multi-sensor information that comes from the coal mine monitoring systems. The in-formation fusion mode was analyzed. An algorithm was designed based on this analysis and some simulation results were given. Finally,conclusions that could provide auxiliary decision making information to the coal mine dispatching officers were presented.
基金Liaoning Province Technology Key Project(2007231003,2006220019)Liaoning Province Talent Fund Projects(2005219005,2007R24)Liaoning Province Innovative Team Projects(2007T071,2006T076)
文摘The traditional open pit mine slope deformation monitoring system can not use the monitoring information coming from many monitoring points at the same time, can only using the monitoring data coming from a key monitoring point,and that is to say it can only handle one-dimensional time series.Given this shortage in the monitoring, the multi-sensor information fusion in the state estimation techniques would be intro- duced to the slope deformation monitoring system,and by the dynamic characteristics of deformation slope,the open pit slope would be regarded as a dynamic goal,the condi- tion monitoring of which would be regarded as a dynamic target tracking.Distributed In- formation fusion technology with feedback was used to process the monitoring data and on this basis Klman filtering algorithms was introduced,and the simulation examples was used to prove its effectivenes.
基金Supported by the Ministerial Level Advanced Research Foundation(40401060305)
文摘In order to improve the ability of a bionic quadruped robot to percept the location of obstacles in a complex and dynamic environment, the information fusion between an ultrasonic sensor and a binocular sensor was studied under the condition that the robot moves in the Walk gait on a structured road. Firstly, the distance information of obstacles from these two sensors was separately processed by the Kalman filter algorithm, which largely reduced the noise interference. After that, we obtained two groups of estimated distance values from the robot to the obstacle and a variance of the estimation value. Additionally, a fusion of the estimation values and the variances was achieved based on the STF fusion algorithm. Finally, a simulation was performed to show that the curve of a real value was tracked well by that of the estimation value, which attributes to the effectiveness of the Kalman filter algorithm. In contrast to statistics before fusion, the fusion variance of the estimation value was sharply decreased. The precision of the position information is 4. 6 cm, which meets the application requirements of the robot.
文摘To Meet the requirements of multi-sensor data fusion in diagnosis for complex equipment systems,a novel, fuzzy similarity-based data fusion algorithm is given. Based on fuzzy set theory, it calculates the fuzzy similarity among a certain sensor's measurement values and the multiple sensor's objective prediction values to determine the importance weigh of each sensor,and realizes the multi-sensor diagnosis parameter data fusion.According to the principle, its application software is also designed. The applied example proves that the algorithm can give priority to the high-stability and high -reliability sensors and it is laconic ,feasible and efficient to real-time circumstance measure and data processing in engine diagnosis.
文摘This paper derives a square-root information-type filtering algorithm for nonlinear multi-sensor fusion problems using the cubature Kalman filter theory. The resulting filter is called the square-root cubature Information filter (SCIF). The SCIF propagates the square-root information matrices derived from numerically stable matrix operations and is therefore numerically robust. The SCIF is applied to a highly maneuvering target tracking problem in a distributed sensor network with feedback. The SCIF’s performance is finally compared with the regular cubature information filter and the traditional extended information filter. The results, presented herein, indicate that the SCIF is the most reliable of all three filters and yields a more accurate estimate than the extended information filter.
基金Supported by the National Natural Science Foundation of China(50874106)the National High Technology Research and Development Program of China(2007AA06Z114)
文摘In view of the deficiency of current gas monitoring systems in coal mine roadwayexcavation, a two-level information fusion technology, which adopted the adaptiveweighted algorithm and the BP neural network technology, was applied to gas monitoring.The results show that the adaptive weighted algorithm can realize self-regulation by decreasingthe weight value of the failed sensor automatically, so as to eliminate the effect ofthe failed sensor and ensure the effectiveness and accuracy of the gas monitoring system.The BP neural network can not only effectively predict the gas gush quantity of the excavationroadway, but also accurately calculate the gas concentration in the region whereone or more sensors have failed, so as to provide the basis for judging the safety status ofthe roadway excavation.The experiments prove the superiority and feasibility of the applicationof information fusion in gas monitoring.
基金Supported by the National Natural Science Foundation of China(No.61304017,11372309)Key Technology Development Project of Jilin Province(No.20150204074GX)+1 种基金the Project Development Plan of Science and Technology(No.20150520111zh)the Provincial Special Funds Project of Science and Technology Cooperation(No.2014SYHZ0004)
文摘Altitude regulation is a fundamental problem in UAV(unmanned aerial vehicles) control to ensure hovering and autonomous navigation performance.However,data from altitude sensors may be unstable by interference.A digital-filter-based improved adaptive Kalman method is proposed to improve accuracy and reliability of the altitude measurement information.A unique sensor data fusion structure is designed to make different sensors switch automatically in different environment.Simulation and experimental results show that an improved Sage-Husa adaptive extended Kalman filter(SHAEKF) is adopted in altitude data fusion which means that altitude error is limited to 1.5m in high altitude and 1.2m near the ground.This method is proved feasible and effective through hovering flight test and three-dimensional track flight experiment.
基金supported by National High Technical Research and Development Program of China(863 Program)under Grant No.2011AA7031024GNational Natural Science Foundation of China under Grant No.90204014
文摘Towards the problems of existing detection methods,a novel real-time detection method(DMFIF) based on fractal and information fusion is proposed.It focuses on the intrinsic macroscopic characteristics of network,which reflect not the "unique" abnormalities of P2P botnets but the "common" abnormalities of them.It regards network traffic as the signal,and synthetically considers the macroscopic characteristics of network under different time scales with the fractal theory,including the self-similarity and the local singularity,which don't vary with the topology structures,the protocols and the attack types of P2P botnet.At first detect traffic abnormalities of the above characteristics with the nonparametric CUSUM algorithm,and achieve the final result by fusing the above detection results with the Dempster-Shafer evidence theory.Moreover,the side effect on detecting P2P botnet which web applications generated is considered.The experiments show that DMFIF can detect P2P botnet with a higher degree of precision.
基金supported by the National Natural Science Foundation of China(Grant No.52272438)the Jiangsu Agricultural Science and Technology Innovation[Grant No.CX(21)3149]+1 种基金the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(Grant No.Yueshengjihua-2206)the Jiangsu Province and Education Ministry Co-sponsored Synergistic Innovation Center of Modern Agricultural Equipment(Grant No.XTCX2007).
文摘Field environmental sensing can acquire real-time environmental information,which will be applied to field operation,through the fusion of multiple sensors.Multi-sensor fusion refers to the fusion of information obtained from multiple sensors using more advanced data processing methods.The main objective of applying this technology in field environment perception is to acquire real-time environmental information,making agricultural mechanical devices operate better in complex farmland environment with stronger sensing ability and operational accuracy.In this paper,the characteristics of sensors are studied to clarify the advantages and existing problems of each type of sensors and point out that multiple sensors can be introduced to compensate for the information loss.Secondly,the mainstream information fusion types at present are outlined.The characteristics,advantages and disadvantages of different fusion methods are analyzed.The important studies and applications related to multi-sensor information fusion technology published at home and abroad are listed.Eventually,the existing problems in the field environment sensing at present are summarized and the prospect for future of sensors precise sensing,multi-dimensional fusion strategies,discrepancies in sensor fusion and agricultural information processing are proposed in hope of providing reference for the deeper development of smart agriculture.
文摘This paper introduces the image fusion approach of multi-resolutionanalysis-based intensity modulation (MRAIM) to produce the high-resolution multi-spectral imagesfrom high-resolution panchromatic image and low-resolution multi-spectral images for navigationinformation infrastructure. The mathematical model of image fusion is derived according to theprinciple of remote sensing image formation. It shows that the pixel values of a high-resolutionmulti-spectral images are determined by the pixel values of the approximation of a high-resolutionpanchromatic image at the resolution level of low-resolution multi-spectral images, and in the pixelvalae computation the M-band wavelet theory and the a trous algorithm are then used. In order toevaluate the MRAIM approach, an experiment has been carried out on the basis of the IKONOS 1 mpanchromatic image and 4 m multi-spectral images. The result demonstrates that MRAIM image fusionapproach gives promising fusion results and it can be used to produce the high-resolution remotesensing images required for navigation information infrastructures.
基金Supported by the National Natural Science Foundations of China(No.61300214,61170243)the Science and Technology Innovation Team Support Plan of Education Department of Henan Province(No.13IRTSTHN021)+2 种基金the Science and Technology Research Key Project of Education Department of Henan Province(No.13A413066)the Basic and Frontier Technology Research Plan of Henan Province(No.132300410148)the Funding Scheme of Young Key Teacher of Henan Province Universities,and the Key Project of Teaching Reform Research of Henan University(No.HDXJJG2013-07)
文摘The reasonable measuring of particle weight and effective sampling of particle state are consid- ered as two important aspects to obtain better estimation precision in particle filter. Aiming at the comprehensive treatment of above problems, a novel two-stage prediction and update particle filte- ring algorithm based on particle weight optimization in multi-sensor observation is proposed. Firstly, combined with the construction of muhi-senor observation likelihood function and the weight fusion principle, a new particle weight optimization strategy in multi-sensor observation is presented, and the reliability and stability of particle weight are improved by decreasing weight variance. In addi- tion, according to the prediction and update mechanism of particle filter and unscented Kalman fil- ter, a new realization of particle filter with two-stage prediction and update is given. The filter gain containing the latest observation information is used to directly optimize state estimation in the frame- work, which avoids a large calculation amount and the lack of universality in proposal distribution optimization way. The theoretical analysis and experimental results show the feasibility and efficiency of the proposed algorithm.
基金supported by:The Key Project of National Natural Science Foundation of China(U21A20125)The Open Project of State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines(SKLMRDPC21KF03)+5 种基金The National Key Research and Development Program of China(2020YFB1314203,2020YFB1314103)The Open Project of Key Laboratory of Conveyance and Equipment(KLCE2021-05)The Science and Technology Research Project of Jiangxi Provincial Department of Education(GJJ210639)The Supply and Demand Linking Employment Education Project of the Ministry of Education(20220100621)The Open Project of State Key Laboratory for Manufacturing Systems Engineering(sklms2023009)The Suzhou Basic Research Project(SJC2023003).
文摘Angular contact ball bearings have been widely used in machine tool spindles,and the bearing preload plays an important role in the performance of the spindle.In order to solve the problems of the traditional optimal preload prediction method limited by actual conditions and uncertainties,a roller bearing preload test method based on the improved D-S evidence theorymulti-sensor fusion method was proposed.First,a novel controllable preload system is proposed and evaluated.Subsequently,multiple sensors are employed to collect data on the bearing parameters during preload application.Finally,a multisensor fusion algorithm is used to make predictions,and a neural network is used to optimize the fitting of the preload data.The limitations of conventional preload testing methods are identified,and the integration of complementary information frommultiple sensors is used to achieve accurate predictions,offering valuable insights into the optimal preload force.Experimental results demonstrate that the multi-sensor fusion approach outperforms traditional methods in accurately measuring the optimal preload for rolling bearings.
基金co-supported by the National Natural Science Foundation of China(Nos.62233003 and 62073072)the Key Projects of Key R&D Program of Jiangsu Province,China(Nos.BE2020006 and BE2020006-1)the Shenzhen Science and Technology Program,China(Nos.JCYJ20210324132202005 and JCYJ20220818101206014).
文摘Multi-Source Information Fusion(MSIF),as a comprehensive interdisciplinary field based on modern information technology,has gained significant research value and extensive application prospects in various domains,attracting high attention and interest from scholars,engineering experts,and practitioners worldwide.Despite achieving fruitful results in both theoretical and applied aspects over the past five decades,there remains a lack of comprehensive and systematic review articles that provide an overview of recent development in MSIF.In light of this,this paper aims to assist researchers and individuals interested in gaining a quick understanding of the relevant theoretical techniques and development trends in MSIF,which conducts a statistical analysis of academic reports and related application achievements in the field of MSIF over the past two decades,and provides a brief overview of the relevant theories,methodologies,and application domains,as well as key issues and challenges currently faced.Finally,an analysis and outlook on the future development directions of MSIF are presented.
基金This work was supported by the National Natural Science Foundation of China(No.51876119)the Shanghai Pujiang Program(No.17PJD017).
文摘The conventional control methods of variable air volume (VAV) air conditioning systems usually assume that the indoor air is well mixed, and consider each building zone as one node with homogeneous temperature distribution. The average temperature is subsequently used as the controlled parameter in the VAV cascade control process, which might cause uneven temperature distribution and unsatisfactory thermal comfort. This paper presents a coupled simulation of computational fluid dynamics (CFD) and building energy simulation (BES) for the VAV system in an office building located in Shanghai for the purpose of simulating the building, the VAV control system, and indoor thermal environment simultaneously. An external interface is developed to integrate the CFD and BES models based on quasi-dynamic coupling approach. Based upon the developed co-simulation platform, the novel VAV control method is further proposed by fusing information from multiple sensors. By adding two temperature sensors to constrain the thermal comfort of the occupied zone, the supply air temperature setpoint of the VAV terminal unit can be reset in real time. The novel control method is embedded into the co-simulation platform and compared with the conventional VAV control approach. The results illustrate that the temperature distribution under the proposed method is more uniform. At most times of the typical test day, the air diffusion performance indexes (ADPIs) for the proposed method are above 80%, while the ADPIs for the conventional control method are between 60% and 80%. Due to multi-sensor information fusion, the proposed VAV control approach has better ability to ensure the indoor thermal comfort.
基金Supported by the National Natural Science Foundation of China(No.61300214)the National Natural Science Foundation of Henan Province(No.132300410148)+1 种基金the Post-doctoral Science Foundation of China(No.2014M551999)the Funding Scheme of Young Key Teacher ofHenan Province Universities(No.2013GGJS-026)
文摘Aiming at the effective realization of particle filter for maneuvering target tracking in multi-sensor measurements,a novel multi-sensor multiple model particle filtering algorithm with correlated noises is proposed.Combined with the kinetic evolution equation of target state,a multi-sensor multiple model particle filter is firstly constructed,which is also used as the basic framework of a new algorithm.In the new algorithm,in order to weaken the adverse influence from random measurement noises in the measuring process of particle weight,a weight optimization strategy is introduced to improve the reliability and stability of particle weight.In addition,considering the correlated noise existing in the practical engineering,a decoupling method of correlated noise is given by the rearrangement and transformation of the state transition equation and measurement equation.Since the weight optimization strategy and noise decoupling method adopt respectively the center fusion structure and the off-line way,it improves the adverse effect effectively on computational complexity for increasing state dimension and sensor number.Finally,the theoretical analysis and experimental results show the feasibility and efficiency of the proposed algorithm.
基金Supported by National Natural Science Foundation of China (No.60874063)Key Laboratory of Electronics Engineering,College of Heilongjiang Province (No.DZZD2010-5),and Science and Automatic Control Key Laboratory of Heilongjiang University
文摘For the multi-sensor linear discrete time-invariant stochastic systems with correlated measurement noises and unknown noise statistics,an on-line noise statistics estimator is obtained using the correlation method.Substituting it into the optimal weighted fusion steady-state white noise deconvolution estimator based on the Kalman filtering,a self-tuning weighted measurement fusion white noise deconvolution estimator is presented.By the Dynamic Error System Analysis(DESA) method,it proved that the self-tuning fusion white noise deconvolution estimator converges to the steady-state optimal fusion white noise deconvolution estimator in a realization.Therefore,it has the asymptotically global optimality.A simulation example for the tracking system with 3 sensors and the Bernoulli-Gaussian input white noise shows its effectiveness.
文摘The jamming resource allocation problem of the aircraft formation cooperatively jamming netted radar system is investigated.An adaptive allocation strategy based on dynamic adaptive discrete cuckoo search algorithm(DADCS)is proposed,whose core is to adjust allocation scheme of limited jamming resource of aircraft formation in real time to maintain the best jamming effectiveness against netted radar system.Firstly,considering the information fusion rules and different working modes of the netted radar system,a two-factor jamming effectiveness evaluation function is constructed,detection probability and aiming probability are adopted to characterize jamming effectiveness against netted radar system in searching and tracking mode,respectively.Then a nonconvex optimization model for cooperatively jamming netted radar system is established.Finally,a dynamic adaptive discrete cuckoo search algorithm(DADCS)is constructed by improving path update strategies and introducing a global learning mechanism,and a three-step solution method is proposed subsequently.Simulation results are provided to demonstrate the advantages of the proposed optimization strategy and the effectiveness of the improved algorithm.
基金This project is supported by National Natural Science Foundation of China (10626029) Jiangxi Province Natural Science Foundation of China (0611082) Science and Technology Project of Jiangxi province educational department in China (GJJ08350)
文摘The interval numbers are used to types and observation of sensors, a new fusion represent the characteristic values of object method for multi-sensor object recognition is proposed from the viewpoint of decision making theory. The method defines the distance matrix and grey association matrix between all object types and unknown object. After solving the optimization problem of maximizing the standard deviations for all attributes, the weights of the attributes are obtained. Thus, the result of recognition for the unknown object is given by the grey association degree. This method avoids the subjectivity of selecting attributes weights. It is straightforward and can be performed on computer easily. The simulated example demonstrates the feasibility and effectiveness of the proposed method.