The netted radar system(NRS)has been proved to possess unique advantages in anti-jamming and improving target tracking performance.Effective resource management can greatly ensure the combat capability of the NRS.In t...The netted radar system(NRS)has been proved to possess unique advantages in anti-jamming and improving target tracking performance.Effective resource management can greatly ensure the combat capability of the NRS.In this paper,based on the netted collocated multiple input multiple output(CMIMO)radar,an effective joint target assignment and power allocation(JTAPA)strategy for tracking multi-targets under self-defense blanket jamming is proposed.An architecture based on the distributed fusion is used in the radar network to estimate target state parameters.By deriving the predicted conditional Cramer-Rao lower bound(PC-CRLB)based on the obtained state estimation information,the objective function is formulated.To maximize the worst case tracking accuracy,the proposed JTAPA strategy implements an online target assignment and power allocation of all active nodes,subject to some resource constraints.Since the formulated JTAPA is non-convex,we propose an efficient two-step solution strategy.In terms of the simulation results,the proposed algorithm can effectively improve tracking performance in the worst case.展开更多
A novel data association algorithm is developed based on fuzzy geneticalgorithms (FGAs). The static part of data association uses one FGA to determine both the lists ofcomposite measurements and the solutions of m-bes...A novel data association algorithm is developed based on fuzzy geneticalgorithms (FGAs). The static part of data association uses one FGA to determine both the lists ofcomposite measurements and the solutions of m-best S-D assignment. In the dynamic part of dataassociation, the results of the m-best S-D assignment are then used in turn, with a Kalman filterstate estimator, in a multi-population FGA-based dynamic 2D assignment algorithm to estimate thestates of the moving targets over time. Such an assignment-based data association algorithm isdemonstrated on a simulated passive sensor track formation and maintenance problem. The simulationresults show its feasibility in multi-sensor multi-target tracking. Moreover, algorithm developmentand real-time problems are briefly discussed.展开更多
基金National Natural Science Foundation of China(Grant No.62001506)to provide fund for conducting experiments。
文摘The netted radar system(NRS)has been proved to possess unique advantages in anti-jamming and improving target tracking performance.Effective resource management can greatly ensure the combat capability of the NRS.In this paper,based on the netted collocated multiple input multiple output(CMIMO)radar,an effective joint target assignment and power allocation(JTAPA)strategy for tracking multi-targets under self-defense blanket jamming is proposed.An architecture based on the distributed fusion is used in the radar network to estimate target state parameters.By deriving the predicted conditional Cramer-Rao lower bound(PC-CRLB)based on the obtained state estimation information,the objective function is formulated.To maximize the worst case tracking accuracy,the proposed JTAPA strategy implements an online target assignment and power allocation of all active nodes,subject to some resource constraints.Since the formulated JTAPA is non-convex,we propose an efficient two-step solution strategy.In terms of the simulation results,the proposed algorithm can effectively improve tracking performance in the worst case.
文摘A novel data association algorithm is developed based on fuzzy geneticalgorithms (FGAs). The static part of data association uses one FGA to determine both the lists ofcomposite measurements and the solutions of m-best S-D assignment. In the dynamic part of dataassociation, the results of the m-best S-D assignment are then used in turn, with a Kalman filterstate estimator, in a multi-population FGA-based dynamic 2D assignment algorithm to estimate thestates of the moving targets over time. Such an assignment-based data association algorithm isdemonstrated on a simulated passive sensor track formation and maintenance problem. The simulationresults show its feasibility in multi-sensor multi-target tracking. Moreover, algorithm developmentand real-time problems are briefly discussed.