During the past decade,rapid advances in wireless communication technologies have made it possible for users to access desired services using hand-held devices.Service providers have hosted multiple servers to ensure ...During the past decade,rapid advances in wireless communication technologies have made it possible for users to access desired services using hand-held devices.Service providers have hosted multiple servers to ensure seamless online services to end-users.To ensure the security of this online communication,researchers have proposed several multi-server authentication schemes incorporating various cryptographic primitives.Due to the low power and computational capacities of mobile devices,the hash-based multi-server authenticated key agreement schemes with offline Registration Server(RS)are the most efficient choice.Recently,Kumar-Om presented such a scheme and proved its security against all renowned attacks.However,we find that their scheme bears an incorrect login phase,and is unsafe to the trace attack,the Session-Specific Temporary Information Attack(SSTIA),and the Key Compromise Impersonation Attack(KCIA).In fact,all of the existing multi-server authentication schemes(hash-based with offline RS)do not withstand KCLA.To deal with this situation,we propose an improved hash-based multi-server authentication scheme(with offline RS).We analyze the security of the proposed scheme under the random oracle model and use the t4Automated Validation of Internet Security Protocols and Applications''(AVISPA)tool.The comparative analysis of communication overhead and computational complexity metrics shows the efficiency of the proposed scheme.展开更多
Multi-server authenticated key agreement schemes have attracted great attention to both academia and industry in recent years.However,traditional authenticated key agreement schemes in the single-server environment ar...Multi-server authenticated key agreement schemes have attracted great attention to both academia and industry in recent years.However,traditional authenticated key agreement schemes in the single-server environment are not suitable for the multi-server environment because the user has to register on each server when he/she wishes to log in various servers for different service.Moreover,it is unreasonable to consider all servers are trusted since the server in a multi-server environment may be a semi-trusted party.In order to overcome these difficulties,we designed a secure three-factor multi-server authenticated key agreement protocol based on elliptic curve cryptography,which needs the user to register only once at the registration center in order to access all semi-trusted servers.The proposed scheme can not only against various known attacks but also provides high computational efficiency.Besides,we have proved our scheme fulfills mutual authentication by using the authentication test method.展开更多
Since network services are provided cooperatively by multiple servers in the lnternet, the authentication protocols for multiserver architecture are required by Internetbased services, such as online game, online trad...Since network services are provided cooperatively by multiple servers in the lnternet, the authentication protocols for multiserver architecture are required by Internetbased services, such as online game, online trade and so on. Recently, Li et al. analyzed Lee et al.'s protocol and proposed an improved dynamic identity based authentication protocol for multi-server architecture. They claimed that their protocol provides user's anonymity, mutual authentication and the session key agreement against several kinds of attacks. In this paper, a cryptanalysis on Lee et al.'s scheme shows that Lee et al's protocol is also vulnerable to malicious server attack, stolen smart card attack and leak-of-verifier attack. Moreover, Li e/ al.'s improved protocol is also vulnerable to all these attacks. Further cryptanalysis reveals that Li et al.'s improved protocol is susceptible to collusion attack.展开更多
With the development of communication technologies,various mobile devices and different types of mobile services became available.The emergence of these services has brought great convenience to our lives.The multi-se...With the development of communication technologies,various mobile devices and different types of mobile services became available.The emergence of these services has brought great convenience to our lives.The multi-server architecture authentication protocols for mobile cloud computing were proposed to ensure the security and availability between mobile devices and mobile services.However,most of the protocols did not consider the case of hierarchical authentication.In the existing protocol,when a mobile user once registered at the registration center,he/she can successfully authenticate with all mobile service providers that are registered at the registration center,but real application scenarios are not like this.For some specific scenarios,some mobile service providers want to provide service only for particular users.For this reason,we propose a new hierarchical multi-server authentication protocol for mobile cloud computing.The proposed protocol ensures only particular types of users can successfully authenticate with certain types of mobile service providers.The proposed protocol reduces computing and communication costs by up to 42.6%and 54.2%compared to two superior protocols.The proposed protocol can also resist the attacks known so far.展开更多
Currently, smart card based remote user authentication schemes have been widely adopted due to their low cost and convenient portability. With the purpose of using various different internet services with single regis...Currently, smart card based remote user authentication schemes have been widely adopted due to their low cost and convenient portability. With the purpose of using various different internet services with single registration and to protect the users from being tracked, various dynamic ID based multi-server authentication protocols have been proposed. Recently, Li et al. proposed an efficient and secure dynamic ID based authentication protocol using smart cards. They claimed that their protocol provides strong security. In this paper, we have demonstrated that Li et al.’s protocol is vulnerable to replay attack, denial of service attack, smart card lost attack, eavesdropping attack and server spoofing attacks.展开更多
With the advancement in internet technologies, the number of servers has increased remarkably to provide more services to the end users. These services are provided over the public channels, which are insecure and sus...With the advancement in internet technologies, the number of servers has increased remarkably to provide more services to the end users. These services are provided over the public channels, which are insecure and susceptible to interception, modification, and deletion. To provide security, registered entities are authenticated and then a session key is established between them to communicate securely. The conventional schemes anow a user to access services only after their independent registration with each desired server in a multiserver system. Therefore, a user must possess multiple smartcards and memorize various identities and passwords for obtaining services from multiple servers. This has led to the adoption of multiserver authentication in which a user accesses services of multiple servers after registering himself at only one central authority. Recently, Kumar and Om discussed a scheme for multiserver environment by using smartcard. Since the user-memorized passwords are of low entropy, it is possible for an attacker to guess them. This paper uses biometric information of user to enhance the security of the scheme by Kumar and Ore. Moreover, we conducted rigorous security analyses (informal and formal) in this study to prove the security of the proposed scheme against all known attacks. We also simulated our scheme by using the automated tool, ProVerif, to prove its secrecy and authentication properties. A comparative study of the proposed scheme with the existing related schemes shows its effectiveness.展开更多
In today’s information technology(IT)world,the multi-hop wireless sensor networks(MHWSNs)are considered the building block for the Internet of Things(IoT)enabled communication systems for controlling everyday tasks o...In today’s information technology(IT)world,the multi-hop wireless sensor networks(MHWSNs)are considered the building block for the Internet of Things(IoT)enabled communication systems for controlling everyday tasks of organizations and industry to provide quality of service(QoS)in a stipulated time slot to end-user over the Internet.Smart city(SC)is an example of one such application which can automate a group of civil services like automatic control of traffic lights,weather prediction,surveillance,etc.,in our daily life.These IoT-based networks with multi-hop communication and multiple sink nodes provide efficient communication in terms of performance parameters such as throughput,energy efficiency,and end-to-end delay,wherein low latency is considered a challenging issue in next-generation networks(NGN).This paper introduces a single and parallels stable server queuing model with amulti-class of packets and native and coded packet flowto illustrate the simple chain topology and complexmultiway relay(MWR)node with specific neighbor topology.Further,for improving data transmission capacity inMHWSNs,an analytical framework for packet transmission using network coding at the MWR node in the network layer with opportunistic listening is performed by considering bi-directional network flow at the MWR node.Finally,the accuracy of the proposed multi-server multi-class queuing model is evaluated with and without network coding at the network layer by transmitting data packets.The results of the proposed analytical framework are validated and proved effective by comparing these analytical results to simulation results.展开更多
Most of the password based authentication protocols make use of the single authentication server for user's authentication. User's verifier information stored on the single server is a main point of susceptibi...Most of the password based authentication protocols make use of the single authentication server for user's authentication. User's verifier information stored on the single server is a main point of susceptibility and remains an attractive target for the attacker. On the other hand, multi-server architecture based authentication protocols make it difficult for the attacker to find out any significant authentication information related to the legitimate users. In 2009, Liao and Wang proposed a dynamic identity based remote user authentication protocol for multi-server environment. However, we found that Liao and Wang's protocol is susceptible to malicious server attack and malicious user attack. This paper presents a novel dynamic identity based authentication protocol for multi-server architecture using smart cards that resolves the aforementioned flaws, while keeping the merits of Liao and Wang's protocol. It uses two-server paradigm by imposing different levels of trust upon the two servers and the user's verifier information is distributed between these two servers known as the service provider server and the control server. The proposed protocol is practical and computational efficient because only nonce, one-way hash function and XOR operations are used in its implementation. It provides a secure method to change the user's password without the server's help. In e-commerce, the number of servers providing the services to the user is usually more than one and hence secure authentication protocols for multi-server environment are required.展开更多
In order to meet people’s demand for various types of network services,researchers have conducted extensive research on authentication schemes for multi-server architecture.Although various schemes have been proposed...In order to meet people’s demand for various types of network services,researchers have conducted extensive research on authentication schemes for multi-server architecture.Although various schemes have been proposed,most of them still have safety defects and fail to meet safety requirements.Recently,Haq et al presented an efficient Hash-based authenticated key agreement scheme for multi-server scheme and claimed that their scheme can withstand all well-known attacks.However,we find that their scheme is vulnerable to replay attack,tracking attack and malicious server impersonation user attack.Then we propose an improved scheme.We also analyze the security of the improved scheme and compare with Haq et al’s scheme in security and computational efficiency.Furthermore,we use the AVISPA(Automated Validation of Internet Security Protocols and Applications)tool to verify the security of the improved scheme.展开更多
As service demands rise and expand single-server user authentication has become unable to satisfy actual application demand. At the same time identity and password based authentication schemes are no longer adequate b...As service demands rise and expand single-server user authentication has become unable to satisfy actual application demand. At the same time identity and password based authentication schemes are no longer adequate because of the insecurity of user identity and password. As a result biometric user authentication has emerged as a more reliable and attractive method. However, existing biometric authentication schemes are vulnerable to some common attacks and provide no security proof, some of these biometric schemes are also either inefficient or lack sufficient concern for privacy. In this paper, we propose an anonymous and efficient remote biometric user authentication scheme for a multi-server architecture with provable security. Through theoretical mathematic deduction, simulation implementation, and comparison with related work, we demonstrate that our approach can remove the aforementioned weaknesses and is well suited for a multi- server environment.展开更多
With the existing anonymous authentication schemes based on biometrics, the user and the server can create the same session key after mutual authentication. If the anonymous authentication scheme is applied in the ele...With the existing anonymous authentication schemes based on biometrics, the user and the server can create the same session key after mutual authentication. If the anonymous authentication scheme is applied in the electronic medical environment, it is also necessary to consider that the patient may access multiple hospital servers. Based on three factors of smart card, random number and biometrics, an anonymous authentication scheme in the electronic medical environment is proposed. In order to reduce the burden of the medical registration and certification center(HC), in the proposed anonymous authentication scheme, the patient only needs to register with HC once, then he/she can apply for visiting each hospital that has joined the medical servers. Security analysis shows that the proposed scheme has anonymity and dual authentication, and can resist various types of attacks, such as insider attack, modification attack, replay attack and smart card loss attack. Efficiency analysis shows that the calculation cost of the proposed scheme in the registration and login phase is lower, and it is slightly higher than Lei's scheme and Khan et al's scheme in the authentication phase. The proposed scheme can not only resist various types of attacks, but also support dual authentication and multi-server environment. With a little modification, the proposed scheme can also be used to other application scenarios requiring anonymous authentication.展开更多
文摘During the past decade,rapid advances in wireless communication technologies have made it possible for users to access desired services using hand-held devices.Service providers have hosted multiple servers to ensure seamless online services to end-users.To ensure the security of this online communication,researchers have proposed several multi-server authentication schemes incorporating various cryptographic primitives.Due to the low power and computational capacities of mobile devices,the hash-based multi-server authenticated key agreement schemes with offline Registration Server(RS)are the most efficient choice.Recently,Kumar-Om presented such a scheme and proved its security against all renowned attacks.However,we find that their scheme bears an incorrect login phase,and is unsafe to the trace attack,the Session-Specific Temporary Information Attack(SSTIA),and the Key Compromise Impersonation Attack(KCIA).In fact,all of the existing multi-server authentication schemes(hash-based with offline RS)do not withstand KCLA.To deal with this situation,we propose an improved hash-based multi-server authentication scheme(with offline RS).We analyze the security of the proposed scheme under the random oracle model and use the t4Automated Validation of Internet Security Protocols and Applications''(AVISPA)tool.The comparative analysis of communication overhead and computational complexity metrics shows the efficiency of the proposed scheme.
基金This work is supported by the Sichuan education department research project(No.16226483)Sichuan Science and Technology Program(No.2018GZDZX0008)+1 种基金Chengdu Science and Technology Program(No.2018-YF08-00007-GX)the National Natural Science Foundation of China(No.61872087).
文摘Multi-server authenticated key agreement schemes have attracted great attention to both academia and industry in recent years.However,traditional authenticated key agreement schemes in the single-server environment are not suitable for the multi-server environment because the user has to register on each server when he/she wishes to log in various servers for different service.Moreover,it is unreasonable to consider all servers are trusted since the server in a multi-server environment may be a semi-trusted party.In order to overcome these difficulties,we designed a secure three-factor multi-server authenticated key agreement protocol based on elliptic curve cryptography,which needs the user to register only once at the registration center in order to access all semi-trusted servers.The proposed scheme can not only against various known attacks but also provides high computational efficiency.Besides,we have proved our scheme fulfills mutual authentication by using the authentication test method.
基金supported by the Key Program of NSFC-Guangdong Union Foundation under Grant No.U1135002Young Foundation of Humanities and Social Sciences of MOE (Ministry of Education in China) of under Grant No.11YJCZH160Foundation for Young Scientists of Jiangxi Province of China under Grant No.20133BCB23016
文摘Since network services are provided cooperatively by multiple servers in the lnternet, the authentication protocols for multiserver architecture are required by Internetbased services, such as online game, online trade and so on. Recently, Li et al. analyzed Lee et al.'s protocol and proposed an improved dynamic identity based authentication protocol for multi-server architecture. They claimed that their protocol provides user's anonymity, mutual authentication and the session key agreement against several kinds of attacks. In this paper, a cryptanalysis on Lee et al.'s scheme shows that Lee et al's protocol is also vulnerable to malicious server attack, stolen smart card attack and leak-of-verifier attack. Moreover, Li e/ al.'s improved protocol is also vulnerable to all these attacks. Further cryptanalysis reveals that Li et al.'s improved protocol is susceptible to collusion attack.
基金This work is funded by the Chengdu Science and Technology Bureau No.2016-XT00-00015-GXthe Civil Aviation Administration of China No.PSDSA201802.
文摘With the development of communication technologies,various mobile devices and different types of mobile services became available.The emergence of these services has brought great convenience to our lives.The multi-server architecture authentication protocols for mobile cloud computing were proposed to ensure the security and availability between mobile devices and mobile services.However,most of the protocols did not consider the case of hierarchical authentication.In the existing protocol,when a mobile user once registered at the registration center,he/she can successfully authenticate with all mobile service providers that are registered at the registration center,but real application scenarios are not like this.For some specific scenarios,some mobile service providers want to provide service only for particular users.For this reason,we propose a new hierarchical multi-server authentication protocol for mobile cloud computing.The proposed protocol ensures only particular types of users can successfully authenticate with certain types of mobile service providers.The proposed protocol reduces computing and communication costs by up to 42.6%and 54.2%compared to two superior protocols.The proposed protocol can also resist the attacks known so far.
文摘Currently, smart card based remote user authentication schemes have been widely adopted due to their low cost and convenient portability. With the purpose of using various different internet services with single registration and to protect the users from being tracked, various dynamic ID based multi-server authentication protocols have been proposed. Recently, Li et al. proposed an efficient and secure dynamic ID based authentication protocol using smart cards. They claimed that their protocol provides strong security. In this paper, we have demonstrated that Li et al.’s protocol is vulnerable to replay attack, denial of service attack, smart card lost attack, eavesdropping attack and server spoofing attacks.
文摘With the advancement in internet technologies, the number of servers has increased remarkably to provide more services to the end users. These services are provided over the public channels, which are insecure and susceptible to interception, modification, and deletion. To provide security, registered entities are authenticated and then a session key is established between them to communicate securely. The conventional schemes anow a user to access services only after their independent registration with each desired server in a multiserver system. Therefore, a user must possess multiple smartcards and memorize various identities and passwords for obtaining services from multiple servers. This has led to the adoption of multiserver authentication in which a user accesses services of multiple servers after registering himself at only one central authority. Recently, Kumar and Om discussed a scheme for multiserver environment by using smartcard. Since the user-memorized passwords are of low entropy, it is possible for an attacker to guess them. This paper uses biometric information of user to enhance the security of the scheme by Kumar and Ore. Moreover, we conducted rigorous security analyses (informal and formal) in this study to prove the security of the proposed scheme against all known attacks. We also simulated our scheme by using the automated tool, ProVerif, to prove its secrecy and authentication properties. A comparative study of the proposed scheme with the existing related schemes shows its effectiveness.
文摘In today’s information technology(IT)world,the multi-hop wireless sensor networks(MHWSNs)are considered the building block for the Internet of Things(IoT)enabled communication systems for controlling everyday tasks of organizations and industry to provide quality of service(QoS)in a stipulated time slot to end-user over the Internet.Smart city(SC)is an example of one such application which can automate a group of civil services like automatic control of traffic lights,weather prediction,surveillance,etc.,in our daily life.These IoT-based networks with multi-hop communication and multiple sink nodes provide efficient communication in terms of performance parameters such as throughput,energy efficiency,and end-to-end delay,wherein low latency is considered a challenging issue in next-generation networks(NGN).This paper introduces a single and parallels stable server queuing model with amulti-class of packets and native and coded packet flowto illustrate the simple chain topology and complexmultiway relay(MWR)node with specific neighbor topology.Further,for improving data transmission capacity inMHWSNs,an analytical framework for packet transmission using network coding at the MWR node in the network layer with opportunistic listening is performed by considering bi-directional network flow at the MWR node.Finally,the accuracy of the proposed multi-server multi-class queuing model is evaluated with and without network coding at the network layer by transmitting data packets.The results of the proposed analytical framework are validated and proved effective by comparing these analytical results to simulation results.
文摘Most of the password based authentication protocols make use of the single authentication server for user's authentication. User's verifier information stored on the single server is a main point of susceptibility and remains an attractive target for the attacker. On the other hand, multi-server architecture based authentication protocols make it difficult for the attacker to find out any significant authentication information related to the legitimate users. In 2009, Liao and Wang proposed a dynamic identity based remote user authentication protocol for multi-server environment. However, we found that Liao and Wang's protocol is susceptible to malicious server attack and malicious user attack. This paper presents a novel dynamic identity based authentication protocol for multi-server architecture using smart cards that resolves the aforementioned flaws, while keeping the merits of Liao and Wang's protocol. It uses two-server paradigm by imposing different levels of trust upon the two servers and the user's verifier information is distributed between these two servers known as the service provider server and the control server. The proposed protocol is practical and computational efficient because only nonce, one-way hash function and XOR operations are used in its implementation. It provides a secure method to change the user's password without the server's help. In e-commerce, the number of servers providing the services to the user is usually more than one and hence secure authentication protocols for multi-server environment are required.
基金Supported by the Applied Basic and Advanced Technology Research Programs of Tianjin(15JCYBJC15900)。
文摘In order to meet people’s demand for various types of network services,researchers have conducted extensive research on authentication schemes for multi-server architecture.Although various schemes have been proposed,most of them still have safety defects and fail to meet safety requirements.Recently,Haq et al presented an efficient Hash-based authenticated key agreement scheme for multi-server scheme and claimed that their scheme can withstand all well-known attacks.However,we find that their scheme is vulnerable to replay attack,tracking attack and malicious server impersonation user attack.Then we propose an improved scheme.We also analyze the security of the improved scheme and compare with Haq et al’s scheme in security and computational efficiency.Furthermore,we use the AVISPA(Automated Validation of Internet Security Protocols and Applications)tool to verify the security of the improved scheme.
基金This work was supported by the National Natural Sciences Foundation of China (Grant Nos. 61300181, 61272057, 61202434, 61170270, 61100203 and 61121061), the Fundamental Research Funds for the Central Universities (2012RC0612, 2011YB01), China Postdoctoral Science Foundation (2013M530561).
文摘As service demands rise and expand single-server user authentication has become unable to satisfy actual application demand. At the same time identity and password based authentication schemes are no longer adequate because of the insecurity of user identity and password. As a result biometric user authentication has emerged as a more reliable and attractive method. However, existing biometric authentication schemes are vulnerable to some common attacks and provide no security proof, some of these biometric schemes are also either inefficient or lack sufficient concern for privacy. In this paper, we propose an anonymous and efficient remote biometric user authentication scheme for a multi-server architecture with provable security. Through theoretical mathematic deduction, simulation implementation, and comparison with related work, we demonstrate that our approach can remove the aforementioned weaknesses and is well suited for a multi- server environment.
基金Supported by the Key Natural Science Foundation of Anhui Higher Education Institutions (KJ2017A857, KJ2019A0727)。
文摘With the existing anonymous authentication schemes based on biometrics, the user and the server can create the same session key after mutual authentication. If the anonymous authentication scheme is applied in the electronic medical environment, it is also necessary to consider that the patient may access multiple hospital servers. Based on three factors of smart card, random number and biometrics, an anonymous authentication scheme in the electronic medical environment is proposed. In order to reduce the burden of the medical registration and certification center(HC), in the proposed anonymous authentication scheme, the patient only needs to register with HC once, then he/she can apply for visiting each hospital that has joined the medical servers. Security analysis shows that the proposed scheme has anonymity and dual authentication, and can resist various types of attacks, such as insider attack, modification attack, replay attack and smart card loss attack. Efficiency analysis shows that the calculation cost of the proposed scheme in the registration and login phase is lower, and it is slightly higher than Lei's scheme and Khan et al's scheme in the authentication phase. The proposed scheme can not only resist various types of attacks, but also support dual authentication and multi-server environment. With a little modification, the proposed scheme can also be used to other application scenarios requiring anonymous authentication.