Wearing helmetswhile riding electric bicycles can significantly reduce head injuries resulting fromtraffic accidents.To effectively monitor compliance,the utilization of target detection algorithms through traffic cam...Wearing helmetswhile riding electric bicycles can significantly reduce head injuries resulting fromtraffic accidents.To effectively monitor compliance,the utilization of target detection algorithms through traffic cameras plays a vital role in identifying helmet usage by electric bicycle riders and recognizing license plates on electric bicycles.However,manual enforcement by traffic police is time-consuming and labor-intensive.Traditional methods face challenges in accurately identifying small targets such as helmets and license plates using deep learning techniques.This paper proposes an enhanced model for detecting helmets and license plates on electric bicycles,addressing these challenges.The proposedmodel improves uponYOLOv8n by deepening the network structure,incorporating weighted connections,and introducing lightweight convolutional modules.These modifications aim to enhance the precision of small target recognition while reducing the model’s parameters,making it suitable for deployment on low-performance devices in real traffic scenarios.Experimental results demonstrate that the model achieves an mAP@0.5 of 91.8%,showing an 11.5%improvement over the baselinemodel,with a 16.2%reduction in parameters.Additionally,themodel achieves a frames per second(FPS)rate of 58,meeting the accuracy and speed requirements for detection in actual traffic scenarios.展开更多
The development of scientific inquiry and research has yielded numerous benefits in the realm of intelligent traffic control systems, particularly in the realm of automatic license plate recognition for vehicles. The ...The development of scientific inquiry and research has yielded numerous benefits in the realm of intelligent traffic control systems, particularly in the realm of automatic license plate recognition for vehicles. The design of license plate recognition algorithms has undergone digitalization through the utilization of neural networks. In contemporary times, there is a growing demand for vehicle surveillance due to the need for efficient vehicle processing and traffic management. The design, development, and implementation of a license plate recognition system hold significant social, economic, and academic importance. The study aims to present contemporary methodologies and empirical findings pertaining to automated license plate recognition. The primary focus of the automatic license plate recognition algorithm was on image extraction, character segmentation, and recognition. The task of character segmentation has been identified as the most challenging function based on my observations. The license plate recognition project that we designed demonstrated the effectiveness of this method across various observed conditions. Particularly in low-light environments, such as during periods of limited illumination or inclement weather characterized by precipitation. The method has been subjected to testing using a sample size of fifty images, resulting in a 100% accuracy rate. The findings of this study demonstrate the project’s ability to effectively determine the optimal outcomes of simulations.展开更多
A novel reconstruction method to improve the recognition of license plate texts of moving vehicles in real traffic videos is proposed, which fuses complimentary information among low resolution (LR) images to yield ...A novel reconstruction method to improve the recognition of license plate texts of moving vehicles in real traffic videos is proposed, which fuses complimentary information among low resolution (LR) images to yield a high resolution (HR) image. Based on the regularization super-resolution (SR) reconstruction schemes, this paper first introduces a residual gradient (RG) term as a new regularization term to improve the quality of the reconstructed image. Moreover, L1 norm is used to measure the residual data (RD) term and the RG term in order to improve the robustness of the proposed method. Finally, the steepest descent method is exploited to solve the energy functional. Simulated and real acquired video sequence experiments show the effectiveness and practicability of the proposed method and demonstrate its superiority over the bi-cubic interpolation and discontinuity adaptive Markov random field (DAMRF) SR method in both signal to noise ratios (SNR) and visual effects.展开更多
An efficient vehicle detection approach is proposed for traffic surveillance images, which is based on information fusion of vehicle symmetrical contour and license plate position. The vertical symmetry axis of the ve...An efficient vehicle detection approach is proposed for traffic surveillance images, which is based on information fusion of vehicle symmetrical contour and license plate position. The vertical symmetry axis of the vehicle contour in an image is. first detected, and then the vertical and the horizontal symmetry axes of the license plate are detected using the symmetry axis of the vehicle contour as a reference. The vehicle location in an image is determined using license plate symmetry axes and the vertical and the horizontal projection maps of the vehicle edge image. A dataset consisting of 450 images (15 classes of vehicles) is used to test the proposed method. The experimental results indicate that compared with the vehicle contour-based, the license plate location-based, the vehicle texture-based and the Gabor feature-based methods, the proposed method is the best with a detection accuracy of 90.7% and an elapsed time of 125 ms.展开更多
Vehicle license plate (VLP) character segmentation is an important part of the vehicle license plate recognition system (VLPRS).This paper proposes a least square method (LSM) to treat horizontal tilt and vertical til...Vehicle license plate (VLP) character segmentation is an important part of the vehicle license plate recognition system (VLPRS).This paper proposes a least square method (LSM) to treat horizontal tilt and vertical tilt in VLP images.Auxiliary lines are added into the image (or the tilt-corrected image) to make the separated parts of each Chinese character to be an interconnected region.The noise regions will be eliminated after two fusing images are merged according to the minimum principle of gray values. Then,the characters are segmented by projection method (PM) and the final character images are obtained.The experimental results show that this method features fast processing and good performance in segmentation.展开更多
-License plate recognition (LPR) is an image processing technology that is used to identify vehicles by their license plates. This paper presents a license plate recognition algorithm for Saudi car plates based on t...-License plate recognition (LPR) is an image processing technology that is used to identify vehicles by their license plates. This paper presents a license plate recognition algorithm for Saudi car plates based on the support vector machine (SVM) algorithm. The new algorithm is efficient in recognizing the vehicles from the Arabic part of the plate. The performance of the system has been investigated and analyzed. The recognition accuracy of the algorithm is about 93.3%.展开更多
The latest advancements in highway research domain and increase in the number of vehicles everyday led to wider exposure and attention towards the development of efficient Intelligent Transportation System(ITS).One of...The latest advancements in highway research domain and increase in the number of vehicles everyday led to wider exposure and attention towards the development of efficient Intelligent Transportation System(ITS).One of the popular research areas i.e.,Vehicle License Plate Recognition(VLPR)aims at determining the characters that exist in the license plate of the vehicles.The VLPR process is a difficult one due to the differences in viewpoint,shapes,colors,patterns,and non-uniform illumination at the time of capturing images.The current study develops a robust Deep Learning(DL)-based VLPR model using Squirrel Search Algorithm(SSA)-based Convolutional Neural Network(CNN),called the SSA-CNN model.The presented technique has a total of four major processes namely preprocessing,License Plate(LP)localization and detection,character segmentation,and recognition.Hough Transform(HT)is applied as a feature extractor and SSA-CNN algorithm is applied for character recognition in LP.The SSA-CNN method effectively recognizes the characters that exist in the segmented image by optimal tuning of CNN parameters.The HT-SSA-CNN model was experimentally validated using the Stanford Car,FZU Car,and HumAIn 2019 Challenge datasets.The experimentation outcome verified that the presented method was better under several aspects.The projected HT-SSA-CNN model implied the best performance with optimal overall accuracy of 0.983%.展开更多
This paper proposed an improved method for license plate recognition based on hierarchical classification. First, the method of feature extraction and dimension reduction is presented by finding the optimal wavelet pa...This paper proposed an improved method for license plate recognition based on hierarchical classification. First, the method of feature extraction and dimension reduction is presented by finding the optimal wavelet packet basis in the process of wavelet packet decomposition and K-L transform. Then the recognition algorithm is introduced based on feature extraction and hierarchical classification. Finally, the principles and procedures of using support vector machines, Harris corner detection algorithm and digital character classification are explained in detail. Simulation results indicate that the presented recognition algorithm performs well with higher speed and efficiency in recognition.展开更多
Nowadays, license plate recognition for parking systems is a critical task to provide automatic control of customers and payment. This paper introduces a new method for automatic recognition of license plates of vehic...Nowadays, license plate recognition for parking systems is a critical task to provide automatic control of customers and payment. This paper introduces a new method for automatic recognition of license plates of vehicles by mathematical morphology. The proposed method can provide the license plate number of the plates in different light conditions, colors, sizes, and inclination (angles). The algorithm can recognize the license plates of European Union vehicles quickly and correctly. The pattern learning of mathematical skeletons has high efficiency in the process. The performance of the algorithm is demonstrated well by the test in a parking control system.展开更多
基金supported by the Ningxia Key Research and Development Program(Talent Introduction Special Project)Project(2022YCZX0013)North Minzu University 2022 School-Level Scientific Research Platform“Digital Agriculture Enabling Ningxia Rural Revitalization Innovation Team”(2022PT_S10)+1 种基金Yinchuan City University-Enterprise Joint Innovation Project(2022XQZD009)Ningxia Key Research and Development Program(Key Project)Project(2023BDE02001).
文摘Wearing helmetswhile riding electric bicycles can significantly reduce head injuries resulting fromtraffic accidents.To effectively monitor compliance,the utilization of target detection algorithms through traffic cameras plays a vital role in identifying helmet usage by electric bicycle riders and recognizing license plates on electric bicycles.However,manual enforcement by traffic police is time-consuming and labor-intensive.Traditional methods face challenges in accurately identifying small targets such as helmets and license plates using deep learning techniques.This paper proposes an enhanced model for detecting helmets and license plates on electric bicycles,addressing these challenges.The proposedmodel improves uponYOLOv8n by deepening the network structure,incorporating weighted connections,and introducing lightweight convolutional modules.These modifications aim to enhance the precision of small target recognition while reducing the model’s parameters,making it suitable for deployment on low-performance devices in real traffic scenarios.Experimental results demonstrate that the model achieves an mAP@0.5 of 91.8%,showing an 11.5%improvement over the baselinemodel,with a 16.2%reduction in parameters.Additionally,themodel achieves a frames per second(FPS)rate of 58,meeting the accuracy and speed requirements for detection in actual traffic scenarios.
文摘The development of scientific inquiry and research has yielded numerous benefits in the realm of intelligent traffic control systems, particularly in the realm of automatic license plate recognition for vehicles. The design of license plate recognition algorithms has undergone digitalization through the utilization of neural networks. In contemporary times, there is a growing demand for vehicle surveillance due to the need for efficient vehicle processing and traffic management. The design, development, and implementation of a license plate recognition system hold significant social, economic, and academic importance. The study aims to present contemporary methodologies and empirical findings pertaining to automated license plate recognition. The primary focus of the automatic license plate recognition algorithm was on image extraction, character segmentation, and recognition. The task of character segmentation has been identified as the most challenging function based on my observations. The license plate recognition project that we designed demonstrated the effectiveness of this method across various observed conditions. Particularly in low-light environments, such as during periods of limited illumination or inclement weather characterized by precipitation. The method has been subjected to testing using a sample size of fifty images, resulting in a 100% accuracy rate. The findings of this study demonstrate the project’s ability to effectively determine the optimal outcomes of simulations.
基金The National Natural Science Foundation of China (No.60972001)the National Key Technology R&D Program of China duringthe 11th Five-Year Plan Period (No.2009BAG13A06)
文摘A novel reconstruction method to improve the recognition of license plate texts of moving vehicles in real traffic videos is proposed, which fuses complimentary information among low resolution (LR) images to yield a high resolution (HR) image. Based on the regularization super-resolution (SR) reconstruction schemes, this paper first introduces a residual gradient (RG) term as a new regularization term to improve the quality of the reconstructed image. Moreover, L1 norm is used to measure the residual data (RD) term and the RG term in order to improve the robustness of the proposed method. Finally, the steepest descent method is exploited to solve the energy functional. Simulated and real acquired video sequence experiments show the effectiveness and practicability of the proposed method and demonstrate its superiority over the bi-cubic interpolation and discontinuity adaptive Markov random field (DAMRF) SR method in both signal to noise ratios (SNR) and visual effects.
基金The National Natural Science Foundation of China(No. 40804015,61101163)
文摘An efficient vehicle detection approach is proposed for traffic surveillance images, which is based on information fusion of vehicle symmetrical contour and license plate position. The vertical symmetry axis of the vehicle contour in an image is. first detected, and then the vertical and the horizontal symmetry axes of the license plate are detected using the symmetry axis of the vehicle contour as a reference. The vehicle location in an image is determined using license plate symmetry axes and the vertical and the horizontal projection maps of the vehicle edge image. A dataset consisting of 450 images (15 classes of vehicles) is used to test the proposed method. The experimental results indicate that compared with the vehicle contour-based, the license plate location-based, the vehicle texture-based and the Gabor feature-based methods, the proposed method is the best with a detection accuracy of 90.7% and an elapsed time of 125 ms.
基金Scientific Research Fund of Hunan Province,PRC (No.07JJ6141)Scientific Research Fund of Hunan Provincial Education Department,PRC (No.05C720).
文摘Vehicle license plate (VLP) character segmentation is an important part of the vehicle license plate recognition system (VLPRS).This paper proposes a least square method (LSM) to treat horizontal tilt and vertical tilt in VLP images.Auxiliary lines are added into the image (or the tilt-corrected image) to make the separated parts of each Chinese character to be an interconnected region.The noise regions will be eliminated after two fusing images are merged according to the minimum principle of gray values. Then,the characters are segmented by projection method (PM) and the final character images are obtained.The experimental results show that this method features fast processing and good performance in segmentation.
文摘-License plate recognition (LPR) is an image processing technology that is used to identify vehicles by their license plates. This paper presents a license plate recognition algorithm for Saudi car plates based on the support vector machine (SVM) algorithm. The new algorithm is efficient in recognizing the vehicles from the Arabic part of the plate. The performance of the system has been investigated and analyzed. The recognition accuracy of the algorithm is about 93.3%.
文摘The latest advancements in highway research domain and increase in the number of vehicles everyday led to wider exposure and attention towards the development of efficient Intelligent Transportation System(ITS).One of the popular research areas i.e.,Vehicle License Plate Recognition(VLPR)aims at determining the characters that exist in the license plate of the vehicles.The VLPR process is a difficult one due to the differences in viewpoint,shapes,colors,patterns,and non-uniform illumination at the time of capturing images.The current study develops a robust Deep Learning(DL)-based VLPR model using Squirrel Search Algorithm(SSA)-based Convolutional Neural Network(CNN),called the SSA-CNN model.The presented technique has a total of four major processes namely preprocessing,License Plate(LP)localization and detection,character segmentation,and recognition.Hough Transform(HT)is applied as a feature extractor and SSA-CNN algorithm is applied for character recognition in LP.The SSA-CNN method effectively recognizes the characters that exist in the segmented image by optimal tuning of CNN parameters.The HT-SSA-CNN model was experimentally validated using the Stanford Car,FZU Car,and HumAIn 2019 Challenge datasets.The experimentation outcome verified that the presented method was better under several aspects.The projected HT-SSA-CNN model implied the best performance with optimal overall accuracy of 0.983%.
文摘This paper proposed an improved method for license plate recognition based on hierarchical classification. First, the method of feature extraction and dimension reduction is presented by finding the optimal wavelet packet basis in the process of wavelet packet decomposition and K-L transform. Then the recognition algorithm is introduced based on feature extraction and hierarchical classification. Finally, the principles and procedures of using support vector machines, Harris corner detection algorithm and digital character classification are explained in detail. Simulation results indicate that the presented recognition algorithm performs well with higher speed and efficiency in recognition.
基金supported by the University of Alicante Project under Grant No.PPC–1928273/A
文摘Nowadays, license plate recognition for parking systems is a critical task to provide automatic control of customers and payment. This paper introduces a new method for automatic recognition of license plates of vehicles by mathematical morphology. The proposed method can provide the license plate number of the plates in different light conditions, colors, sizes, and inclination (angles). The algorithm can recognize the license plates of European Union vehicles quickly and correctly. The pattern learning of mathematical skeletons has high efficiency in the process. The performance of the algorithm is demonstrated well by the test in a parking control system.