Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantita...Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantitative parameters.However,due to the harsh on-site construction conditions,it is rather difficult to obtain some of the evaluation parameters which are essential for the rock mass quality prediction.In this study,a novel improved Swin Transformer is proposed to detect,segment,and quantify rock mass characteristic parameters such as water leakage,fractures,weak interlayers.The site experiment results demonstrate that the improved Swin Transformer achieves optimal segmentation results and achieving accuracies of 92%,81%,and 86%for water leakage,fractures,and weak interlayers,respectively.A multisource rock tunnel face characteristic(RTFC)dataset includes 11 parameters for predicting rock mass quality is established.Considering the limitations in predictive performance of incomplete evaluation parameters exist in this dataset,a novel tree-augmented naive Bayesian network(BN)is proposed to address the challenge of the incomplete dataset and achieved a prediction accuracy of 88%.In comparison with other commonly used Machine Learning models the proposed BN-based approach proved an improved performance on predicting the rock mass quality with the incomplete dataset.By utilizing the established BN,a further sensitivity analysis is conducted to quantitatively evaluate the importance of the various parameters,results indicate that the rock strength and fractures parameter exert the most significant influence on rock mass quality.展开更多
Three zincand cobaltcoordination polymers,namely{[Zn_(2)(μ_(6)-adip)(phen)_(2)]·4H_(2)O}_(n)(1),{[Co_(2)(μ_(6)-adip)(bipy)_(2)]·4H_(2)O}_(n)(2),and[Co_(2)(μ4-adip)(μ-bpa)_(2)]_(n)(3)have been constructed...Three zincand cobaltcoordination polymers,namely{[Zn_(2)(μ_(6)-adip)(phen)_(2)]·4H_(2)O}_(n)(1),{[Co_(2)(μ_(6)-adip)(bipy)_(2)]·4H_(2)O}_(n)(2),and[Co_(2)(μ4-adip)(μ-bpa)_(2)]_(n)(3)have been constructed hydrothermally using H4adip(H4adip=5,5′-azanediyldiisophthalic acid),phen(phen=1,10-phenanthroline),bipy(bipy=2,2′-bipyridine),bpa(bpa=bis(4-pyridyl)amine),and zinc and cobalt chlorides at 160℃.The products were isolated as stable crystalline solids and were characterized by IR spectra,elemental analyses,thermogravimetric analyses,and single-crystal X-ray diffrac-tion analyses.Single-crystal X-ray diffraction analyses revealed that three compounds crystallize in the orthorhom-bic system Pnna(1 and 2)or P21212(3)space groups.All compounds exhibit 3D frameworks.The catalytic perfor-mances in the Henry reaction of these compounds were investigated.Compound 3 exhibited an effective catalytic activity in the Henry reaction at 70℃.CCDC:2339391,1;2339392,2;2339393,3.展开更多
Three zinc(Ⅱ),cobalt(Ⅱ),and nickel(Ⅱ)coordination polymers,namely[Zn(μ^(3-)cpna)(μ-dpea)_(0.5)]_(n)(1),[Co(μ^(3-)cpna)(μ-dpey)_(0.5)]_(n)(2),and[Ni(μ^(3-)cpna)(μ-dpey)_(0.5)(H_(2)O)]_(n)(3),have been construc...Three zinc(Ⅱ),cobalt(Ⅱ),and nickel(Ⅱ)coordination polymers,namely[Zn(μ^(3-)cpna)(μ-dpea)_(0.5)]_(n)(1),[Co(μ^(3-)cpna)(μ-dpey)_(0.5)]_(n)(2),and[Ni(μ^(3-)cpna)(μ-dpey)_(0.5)(H_(2)O)]_(n)(3),have been constructed hydrothermally using H_(2)cpna(5-(4-carboxyphenoxy)nicotinic acid),dpea(1,2-di(4-pyridyl)ethane),dpey(1,2-di(4-pyridyl)ethylene),and zinc,cobalt,and nickel chlorides at 160℃.The products were isolated as stable crystalline solids and were characterized by IR spectra,elemental analyses,thermogravimetric analyses,and single-crystal X-ray diffraction analyses.Single-crystal X-ray diffraction analyses revealed that three compounds crystallize in the triclinic system,space group P1.Compounds 1-3 show 2D layer structures.The catalytic activities in the Knoevenagel condensation reaction of these compounds were investigated.Compounds 1 and 2 exhibit effective catalytic activities in the Knoevenagel condensa-tion reaction at room temperature.For this reaction,various parameters were optimized,followed by the investiga-tion of the substrate scope.CCDC:2335676,1;2335677,2;2335678,3.展开更多
Touch-sensitive screens are crucial components of wearable devices.Materials such as reduced graphene oxide(rGO),carbon nanotubes(CNTs),and graphene offer promising solutions for flexible touch-sensitive screens.Howev...Touch-sensitive screens are crucial components of wearable devices.Materials such as reduced graphene oxide(rGO),carbon nanotubes(CNTs),and graphene offer promising solutions for flexible touch-sensitive screens.However,when stacked with flexible substrates to form multilayered capacitive touching sensors,these materials often suffer from substrate delamination in response to deformation;this is due to the materials having different Young’s modulus values.Delamination results in failure to offer accurate touch screen recognition.In this work,we demonstrate an induced charge-based mutual capacitive touching sensor capable of high-precision touch sensing.This is enabled by electron trapping and polarization effects related to mixed-coordinated bonding between copper nanoparticles and vertically grown graphene nanosheets.Here,we used an electron cyclotron resonance system to directly fabricate graphene-metal nanofilms(GMNFs)using carbon and copper,which are firmly adhered to flexible substrates.After being subjected to 3000 bending actions,we observed almost no change in touch sensitivity.The screen interaction system,which has a signal-to-noise ratio of 41.16 dB and resolution of 650 dpi,was tested using a handwritten Chinese character recognition trial and achieved an accuracy of 94.82%.Taken together,these results show the promise of touch-sensitive screens that use directly fabricated GMNFs for wearable devices.展开更多
Atom-level modulation of the coordination environment for single-atom catalysts(SACs)is considered as an effective strategy for elevating the catalytic performance.For the MNxsite,breaking the symmetrical geometry and...Atom-level modulation of the coordination environment for single-atom catalysts(SACs)is considered as an effective strategy for elevating the catalytic performance.For the MNxsite,breaking the symmetrical geometry and charge distribution by introducing relatively weak electronegative atoms into the first/second shell is an efficient way,but it remains challenging for elucidating the underlying mechanism of interaction.Herein,a practical strategy was reported to rationally design single cobalt atoms coordinated with both phosphorus and nitrogen atoms in a hierarchically porous carbon derived from metal-organic frameworks.X-ray absorption spectrum reveals that atomically dispersed Co sites are coordinated with four N atoms in the first shell and varying numbers of P atoms in the second shell(denoted as Co-N/P-C).The prepared catalyst exhibits excellent oxygen reduction reaction(ORR)activity as well as zinc-air battery performance.The introduction of P atoms in the Co-SACs weakens the interaction between Co and N,significantly promoting the adsorption process of ^(*)OOH,resulting in the acceleration of reaction kinetics and reduction of thermodynamic barrier,responsible for the increased intrinsic activity.Our discovery provides insights into an ultimate design of single-atom catalysts with adjustable electrocatalytic activities for efficient electrochemical energy conversion.展开更多
Traditional seawater desalination requires high amounts of energy, with correspondingly high costs and limited benefits, hindering wider applications of the process. To further improve the comprehensive economic benef...Traditional seawater desalination requires high amounts of energy, with correspondingly high costs and limited benefits, hindering wider applications of the process. To further improve the comprehensive economic benefits of seawater desalination, the desalination load can be combined with renewable energy sources such as solar energy, wind energy, and ocean energy or with the power grid to ensure its effective regulation. Utilizing energy internet(EI) technology, energy balance demand of the regional power grid, and coordinated control between coastal multi-source multi-load and regional distribution network with desalination load is reviewed herein. Several key technologies, including coordinated control of coastal multi-source multi-load system with seawater desalination load, flexible interaction between seawater desalination and regional distribution network, and combined control of coastal multi-source multi-load storage system with seawater desalination load, are discussed in detail. Adoption of the flexible interaction between seawater desalination and regional distribution networks is beneficial for solving water resource problems, improving the ability to dissipate distributed renewable energy, balancing and increasing grid loads, improving the safety and economy of coastal power grids, and achieving coordinated and comprehensive application of power grids, renewable energy sources, and coastal loads.展开更多
When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ...When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ferromagnetic materials,thereby posing challenges in accurately determining the number of layers.To address this issue,this research proposes a layer counting method for penetration fuze that incorporates multi-source information fusion,utilizing both the temporal convolutional network(TCN)and the long short-term memory(LSTM)recurrent network.By leveraging the strengths of these two network structures,the method extracts temporal and high-dimensional features from the multi-source physical field during the penetration process,establishing a relationship between the multi-source physical field and the distance between the fuze and the target plate.A simulation model is developed to simulate the overload and magnetic field of a projectile penetrating multiple layers of target plates,capturing the multi-source physical field signals and their patterns during the penetration process.The analysis reveals that the proposed multi-source fusion layer counting method reduces errors by 60% and 50% compared to single overload layer counting and single magnetic anomaly signal layer counting,respectively.The model's predictive performance is evaluated under various operating conditions,including different ratios of added noise to random sample positions,penetration speeds,and spacing between target plates.The maximum errors in fuze penetration time predicted by the three modes are 0.08 ms,0.12 ms,and 0.16 ms,respectively,confirming the robustness of the proposed model.Moreover,the model's predictions indicate that the fitting degree for large interlayer spacings is superior to that for small interlayer spacings due to the influence of stress waves.展开更多
The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initiall...The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT.展开更多
Two coordination polymers were synthesized by hydrothermal reaction,namely,[Cd(H_(3)cpbda)(2,2′‑bipy)(H_(2)O)]_(n)(1)and[Mn(H_(3)cpbda)(phen)(H_(2)O)]_(n)(2),where H_(5)cpbda=5,5′‑[(5‑carboxy‑1,3‑phenyl)bis(oxy)]tri...Two coordination polymers were synthesized by hydrothermal reaction,namely,[Cd(H_(3)cpbda)(2,2′‑bipy)(H_(2)O)]_(n)(1)and[Mn(H_(3)cpbda)(phen)(H_(2)O)]_(n)(2),where H_(5)cpbda=5,5′‑[(5‑carboxy‑1,3‑phenyl)bis(oxy)]triisophthalic acid,2,2′‑bipy=2,2′‑bipyridine,phen=1,10‑phenanthroline.The two complexes were characterized by single‑crystal X‑ray diffraction,powder diffraction,infrared spectroscopy,and thermogravimetric analysis.Complexes 1 and 2 are“V”‑shaped 1D chains,and the molecules form 2D(1)and 3D framework(2)structures through weakπ…πstacking.Furthermore,complex 1 was dispersed in an aqueous solution and its fluorescence intensity demonstrated excellent stability.Complex 1 can specifically detect ciprofloxacin in urine with a detection limit of 1.91×10^(-8)mol·L^(-1).CCDC:2359498,1;2359499,2.展开更多
The selection and coordinated application of government innovation policies are crucial for guiding the direction of enterprise innovation and unleashing their innovation potential.However,due to the lengthy,voluminou...The selection and coordinated application of government innovation policies are crucial for guiding the direction of enterprise innovation and unleashing their innovation potential.However,due to the lengthy,voluminous,complex,and unstructured nature of regional innovation policy texts,traditional policy classification methods often overlook the reality that these texts cover multiple policy topics,leading to lack of objectivity.In contrast,topic mining technology can handle large-scale textual data,overcoming challenges such as the abundance of policy content and difficulty in classification.Although topic models can partition numerous policy texts into topics,they cannot analyze the interplay among policy topics and the impact of policy topic coordination on enterprise innovation in detail.Therefore,we propose a big data analysis scheme for policy coordination paths based on the latent Dirichlet allocation(LDA)model and the fuzzyset qualitative comparative analysis(fsQCA)method by combining topic models with qualitative comparative analysis.The LDA model was employed to derive the topic distribution of each document and the word distribution of each topic and enable automatic classi-fication through algorithms,providing reliable and objective textual classification results.Subsequently,the fsQCA method was used to analyze the coordination paths and dynamic characteristics.Finally,experimental analysis was conducted using innovation policy text data from 31 provincial-level administrative regions in China from 2012 to 2021 as research samples.The results suggest that the proposed method effectively partitions innovation policy topics and analyzes the policy configuration,driving enterprise innovation in different regions.展开更多
Unlike the traditional decentralized channel,the drop-shipping channel entails a retailer relaying consumers’orders to the manufacturer,which proceeds to stock the orders and directly ship them to the consumers.This ...Unlike the traditional decentralized channel,the drop-shipping channel entails a retailer relaying consumers’orders to the manufacturer,which proceeds to stock the orders and directly ship them to the consumers.This study explores supply chain coordination and product quality in drop-shipping and traditional channels.Specifically,we analyze the performance of both channels under wholesale price and revenue-sharing contracts.Our study yields several key findings.First,the revenue-sharing contract can coordinate both traditional and drop-shipping channels,effectively increasing supply chain performance.Second,given the channel structure,the retailer prefers the wholesale price contract,whereas the manufacturer prefers the revenue-sharing contract.Third,product quality is higher in the drop-shipping channel when demand uncertainty is high.Finally,the implementation of the revenue-sharing contract increases product quality in the traditional channel,whereas it keeps product quality unchanged in the drop-shipping channel.展开更多
With the increase of people’s demand,it is extremely desired for developing high-safety,widetemperature-range and high-energy-density lithium batteries,but huge challenges are remained due to shrinkage and combustion...With the increase of people’s demand,it is extremely desired for developing high-safety,widetemperature-range and high-energy-density lithium batteries,but huge challenges are remained due to shrinkage and combustion of commonly used polyolefin separators at high temperatures,as well as narrow usable temperature range and high flammability of conventionally commercialized liquid electrolytes.In this work,we report a multifunctional separator mainly consisting of Zn^(2+)-phytate coordination complex nanoparticles and bacterial cellulose nanofibers,named the BZP separator,which possesses high porosity,excellent thermotolerance,good flame retardancy,abilities of anion binding and Ni^(2+)capturing.Through cooperating with the fluoride-free wide-temperature-range electrolyte,Li//LiFePO_(4) cells not only deliver discharge capacities of 110.39 mA h g^(-1)and 113.25 mA h g^(-1)after 2200 cycles (2 C) and1600 cycles (5 C) at 25℃,with capacity retentions of 76.59%and 86.09%,respectively,but also exhibit excellent cycling performance at 80℃ and-40℃.Significantly,the Li//NCM811 cell with a loading of7.8 mg cm^(-2)delivers a discharge capacity of 146.64 mA h g^(-1)after 200 cycles at 0.5 C,with a capacity retention of 89.03%.In addition,pouch cells can work at 120℃ and have low flammability.展开更多
The high energy coordination compounds Cu(TZCA)_(2)(ClO_(4))_(2)(ECCs-1) was prepared by 1H-tetrazole-5-carbohydrazide(TZCA) with a high energy skeleton and a strong coordination ability group.At the same time,the rea...The high energy coordination compounds Cu(TZCA)_(2)(ClO_(4))_(2)(ECCs-1) was prepared by 1H-tetrazole-5-carbohydrazide(TZCA) with a high energy skeleton and a strong coordination ability group.At the same time,the reaction activity of the ligand was explored,and the single crystal structure of it and intermediate were obtained.The structures of all substances were characterized by IR and EA.And the structure and composition of ECCs-1 are confirmed by ESP,AC,SEM and ICP-OES.Physical and chemical properties tests show that ECCs-1 has an acceptable thermal stability(T_(d)=177℃) and extremely sensitive mechanical stimulation(IS=1 J,FS=5 N).The comprehensive performance test results show that ECCs-1 has excellent initiation ability.In addition,the decomposition mechanism of ECCs-1 is explored from two aspects of experiment and theoretical calculation.展开更多
Under solvothermal conditions,six new coordination polymers(CPs)[Mn(L)(phen)(H_(2)O)]_(n)(1),[Co(L)(phen)(H_(2)O)]_(n)(2),[Cu(L)(phen)(H_(2)O)]_(n)(3),[Zn_(2)(L)_(2)(phen)2(H_(2)O)]_(n)(4),[Zn(L)(phen)]_(n)(5),and[Cd(...Under solvothermal conditions,six new coordination polymers(CPs)[Mn(L)(phen)(H_(2)O)]_(n)(1),[Co(L)(phen)(H_(2)O)]_(n)(2),[Cu(L)(phen)(H_(2)O)]_(n)(3),[Zn_(2)(L)_(2)(phen)2(H_(2)O)]_(n)(4),[Zn(L)(phen)]_(n)(5),and[Cd(L)(phen)2]_(n)(6)were synthesized by reactions of dicarboxylate ligand 2,2'-(1,2-phenylenebis(methylene))bis(sulfanediyl)dinobutyric acid(H_(2)L)and 1,10-phenanthroline(phen)with the corresponding metal salts.Complexes 1-6 have been structurally characterized by single-crystal X-ray diffraction analyses,elemental analysis,IR,thermogravimetric analysis,and powder X-ray diffraction.The structures of 1-6 are 1D chains,which are further connected by hydrogen bonding interac-tions to form 3D supramolecular structures.Among them,1 and 2 are isomorphic with L2-of syn-conformation,while L2-shows anti-conformation in 3-6.In addition,the solid-state photoluminescence property of 4-6 was investigated.展开更多
Aiming at the problem that it is difficult to generate the dynamic decoupling equation of the parallel six-dimensional acceleration sensing mechanism,two typical parallel six-dimensional acceleration sensing mechanism...Aiming at the problem that it is difficult to generate the dynamic decoupling equation of the parallel six-dimensional acceleration sensing mechanism,two typical parallel six-dimensional acceleration sensing mechanisms are taken as examples.By analyzing the scale constraint relationship between the hinge points on the mass block and the hinge points on the base of the sensing mechanism,a new method for establishing the dynamic equation of the sensing mechanism is proposed.Firstly,based on the scale constraint relationship between the hinge points on the mass block and the hinge points on the base of the sensing mechanism,the expression of the branch rod length is obtained.The inherent constraint relationship between the branches is excavated and the branch coordination closed chain of the“12-6”configuration is constructed.The output coordination equation of the sensing mechanism is successfully derived.Secondly,the dynamic equations of“12-4”and“12-6”configurations are constructed by the Newton-Euler method,and the forward decoupling equations of the two configurations are solved by combining the dynamic equations and the output coordination equations.Finally,the virtual prototype experiment is carried out,and the maximum reference errors of the forward decoupling equations of the two configuration sensing mechanisms are 4.23%and 6.53%,respectively.The results show that the proposed method is effective and feasible,and meets the real-time requirements.展开更多
Suppression of uncontrollable dendrite growth and water-induced side reactions of Zn metal anodes is crucial for achieving long-lasting cycling stability and facilitating the practical implementations of aqueous Zn-me...Suppression of uncontrollable dendrite growth and water-induced side reactions of Zn metal anodes is crucial for achieving long-lasting cycling stability and facilitating the practical implementations of aqueous Zn-metal batteries.To address these challenges,we report in this study a functional nitro-cellulose interfacial layer(NCIL)on the surface of Zn anodes enlightened by a nitro-coordination chemistry strategy.The NCIL exhibits strong zincophilicity and superior coordination capability with Zn^(2+)due to the highly electronegative and highly nucleophilic nature of the nitro functional group.This characteristic facilitates a rapid Zn-ion desolvation process and homogeneous Zn plating,effectively preventing H_(2) evolution and dendrite formation.Additionally,the negatively charged surface of NCIL acts as a shield,repelling SO_(4)^(2-)anions and inhibiting corrosive reactions on the Zn surface.Remarkably,reversible and stable Zn plating/stripping is achieved for over 5100 h at a current density of 1 mA cm^(-2),which is nearly 30 times longer than that of bare Zn anodes.Furthermore,the Zn/V_(2)O_(5) full cells with the functional interface layer deliver a high-capacity retention of 80.3%for over 10,000 cycles at 5 A g^(-1).This research offers valuable insights for the rational development of advanced protective interface layers in order to achieve ultra-long-lifeZnmetal batteries.展开更多
Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to pred...Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration)can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide.展开更多
Effectively managing extensive,multi-source,and multi-level real-scene 3D models for responsive retrieval scheduling and rapid visualization in the Web environment is a significant challenge in the current development...Effectively managing extensive,multi-source,and multi-level real-scene 3D models for responsive retrieval scheduling and rapid visualization in the Web environment is a significant challenge in the current development of real-scene 3D applications in China.In this paper,we address this challenge by reorganizing spatial and temporal information into a 3D geospatial grid.It introduces the Global 3D Geocoding System(G_(3)DGS),leveraging neighborhood similarity and uniqueness for efficient storage,retrieval,updating,and scheduling of these models.A combination of G_(3)DGS and non-relational databases is implemented,enhancing data storage scalability and flexibility.Additionally,a model detail management scheduling strategy(TLOD)based on G_(3)DGS and an importance factor T is designed.Compared with mainstream commercial and open-source platforms,this method significantly enhances the loadable capacity of massive multi-source real-scene 3D models in the Web environment by 33%,improves browsing efficiency by 48%,and accelerates invocation speed by 40%.展开更多
Single metal atoms anchored on nitrogen-doped carbon materials(M-N_(4))have been identified as effective active sites for catalyzing the two-electron oxygen reduction reaction(2e-ORR).However,the relationship between ...Single metal atoms anchored on nitrogen-doped carbon materials(M-N_(4))have been identified as effective active sites for catalyzing the two-electron oxygen reduction reaction(2e-ORR).However,the relationship between the local atomic/electronic environments of the M-N_(4) sites(metal atoms coordinated with different types of N species)and their catalytic activity for 2e-ORR has rarely been elaborated clearly,which imposes significant ambiguity for the rational design of catalysts.Herein,guided by the comprehensive density-functional theory calculations and predictions,a series of Zn-N_(4) single-atom catalysts(SACs)are designed with pyrrole/pyridine-N(N_(Po)/N_(Pd))synergistic coordination and prepared by controlling the pyrolysis temperature(600,700,and 800℃),Among them,the dominated Zn-N_(4) configurations with rationally combined N_(Po)/N_(Pd)coordination show~*OOH adsorption strength close to the optimal value,much superior to those with mono N species.Thus,the as-prepared catalyst exhibits a high H_(2)O_(2) selectivity of over 90%both in neutral and alkaline environments,with a superb H_(2)O_(2) yield of up to 33.63 mol g^(-1)h^(-1)in an alkaline with flow cell.More importantly,a new descriptor,dz^(2)+s band center,has been proposed,which is especially feasible for predicting the activity for metal types with fully occupied s and d orbitals.This work thus presents clear guidance for the rational design of highly active SACs toward ORR and provides a complement to the d-band theory for more accurately predicting the catalytic activity of the materials.展开更多
One of the greatest challenges in the agroecosystem is to improve cropland intensification while preserving agroecosystem services.While many studies have investigated the effect of cropland intensification on agroeco...One of the greatest challenges in the agroecosystem is to improve cropland intensification while preserving agroecosystem services.While many studies have investigated the effect of cropland intensification on agroecosystem service,the interactive coupling and coordination among these factors remain largely unexplored.In view of this,this study performed a case study of the Loess Plateau in Shaanxi Province,China and constructed comprehensive evaluation models to quantify the cropland intensification and agroecosystem service in this area.Balance analysis and the coupling coordination degree model were used to evaluate the interactive relationship between cropland intensification and agroecosystem service,and statistical analysis and spatial autocorrelation were used to analyze the spatial characteristics and potential mechanism of the coupling coordination.Results show that both the cropland intensification and agroecosystem service in the study area were relatively low yet gradually increased from 2000 to 2020.Agroecosystem service lag was identified as the dominant unbalanced development type.Improving the supply capacity of agroecosystem services plays a key role in the balanced development of cropland in the Loess Plateau.The coupling coordination degree between cropland intensification and agroecosystem service ranges from basic coordination to serious incoordination.Therefore,cropland intensification practices in the area should be optimized to enhance this coordination degree.An upward trend was also observed in the coupling coordination degree from2000 to 2020.The withdrawal of marginal cropland in the Grain for Green program is one of the most important reasons for this trend,especially for the northern region.Around 83.6%of the high-high clusters are concentrated in the southern region of the Loess Plateau,whereas 70.5%of the low-low clusters are distributed in the northern region.These clustering characteristics are mainly attributed to the environmental suitability of these areas for agriculture and their degree of economic development.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52279107 and 52379106)the Qingdao Guoxin Jiaozhou Bay Second Submarine Tunnel Co.,Ltd.,the Academician and Expert Workstation of Yunnan Province(No.202205AF150015)the Science and Technology Innovation Project of YCIC Group Co.,Ltd.(No.YCIC-YF-2022-15)。
文摘Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantitative parameters.However,due to the harsh on-site construction conditions,it is rather difficult to obtain some of the evaluation parameters which are essential for the rock mass quality prediction.In this study,a novel improved Swin Transformer is proposed to detect,segment,and quantify rock mass characteristic parameters such as water leakage,fractures,weak interlayers.The site experiment results demonstrate that the improved Swin Transformer achieves optimal segmentation results and achieving accuracies of 92%,81%,and 86%for water leakage,fractures,and weak interlayers,respectively.A multisource rock tunnel face characteristic(RTFC)dataset includes 11 parameters for predicting rock mass quality is established.Considering the limitations in predictive performance of incomplete evaluation parameters exist in this dataset,a novel tree-augmented naive Bayesian network(BN)is proposed to address the challenge of the incomplete dataset and achieved a prediction accuracy of 88%.In comparison with other commonly used Machine Learning models the proposed BN-based approach proved an improved performance on predicting the rock mass quality with the incomplete dataset.By utilizing the established BN,a further sensitivity analysis is conducted to quantitatively evaluate the importance of the various parameters,results indicate that the rock strength and fractures parameter exert the most significant influence on rock mass quality.
文摘Three zincand cobaltcoordination polymers,namely{[Zn_(2)(μ_(6)-adip)(phen)_(2)]·4H_(2)O}_(n)(1),{[Co_(2)(μ_(6)-adip)(bipy)_(2)]·4H_(2)O}_(n)(2),and[Co_(2)(μ4-adip)(μ-bpa)_(2)]_(n)(3)have been constructed hydrothermally using H4adip(H4adip=5,5′-azanediyldiisophthalic acid),phen(phen=1,10-phenanthroline),bipy(bipy=2,2′-bipyridine),bpa(bpa=bis(4-pyridyl)amine),and zinc and cobalt chlorides at 160℃.The products were isolated as stable crystalline solids and were characterized by IR spectra,elemental analyses,thermogravimetric analyses,and single-crystal X-ray diffrac-tion analyses.Single-crystal X-ray diffraction analyses revealed that three compounds crystallize in the orthorhom-bic system Pnna(1 and 2)or P21212(3)space groups.All compounds exhibit 3D frameworks.The catalytic perfor-mances in the Henry reaction of these compounds were investigated.Compound 3 exhibited an effective catalytic activity in the Henry reaction at 70℃.CCDC:2339391,1;2339392,2;2339393,3.
文摘Three zinc(Ⅱ),cobalt(Ⅱ),and nickel(Ⅱ)coordination polymers,namely[Zn(μ^(3-)cpna)(μ-dpea)_(0.5)]_(n)(1),[Co(μ^(3-)cpna)(μ-dpey)_(0.5)]_(n)(2),and[Ni(μ^(3-)cpna)(μ-dpey)_(0.5)(H_(2)O)]_(n)(3),have been constructed hydrothermally using H_(2)cpna(5-(4-carboxyphenoxy)nicotinic acid),dpea(1,2-di(4-pyridyl)ethane),dpey(1,2-di(4-pyridyl)ethylene),and zinc,cobalt,and nickel chlorides at 160℃.The products were isolated as stable crystalline solids and were characterized by IR spectra,elemental analyses,thermogravimetric analyses,and single-crystal X-ray diffraction analyses.Single-crystal X-ray diffraction analyses revealed that three compounds crystallize in the triclinic system,space group P1.Compounds 1-3 show 2D layer structures.The catalytic activities in the Knoevenagel condensation reaction of these compounds were investigated.Compounds 1 and 2 exhibit effective catalytic activities in the Knoevenagel condensa-tion reaction at room temperature.For this reaction,various parameters were optimized,followed by the investiga-tion of the substrate scope.CCDC:2335676,1;2335677,2;2335678,3.
基金supported by the National Natural Science Foundation of China(Nos.52275565,52105593,and 62104155)the Natural Science Foundation of Guangdong Province,China(No.2022A1515011667)+2 种基金the Shenzhen Foundation Research Key Project(No.JCYJ20200109114244249)the Youth Talent Fund of Guangdong Province,China(No.2023A1515030292)the Shenzhen Excellent Youth Basic Research Fund(No.RCYX20231211090249068).
文摘Touch-sensitive screens are crucial components of wearable devices.Materials such as reduced graphene oxide(rGO),carbon nanotubes(CNTs),and graphene offer promising solutions for flexible touch-sensitive screens.However,when stacked with flexible substrates to form multilayered capacitive touching sensors,these materials often suffer from substrate delamination in response to deformation;this is due to the materials having different Young’s modulus values.Delamination results in failure to offer accurate touch screen recognition.In this work,we demonstrate an induced charge-based mutual capacitive touching sensor capable of high-precision touch sensing.This is enabled by electron trapping and polarization effects related to mixed-coordinated bonding between copper nanoparticles and vertically grown graphene nanosheets.Here,we used an electron cyclotron resonance system to directly fabricate graphene-metal nanofilms(GMNFs)using carbon and copper,which are firmly adhered to flexible substrates.After being subjected to 3000 bending actions,we observed almost no change in touch sensitivity.The screen interaction system,which has a signal-to-noise ratio of 41.16 dB and resolution of 650 dpi,was tested using a handwritten Chinese character recognition trial and achieved an accuracy of 94.82%.Taken together,these results show the promise of touch-sensitive screens that use directly fabricated GMNFs for wearable devices.
基金supported by the National Natural Science Foundation of China(51872115,12234018 and 52101256)Beijing Synchrotron Radiation Facility(BSRF,4B9A)。
文摘Atom-level modulation of the coordination environment for single-atom catalysts(SACs)is considered as an effective strategy for elevating the catalytic performance.For the MNxsite,breaking the symmetrical geometry and charge distribution by introducing relatively weak electronegative atoms into the first/second shell is an efficient way,but it remains challenging for elucidating the underlying mechanism of interaction.Herein,a practical strategy was reported to rationally design single cobalt atoms coordinated with both phosphorus and nitrogen atoms in a hierarchically porous carbon derived from metal-organic frameworks.X-ray absorption spectrum reveals that atomically dispersed Co sites are coordinated with four N atoms in the first shell and varying numbers of P atoms in the second shell(denoted as Co-N/P-C).The prepared catalyst exhibits excellent oxygen reduction reaction(ORR)activity as well as zinc-air battery performance.The introduction of P atoms in the Co-SACs weakens the interaction between Co and N,significantly promoting the adsorption process of ^(*)OOH,resulting in the acceleration of reaction kinetics and reduction of thermodynamic barrier,responsible for the increased intrinsic activity.Our discovery provides insights into an ultimate design of single-atom catalysts with adjustable electrocatalytic activities for efficient electrochemical energy conversion.
基金supported by the State Grid Science and Technology Project, “Study on Multi-source and Multiload Coordination and Optimization Technology Considering Desalination of Sea Water” (No. SGTJDK00DWJS1800011)
文摘Traditional seawater desalination requires high amounts of energy, with correspondingly high costs and limited benefits, hindering wider applications of the process. To further improve the comprehensive economic benefits of seawater desalination, the desalination load can be combined with renewable energy sources such as solar energy, wind energy, and ocean energy or with the power grid to ensure its effective regulation. Utilizing energy internet(EI) technology, energy balance demand of the regional power grid, and coordinated control between coastal multi-source multi-load and regional distribution network with desalination load is reviewed herein. Several key technologies, including coordinated control of coastal multi-source multi-load system with seawater desalination load, flexible interaction between seawater desalination and regional distribution network, and combined control of coastal multi-source multi-load storage system with seawater desalination load, are discussed in detail. Adoption of the flexible interaction between seawater desalination and regional distribution networks is beneficial for solving water resource problems, improving the ability to dissipate distributed renewable energy, balancing and increasing grid loads, improving the safety and economy of coastal power grids, and achieving coordinated and comprehensive application of power grids, renewable energy sources, and coastal loads.
文摘When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ferromagnetic materials,thereby posing challenges in accurately determining the number of layers.To address this issue,this research proposes a layer counting method for penetration fuze that incorporates multi-source information fusion,utilizing both the temporal convolutional network(TCN)and the long short-term memory(LSTM)recurrent network.By leveraging the strengths of these two network structures,the method extracts temporal and high-dimensional features from the multi-source physical field during the penetration process,establishing a relationship between the multi-source physical field and the distance between the fuze and the target plate.A simulation model is developed to simulate the overload and magnetic field of a projectile penetrating multiple layers of target plates,capturing the multi-source physical field signals and their patterns during the penetration process.The analysis reveals that the proposed multi-source fusion layer counting method reduces errors by 60% and 50% compared to single overload layer counting and single magnetic anomaly signal layer counting,respectively.The model's predictive performance is evaluated under various operating conditions,including different ratios of added noise to random sample positions,penetration speeds,and spacing between target plates.The maximum errors in fuze penetration time predicted by the three modes are 0.08 ms,0.12 ms,and 0.16 ms,respectively,confirming the robustness of the proposed model.Moreover,the model's predictions indicate that the fitting degree for large interlayer spacings is superior to that for small interlayer spacings due to the influence of stress waves.
基金supported by the National Key Research and Development Program of China(grant number 2019YFE0123600)。
文摘The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT.
文摘Two coordination polymers were synthesized by hydrothermal reaction,namely,[Cd(H_(3)cpbda)(2,2′‑bipy)(H_(2)O)]_(n)(1)and[Mn(H_(3)cpbda)(phen)(H_(2)O)]_(n)(2),where H_(5)cpbda=5,5′‑[(5‑carboxy‑1,3‑phenyl)bis(oxy)]triisophthalic acid,2,2′‑bipy=2,2′‑bipyridine,phen=1,10‑phenanthroline.The two complexes were characterized by single‑crystal X‑ray diffraction,powder diffraction,infrared spectroscopy,and thermogravimetric analysis.Complexes 1 and 2 are“V”‑shaped 1D chains,and the molecules form 2D(1)and 3D framework(2)structures through weakπ…πstacking.Furthermore,complex 1 was dispersed in an aqueous solution and its fluorescence intensity demonstrated excellent stability.Complex 1 can specifically detect ciprofloxacin in urine with a detection limit of 1.91×10^(-8)mol·L^(-1).CCDC:2359498,1;2359499,2.
文摘The selection and coordinated application of government innovation policies are crucial for guiding the direction of enterprise innovation and unleashing their innovation potential.However,due to the lengthy,voluminous,complex,and unstructured nature of regional innovation policy texts,traditional policy classification methods often overlook the reality that these texts cover multiple policy topics,leading to lack of objectivity.In contrast,topic mining technology can handle large-scale textual data,overcoming challenges such as the abundance of policy content and difficulty in classification.Although topic models can partition numerous policy texts into topics,they cannot analyze the interplay among policy topics and the impact of policy topic coordination on enterprise innovation in detail.Therefore,we propose a big data analysis scheme for policy coordination paths based on the latent Dirichlet allocation(LDA)model and the fuzzyset qualitative comparative analysis(fsQCA)method by combining topic models with qualitative comparative analysis.The LDA model was employed to derive the topic distribution of each document and the word distribution of each topic and enable automatic classi-fication through algorithms,providing reliable and objective textual classification results.Subsequently,the fsQCA method was used to analyze the coordination paths and dynamic characteristics.Finally,experimental analysis was conducted using innovation policy text data from 31 provincial-level administrative regions in China from 2012 to 2021 as research samples.The results suggest that the proposed method effectively partitions innovation policy topics and analyzes the policy configuration,driving enterprise innovation in different regions.
基金supported by the Key Fund Project for Youth Innovation of USTC(WK2040000042).
文摘Unlike the traditional decentralized channel,the drop-shipping channel entails a retailer relaying consumers’orders to the manufacturer,which proceeds to stock the orders and directly ship them to the consumers.This study explores supply chain coordination and product quality in drop-shipping and traditional channels.Specifically,we analyze the performance of both channels under wholesale price and revenue-sharing contracts.Our study yields several key findings.First,the revenue-sharing contract can coordinate both traditional and drop-shipping channels,effectively increasing supply chain performance.Second,given the channel structure,the retailer prefers the wholesale price contract,whereas the manufacturer prefers the revenue-sharing contract.Third,product quality is higher in the drop-shipping channel when demand uncertainty is high.Finally,the implementation of the revenue-sharing contract increases product quality in the traditional channel,whereas it keeps product quality unchanged in the drop-shipping channel.
基金supported by the National Natural Science Foundation of China (22275131)the Institutional Research Fund from Sichuan University (2021SCUNL201)+1 种基金the 111 Project (B20001)the Fundamental Research Funds for the Central Universities。
文摘With the increase of people’s demand,it is extremely desired for developing high-safety,widetemperature-range and high-energy-density lithium batteries,but huge challenges are remained due to shrinkage and combustion of commonly used polyolefin separators at high temperatures,as well as narrow usable temperature range and high flammability of conventionally commercialized liquid electrolytes.In this work,we report a multifunctional separator mainly consisting of Zn^(2+)-phytate coordination complex nanoparticles and bacterial cellulose nanofibers,named the BZP separator,which possesses high porosity,excellent thermotolerance,good flame retardancy,abilities of anion binding and Ni^(2+)capturing.Through cooperating with the fluoride-free wide-temperature-range electrolyte,Li//LiFePO_(4) cells not only deliver discharge capacities of 110.39 mA h g^(-1)and 113.25 mA h g^(-1)after 2200 cycles (2 C) and1600 cycles (5 C) at 25℃,with capacity retentions of 76.59%and 86.09%,respectively,but also exhibit excellent cycling performance at 80℃ and-40℃.Significantly,the Li//NCM811 cell with a loading of7.8 mg cm^(-2)delivers a discharge capacity of 146.64 mA h g^(-1)after 200 cycles at 0.5 C,with a capacity retention of 89.03%.In addition,pouch cells can work at 120℃ and have low flammability.
基金projects of National Natural Science Foundation of China (Grant Nos.22175025 and 21905023) for their generous financial support。
文摘The high energy coordination compounds Cu(TZCA)_(2)(ClO_(4))_(2)(ECCs-1) was prepared by 1H-tetrazole-5-carbohydrazide(TZCA) with a high energy skeleton and a strong coordination ability group.At the same time,the reaction activity of the ligand was explored,and the single crystal structure of it and intermediate were obtained.The structures of all substances were characterized by IR and EA.And the structure and composition of ECCs-1 are confirmed by ESP,AC,SEM and ICP-OES.Physical and chemical properties tests show that ECCs-1 has an acceptable thermal stability(T_(d)=177℃) and extremely sensitive mechanical stimulation(IS=1 J,FS=5 N).The comprehensive performance test results show that ECCs-1 has excellent initiation ability.In addition,the decomposition mechanism of ECCs-1 is explored from two aspects of experiment and theoretical calculation.
文摘Under solvothermal conditions,six new coordination polymers(CPs)[Mn(L)(phen)(H_(2)O)]_(n)(1),[Co(L)(phen)(H_(2)O)]_(n)(2),[Cu(L)(phen)(H_(2)O)]_(n)(3),[Zn_(2)(L)_(2)(phen)2(H_(2)O)]_(n)(4),[Zn(L)(phen)]_(n)(5),and[Cd(L)(phen)2]_(n)(6)were synthesized by reactions of dicarboxylate ligand 2,2'-(1,2-phenylenebis(methylene))bis(sulfanediyl)dinobutyric acid(H_(2)L)and 1,10-phenanthroline(phen)with the corresponding metal salts.Complexes 1-6 have been structurally characterized by single-crystal X-ray diffraction analyses,elemental analysis,IR,thermogravimetric analysis,and powder X-ray diffraction.The structures of 1-6 are 1D chains,which are further connected by hydrogen bonding interac-tions to form 3D supramolecular structures.Among them,1 and 2 are isomorphic with L2-of syn-conformation,while L2-shows anti-conformation in 3-6.In addition,the solid-state photoluminescence property of 4-6 was investigated.
基金supported in part by the National Natural Science Foundation of China(No.51405237)。
文摘Aiming at the problem that it is difficult to generate the dynamic decoupling equation of the parallel six-dimensional acceleration sensing mechanism,two typical parallel six-dimensional acceleration sensing mechanisms are taken as examples.By analyzing the scale constraint relationship between the hinge points on the mass block and the hinge points on the base of the sensing mechanism,a new method for establishing the dynamic equation of the sensing mechanism is proposed.Firstly,based on the scale constraint relationship between the hinge points on the mass block and the hinge points on the base of the sensing mechanism,the expression of the branch rod length is obtained.The inherent constraint relationship between the branches is excavated and the branch coordination closed chain of the“12-6”configuration is constructed.The output coordination equation of the sensing mechanism is successfully derived.Secondly,the dynamic equations of“12-4”and“12-6”configurations are constructed by the Newton-Euler method,and the forward decoupling equations of the two configurations are solved by combining the dynamic equations and the output coordination equations.Finally,the virtual prototype experiment is carried out,and the maximum reference errors of the forward decoupling equations of the two configuration sensing mechanisms are 4.23%and 6.53%,respectively.The results show that the proposed method is effective and feasible,and meets the real-time requirements.
基金supported by the National Natural Science Foundation of China (No. 22005216 and 52172241)the General Research Fund of Hong Kong (No. CityU 11308321)Tianjin Research Innovation Project for Postgraduate Students (No.2022BKY130)
文摘Suppression of uncontrollable dendrite growth and water-induced side reactions of Zn metal anodes is crucial for achieving long-lasting cycling stability and facilitating the practical implementations of aqueous Zn-metal batteries.To address these challenges,we report in this study a functional nitro-cellulose interfacial layer(NCIL)on the surface of Zn anodes enlightened by a nitro-coordination chemistry strategy.The NCIL exhibits strong zincophilicity and superior coordination capability with Zn^(2+)due to the highly electronegative and highly nucleophilic nature of the nitro functional group.This characteristic facilitates a rapid Zn-ion desolvation process and homogeneous Zn plating,effectively preventing H_(2) evolution and dendrite formation.Additionally,the negatively charged surface of NCIL acts as a shield,repelling SO_(4)^(2-)anions and inhibiting corrosive reactions on the Zn surface.Remarkably,reversible and stable Zn plating/stripping is achieved for over 5100 h at a current density of 1 mA cm^(-2),which is nearly 30 times longer than that of bare Zn anodes.Furthermore,the Zn/V_(2)O_(5) full cells with the functional interface layer deliver a high-capacity retention of 80.3%for over 10,000 cycles at 5 A g^(-1).This research offers valuable insights for the rational development of advanced protective interface layers in order to achieve ultra-long-lifeZnmetal batteries.
基金supported by the National Natural Science Foundation of China(41977215)。
文摘Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration)can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide.
基金National Key Research and Development Program of China(No.2023YFB3907103).
文摘Effectively managing extensive,multi-source,and multi-level real-scene 3D models for responsive retrieval scheduling and rapid visualization in the Web environment is a significant challenge in the current development of real-scene 3D applications in China.In this paper,we address this challenge by reorganizing spatial and temporal information into a 3D geospatial grid.It introduces the Global 3D Geocoding System(G_(3)DGS),leveraging neighborhood similarity and uniqueness for efficient storage,retrieval,updating,and scheduling of these models.A combination of G_(3)DGS and non-relational databases is implemented,enhancing data storage scalability and flexibility.Additionally,a model detail management scheduling strategy(TLOD)based on G_(3)DGS and an importance factor T is designed.Compared with mainstream commercial and open-source platforms,this method significantly enhances the loadable capacity of massive multi-source real-scene 3D models in the Web environment by 33%,improves browsing efficiency by 48%,and accelerates invocation speed by 40%.
基金National Natural Science Foundation of China(No.22379111 and 22179093)。
文摘Single metal atoms anchored on nitrogen-doped carbon materials(M-N_(4))have been identified as effective active sites for catalyzing the two-electron oxygen reduction reaction(2e-ORR).However,the relationship between the local atomic/electronic environments of the M-N_(4) sites(metal atoms coordinated with different types of N species)and their catalytic activity for 2e-ORR has rarely been elaborated clearly,which imposes significant ambiguity for the rational design of catalysts.Herein,guided by the comprehensive density-functional theory calculations and predictions,a series of Zn-N_(4) single-atom catalysts(SACs)are designed with pyrrole/pyridine-N(N_(Po)/N_(Pd))synergistic coordination and prepared by controlling the pyrolysis temperature(600,700,and 800℃),Among them,the dominated Zn-N_(4) configurations with rationally combined N_(Po)/N_(Pd)coordination show~*OOH adsorption strength close to the optimal value,much superior to those with mono N species.Thus,the as-prepared catalyst exhibits a high H_(2)O_(2) selectivity of over 90%both in neutral and alkaline environments,with a superb H_(2)O_(2) yield of up to 33.63 mol g^(-1)h^(-1)in an alkaline with flow cell.More importantly,a new descriptor,dz^(2)+s band center,has been proposed,which is especially feasible for predicting the activity for metal types with fully occupied s and d orbitals.This work thus presents clear guidance for the rational design of highly active SACs toward ORR and provides a complement to the d-band theory for more accurately predicting the catalytic activity of the materials.
基金Under the auspices of the National Natural Science Foundation of China(No.41901262)Natural Science Basic Research Program of Shaanxi(No.2024JC-YBQN-0300)Fundamental Research Funds for the Central Universities(No.GK202103125,GK202207005)。
文摘One of the greatest challenges in the agroecosystem is to improve cropland intensification while preserving agroecosystem services.While many studies have investigated the effect of cropland intensification on agroecosystem service,the interactive coupling and coordination among these factors remain largely unexplored.In view of this,this study performed a case study of the Loess Plateau in Shaanxi Province,China and constructed comprehensive evaluation models to quantify the cropland intensification and agroecosystem service in this area.Balance analysis and the coupling coordination degree model were used to evaluate the interactive relationship between cropland intensification and agroecosystem service,and statistical analysis and spatial autocorrelation were used to analyze the spatial characteristics and potential mechanism of the coupling coordination.Results show that both the cropland intensification and agroecosystem service in the study area were relatively low yet gradually increased from 2000 to 2020.Agroecosystem service lag was identified as the dominant unbalanced development type.Improving the supply capacity of agroecosystem services plays a key role in the balanced development of cropland in the Loess Plateau.The coupling coordination degree between cropland intensification and agroecosystem service ranges from basic coordination to serious incoordination.Therefore,cropland intensification practices in the area should be optimized to enhance this coordination degree.An upward trend was also observed in the coupling coordination degree from2000 to 2020.The withdrawal of marginal cropland in the Grain for Green program is one of the most important reasons for this trend,especially for the northern region.Around 83.6%of the high-high clusters are concentrated in the southern region of the Loess Plateau,whereas 70.5%of the low-low clusters are distributed in the northern region.These clustering characteristics are mainly attributed to the environmental suitability of these areas for agriculture and their degree of economic development.